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Abstract
The evolution of a self-gravitating system to a non-equilibrium steady state 
occurs through a process of violent relaxation. In the thermodynamic limit 
the dynamics of a many body system should be governed by the Vlasov 
equation. Recently, however, a question was raised regarding the validity of 
Vlasov equation during the process or violent relaxation. In this paper we will 
explore the entropy production during the relaxation process using N-body 
molecular dynamics simulations. We will show that the entropy production 
time grows as Nα, with α > 0 and in the limit N → ∞, entropy will remain 
constant, consistent with the Vlasov equation. Furthermore, we will show that 
the mean field dynamics constructed on the basis of the Vlasov equation is in 
excellent agreement with the full molecular dynamics simulations, justifying 
the applicability of Vlasov equation  during the violent relaxation phase of 
evolution.

Keywords: long-range, gravitational systems, entropy, vlasov equation

1.  Introduction

Long range (LR) interacting systems are distinct from systems which interact through short-
range forces. While the latter achieve thermodynamic equilibrium irrespective of the initial 
condition, the final state to which LR interacting systems evolve depends strongly on the 
initial condition. Self-gravitating systems (SGS) are paradigmatic of systems with LR inter-
actions. It is known that SGS reach their quasi-stationary states (qSS) by process of violent 
relaxation [1–4], in which some particles gain energy from the rest of the system through 
parametric resonances [4–7]. The process usually results in a violent relaxation to a qSS. It 
has been well accepted that in the thermodynamic limit the dynamical evolution of the one-
particle distribution function (DF) should be described by the Vlasov equation. Recently, how-
ever, this belief has been questioned [8] based on the investigation of the entropy production 
during the process of violent relaxation. The authors of [8] observed for many different initial 
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conditions a strong entropy increase during the process of violent relaxation which can not be 
accounted for in the framework of Vlasov equation, which requires that entropy must remain 
constant during the dynamical evolution.

For a d-dimensional system of particles interacting through a LR force, most of the contrib
ution to the force acting on a given particle comes from the interaction with distant particles. 
In the thermodynamic limit, when N → ∞, the pairwise interaction with the nearby particles 
can be neglected and the total force acting on a particle can be calculated using the mean-
field potential. The probability DF of a many particle system can then be written in terms of a 
product on one-particle DFs

f (N)({w} , t) =
N∏

i=1

f (wi, t)� (1)

which satisfy the collisionless Boltzmann, or Vlasov, equation [9–12],
(

∂

∂t
+

p
m

· ∇q −∇qψ · ∇p

)
f (q, p, t) = 0� (2)

where q  and p are respectively the generalized coordinate and momentum, m is the particle’s 
mass, f is the one-particle DF, and ψ ≡ ψ(q, t) is the mean-field interaction potential. The 
advantage of working with LR systems is that the 2D N-dimensional phase space of systems 
with short range interactions effectively collapses to a 2D-dimensional μ phase space which 
can be more easily visualized and studied. Since Vlasov equation is time-reversible, its micro-
scopic dynamics needs to be reconciled with the Clausius second law of thermodynamics. In 
fact, Boltzmann solved a similar problem for systems with short-range interactions by pos-
tulating that the entropy is a logarithm of the total number of microstates compatible with a 
given macrostate, irrespective of whether these microstates can be reached from a given initial 
condition or not [13]. On the other hand, the Gibbs entropy,

SG = −kB

∫
f (N) ({w} , t) ln f (N) ({w} , t) dNw� (3)

where the integral is performed over all the phase space and dNw ≡ {dw1, ..., dwN}, is con-
served by the Liouville/Vlasov dynamics. Since the Liouville and Vlasov equations can be 
written as df (N)/dt = 0, the probability DF evolves as an incompressible fluid over the phase 
space, and any local integral of the DF is conserved by the flow [14]. The evolution of the 
probability DF never stops, continuing on smaller and smaller length scales. Therefore, only 
on a coarse-grained scale it is possible to say that a system evolves to a stationary state and 
that the entropy ‘increases’ [15–17]. This behavior is illustrated in figure 1, which shows the 
evolution of μ phase space of a one dimensional system of non-interacting particles confined 
in a box with periodic boundary conditions, starting from an initial waterbag distribution. 
Clearly for this non-interacting system there is no doubt of validity of Vlasov equation. The 
initial distribution is seen to evolve through a process of filamentation and phase space mix-
ing. During the dynamics, the initial distribution stretches and folds over an extended volume 
of the μ phase space, (figures 1(b) and (c)). On a fine-grained scale the phase space volume 
occupied by the particles remains constant. On a coarse-grained scale, however, it appears that 
the evolution reaches a stationary state (figure 1(d)), in which phase space volume occupied 
by the particles is larger than the volume of the original distribution. In figure 2 we show the 
‘violent relaxation’ of the second moment of the particle distribution function as it evolves to 
equilibrium from t  =  0. Note that the violent relaxation time does not depend on the number 
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of particles, for sufficiently large system sizes, as was also observed for systems of interacting 
particles [18].

For LR systems the entropy can be rewritten in terms of one-particle distribution function, 
equation (1), and can be calculated using an entropy estimator [19–21]

Figure 1.  Snapshots of the phase space of a one dimensional system of N = 131 072 
non-interacting particles with periodic boundary conditions: the fine-grained probability 
DF evolves through the process of filamentation and phase-mixing. At some point the 
resolution is no longer sufficient to perceive dynamics, and the system appears to be 
stationary. The times of plots are: (a) t = 0, (b) t = 10, (c) t = 100 and (d) t = 1000.

Figure 2.  Violent relaxation of the second moment of the particle distribution, from 
initial to final stationary state. Note that for sufficiently large system sizes, the relaxation 
time is independent of the number of particles in the system.

C A Fracassi Farias et alJ. Phys. A: Math. Theor. 51 (2018) 494002
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s̄Gk−1
B =

1
N

N∑
i=1

ln
(
Nr2d

i V2d
)
+ γ� (4)

where ri is the distance in the μ phase space from particle i to its nearest neighbor, V2d  is the 
volume of a hyper-sphere of 2D dimensions, γ is the Euler–Mascheroni constant, kB is the 
Boltzmann constant and N the number of particles. The quantity s̄Gk−1

B  is, in fact, a coarse-
grained estimator of Shannon entropy per particle, which is distinguished from Gibbs entropy 
by the constant kB. This facilitates comparison with [8], which also estimates Shannon entropy.

Figure 3(a) shows the entropy production (per particle) for a one dimensional non-interacting 
particle system of figure 1 with various number of particles N. As expected, in spite of the 
system dynamics being governed by Vlasov equation, the coarse-grained entropy is not con-
served. On the other hand if the time is rescaled with N1/2 we see that the entropy productions 
curves all collapse onto a universal curve. Figures 4(a) and 5(a) show the entropy production 
for a system of non-interacting particles in two and three dimensions, respectively. A perfect 
data collapse is again found, if time is rescaled with Nα, where the exponent α is α = 1/2d. 
Therefore, the entropy production time for non-interacting particles in d dimensions scales as 
τ× ∼ N1/2d , and diverges in the thermodynamic limit, implying that the fine-grained entropy 
will remain constant, as is required by the Vlasov equation. The fact that the coarse-grained 
entropy increases with time, does not invalidate in any sense Vlasov equation which is exact 
for these non-interacting systems. Indeed, as we already saw in figure  2 a calculation of 
observables such as 〈x2〉 can be equally well performed using either a fine-grained distribu-
tion function or a coarse-grained one, in spite of the fact that coarse-grained entropy increases 
with time.

In the remaining of this paper the entropy production of SGS will be investigated. The 
objective is to verify that in the thermodynamic limit, Vlasov equation does describe the 
dynamical evolution of a self-gravitating system, including the violent relaxation phase. 
The paper is organized as follow: section 2 gives a brief review of one and two dimen-
sional SGS; section 3 focuses on three dimensional SGS, the entropy production, and others 
observables; section 4 discuses the results and presents the conclusions.

2.  Entropy production in self-gravitating systems

The difficulty with studying three dimensional self-gravitating systems is that they are intrin-
sically unstable. Since the Newton gravitational potential is unbounded from below and is 
bounded from above, some particles can gain enough energy from the rest of the system to 
completely escape its gravitational attraction [16, 22]. This makes it very difficult to perform 
any kind of statistical analysis of the 3D gravitational clusters, except for very special virial 
initial conditions, studied in section 3 [16]. Therefore, most of our analysis will be performed 
using one and two dimensional self-gravitating systems, for which the gravitational potential 
is unbounded from above, preventing particle evaporation. The SGS MD simulations were 
performed in CUDA/C++ language, at constant energy, with rescaled dimensionless vari-
ables, i.e. the equivalent of considering the system’s total mass and the gravitational con-
stant equals to unity. For one dimensional SGS, the numerical method applied was a fourth 
order implementation of the symmetric B3A method of Runge–Kutta–Nystroem with six 
stages from the C++ BOOST/odeint library [23]. The error in energy was kept smaller than 
2.0 × 10−7%. For two and three dimensional SGS, it was applied the CUDA algorithm of 
clustering tiles into thread blocks [24] with the improvement of loop unrolling. The numerical 
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method was a fourth order symplectic integrator from [25] and the error in the energy was kept 
smaller than 1.0 × 10−3%.

2.1.  Virial condition

To study entropy production, all the MD simulations start with initial waterbag distribution 
which satisfies the virial condition, R0 = 2K/(2 − d)U = 1.0, where K is the initial kinetic 
energy, U is the gravitational potential energy, and d is the space dimension. Such distributions 
are expected to be as close to stationary as possible, without being an exact solution of Vlasov 
equation [11, 26], and should rapidly relax to the qSS [27]. This allows us to reduce the loss 
of resolution due to numerical imprecision resulting from strong oscillations and diminishes 
the system size necessary to observe the finite size scaling of the entropy production time. The 
initial particle distribution has the form,

Figure 3.  (a) Entropy production per particle in a one dimensional system of non-
interacting particles of figure 1; and (b) is the data collapse. For this non-interacting 
system the collapse appears to be exact, showing that the entropy production time scales 
with Nα, α = 0.5. Therefore, in the limit N → ∞, the entropy will remain constant, as 
is required by Vlasov equation.

C A Fracassi Farias et alJ. Phys. A: Math. Theor. 51 (2018) 494002
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f (q, p) = ηΘ(qM − |q|)Θ(pM − |p|)� (5)

where qM  and pM  are, respectively, the boundary limits of coordinates and momenta in the 
μ phase space, η is a constant of normalization whose value in 1D is η = (4qMpM)

−1; in 2D 
is η = (πqMpM)

−2; in 3D η = (4π/3)−2(qMpM)
−3, and Θ is the Heaviside function. In this 

paper, the distances will be measured in units of qM , mass of particles in the units of total 
mass M, and the time in the units of dynamical time τd , so as to make equations of motion 
dimensionless. This is equivalent to setting qM = 1.0, total mass to M  =  1, and the Newton 

gravitational constant to G  =  1. The energy per particle at time t  =  0 is then ε0 =
p2

M
6 + 1

3 in 

one dimension, ε0 =
p2

M
4 − 1

8 in two dimensions, and ε0 =
3p2

M
10 − 3

5 in three dimensions, and 
the virial condition reduces to pM = 1 for all d, see [6, 28].

Figure 4.  (a) Entropy production in a two dimensional system of non-interacting 
particles in a box with periodic boundary conditions; and (b) is the data collapse. Like 
figure 3, the collapse appears to be exact, showing that the entropy production time 
scales with Nα, α = 1/4. Therefore, in the limit N → ∞, the entropy will remain 
constant, as is required by Vlasov equation.
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2.2.  Gravitation in one dimension

One dimensional SGS consists of point particles of mass m moving along the x-axis, free to 
pass through one another. The reduced Poisson equation assumes the following form

∇2ψ(x, t) = 2 ρ(x, t)� (6)

where ψ(x, t) is the reduced gravitational potential and ρ(x, t) is the reduced mass density. The 
reduced variables are: the dynamical time scale τd =

√
2πGρ0  where G is the Newton gravi-

tational constant; ρ0 = M/L0 is the mass density; L0 is an arbitrary length scale which we take 
to be qM  =  1; M = mN  is the system’s total mass, which we set to 1; and V0 =

√
2πGML0  

is a velocity scale. The mass density of the ith particle is ρ(x, xi) = mδ(x − xi). The reduced 
gravitational potential at position x produced by N particles is

Figure 5.  (a) Entropy production for a three dimensional system of non-interacting 
particles inside a box with periodic boundary conditions; and (b) is the data collapse. 
If the entropy production time is scaled with Nα, α = 1/6 a perfect data collapse is 
observed.

C A Fracassi Farias et alJ. Phys. A: Math. Theor. 51 (2018) 494002



8

ψ(x, t) =
1
N

N∑
i

|x − xi|.� (7)

Note that the binary interaction between any two particles vanishes as 1/N2. In the thermody-
namic limit, therefore, the dynamics of a 1D SGS should be governed by the Vlasov equation. 
The evolution of the particle distribution over the reduced μ phase space is shown in figure 6. 
Once again we see the characteristic filamentation structure, which results in an effective 
gain of the phase space volume accessible to the particles, in the coarse-grained sense. The 
evolution of the coarse-grained entropy is shown in figure 7(a) for different system sizes. In 
figure 7(b) we show that if the time is rescaled with Nα, with α = 0.2, we can collapse the 
entropy production onto a single curve. This implies that in the thermodynamic limit N → ∞, 
the time scale for the entropy production will diverge, and the entropy will remain constant 
consistent with the Vlasov dynamics. This is similar to what was found for non-interacting 
particles, however, in the case of SGS the exponent α is smaller, implying that for systems 
with not too many particles the loss of fine-grained resolution happens very fast, leading to 
rapid entropy production.

2.3.  Gravitation in two dimensions

For a two dimensional SGS, the dimensionless Poisson equation is

∇2ψ(r, t) = 2π ρ(r, t)� (8)

where ψ(r, t) is the two dimensional gravitational potential and ρ(r, t) is the mass density. The 
dynamical time scale is τd = L0/

√
2GM , where once again, G is the Newton gravitational 

Figure 6.  Snapshots of the phase space of a 1D self-gravitating system of section 2.2. 
N = 131 072 and R0  =  1.0. The times are: (a) t = 0, (b) t = 10.0, (c) t = 100.0 and 
(d) t = 1000.0.

C A Fracassi Farias et alJ. Phys. A: Math. Theor. 51 (2018) 494002
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constant; M is the system’s total mass, which we set to 1; and L0 is an arbitrary length scale 
which we set to qM  =  1. The mass density ρ(r, t) is obtained by integrating the probability DF 
over the momentum. For N particle system the gravitational potential at position r is given by 
the solution of Poisson equation

ψ(r, t) =
1
N

N∑
i

ln |r − ri|.� (9)

The evolution of the configuration space is shown in figure 8 and of coarse-grained entropy 
and its rescaled form are shown in figures 9(a) and (b). Once again we obtain a reasonable data 
collapse for early times, with the exponent α = 0.15.

2.4.  Entropy production in 3D

It is very difficult to study entropy production in 3D SGS because of a very rapid loss of 
resolution, which requires a very large number of particles to detect the scaling structure of 
the entropy production time. Nevertheless, in figure 10(a) we see that if the dynamical time is 
rescaled by Nα, the early time region of the entropy production curves collapses onto a single 
curve, showing that, at least in the early stages of the simulation, i.e. during the period of 
violent relaxation, there is a reasonably good scaling of entropy with the number of particles.  

Figure 7.  (a) Entropy production for a 1D self-gravitating system of section 2.2; and 
(b) is the time rescale. The early stages evolution indicate that the entropy production 
time grows as Nα, α = 0.20, therefore taking an infinite amount of time when N → ∞. 
Different from non-interacting particles, scaling with N appears to hold only at early 
times.

C A Fracassi Farias et alJ. Phys. A: Math. Theor. 51 (2018) 494002
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The exponent α ≈ 0.1 for 3D systems, however, is lower than for 1D and 2D SGS. Nevertheless, 
in the limit N → ∞ the entropy production will require infinite amount time, consistent with 
the Vlasov dynamics.

3.  3D SGS: evolution of observables

In view of the very fast loss of resolution and rapid entropy production in 3D SGS, the authors 
of [8] argued that Vlasov equation is not appropriate to describe the violent relaxation of these 
systems. Based on our finite size analysis, however, we see that this conclusion is incorrect, 
since in the infinite N limit, the time for the entropy production diverges, and the fine-grained 
entropy will remain constant as is required by the Vlasov equation. Nevertheless, one might 
question whether for systems with large, but finite N, Vlasov dynamics can provide an accurate 
description of the temporal evolution of 3D SGS and, in particular their relaxation to the qSS. 
Unfortunately, it is very difficult to explicitly solve the Vlasov equation for 3D SGS, however, 
we can explore the validity of the assumptions underlying Vlasov equation by performing 
simulations in which each particle interacts with the mean gravitational potential produced 
by all other masses. Such simulations will eliminates the correlational (or collisional) effects 
and provides an indirect way of solving the Vlasov equation. We shall call such simulations 
‘collisionless MD’. For spherically symmetric particle distributions, the mean-field can be 
easily calculated by replacing each particle by a spinning spherical shell of radius and angular 
momentum same as the real particle. For the shell system, the force is purely radial, so that the 
angular momentum of each shell is conserved. The dynamics of each shell then reduces to its 
radial coordinate, and the force on each shell can be easily calculated using the Gauss law [6]. 
Clearly if both collisional (simulation which is based on explicit binary interaction between 
the particles) and collisionless simulations will result in the same dynamical evolution of 

Figure 8.  Snapshots of the configuration space of a 2D self-gravitating system 
of section  2.3. N = 131 072 and R0  =  1.0. The times are: (a) t = 0, (b) t = 10.0, 
(c) t = 32.0 and (d) t = 100.0.
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observables of a system, it will provide a very clear indication of validity of Vlasov dynamics 
for systems with large but finite number of particles, in spite of the entropy production.

One particularly relevant quantity to study in MD simulations is the evolution of the ‘enve-
lope’ of the particle distribution defined in terms of the root-mean-squared (rms) of the parti-
cle coordinates [6]

re =

√
5
3
〈r · r〉.

� (10)
The factor of 5/3 is included so that at t0, the envelope is precisely qM . The other interest-
ing quantity to consider is the average kinetic energy of the particles. We will compare the 
evolution of both the envelope and the kinetic energy using both collisional and collision-
less MD simulations for initial distribution with virial number R0  =  0.5 and a number of 
particles N = 131 072. This virial number was chosen to force the system to undergo strong 
oscillations, rapid entropy production, while preserving the spherical symmetry of the initial 

Figure 9.  (a) Entropy production in a 2D self-gravitating system with N particles, 
section  2.3; and (b) if the time is rescaled with Nα, α = 0.15, the curves can be 
reasonably collapsed to a single curve for short times. In the thermodynamic limit, 
therefore, the entropy production will be zero, consistent with the Vlasov equation.

C A Fracassi Farias et alJ. Phys. A: Math. Theor. 51 (2018) 494002
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distribution [28]. Figure 11 shows the time evolution of the envelope, while figure 12 shows 
the evolution of the kinetic energy per particle. We see that both collisional and collisionless 
simulations lead to almost identical evolution of both observables, in spite of a rapid entropy 
production. A small deviation in the final qSS, is due to slightly different initial conditions, 
due to random number generator.

Therefore, we conclude that for 3D SGS the relevant observables can be equally well cal-
culated using either the exact fine-grained distribution f (p, q, t) obtained from the solution of 
the Vlasov equation, or an effective coarse-grained distribution in which the f (p, q) is coarse-
grained over some microscopic length scale,

fcg(q, p, t) =
1

(∆p∆q)d

∫

∆p,∆q
f (q′, p′, t) dq′dp′.� (11)

While the entropy calculated using the fine-grained distribution is strictly conserved, the 
entropy calculated using the coarse-grained distribution will grow and saturate as is observed 
in the collisional MD simulations. The role of ‘coarse-graining’ in the MD simulations comes 
from the residual correlations between the masses and the numerical error. Nevertheless, 

Figure 10.  (a) Entropy production in a three dimensional self-gravitating system and 
(b) its dynamical time rescale, α = 0.10.

C A Fracassi Farias et alJ. Phys. A: Math. Theor. 51 (2018) 494002
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the agreement between collisionless and collisional simulations implies that the average of 
observables calculated using either fine-grained or coarse-grained distributions are identical 
in the thermodynamic limit,

〈O(t)〉 =
∫

O(q, p) f (q, p, t)dqdp

=

∫
O(q, p) fcg(q, p, t)dqdp.

� (12)

Figure 11.  Envelope of the particle distribution. Both collisional and collisionless 
simulations follow identical dynamical evolution, implying that Vlasov equation accounts 
perfectly well for the violent relaxation phase, N = 131 072 and R0  =  0.5.

Figure 12.  Kinetic energy per particle. Both collisional and collisionless simulations 
have almost identical dynamics. A small difference between the curves is due to slightly 
different initial conditions in the two simulations verified using different seeds for the 
pseudo-random number generator in the MD simulations. N = 131 072 and R0  =  0.5.

C A Fracassi Farias et alJ. Phys. A: Math. Theor. 51 (2018) 494002
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The fine-grained distribution function obtained from the solution of the Vlasov equation can, 
therefore, be used to account for the violent relaxation in SGS with large but finite number of 
particles.

4.  Conclusions

We have explored the entropy production in SGS in one, two, and three dimensions. We find 
that the entropy production time scales as Nα, with α = 0.20, 0.15, and 0.1, respectively. It is 
not clear what precisely determines the value of the exponent α. It decreases with the increas-
ing dimensionality of configuration space and may also be related to the Lyapunov spectrum 
[29]. The loss of resolution happens very fast for 3D SGS. Contrary to the suggestion of [8], 
this however does not imply a failure of Vlasov equation to describe the process of violent 
relaxation. Indeed Vlasov dynamics is entropy conserving. This, however, is only valid in the 
limit N → ∞. For finite systems, therefore, there will be a rapid loss of resolution which can 
be associated with the entropy production. Indeed within the Vlasov formalism, we can define 
a coarse-graining procedure, associated with the loss of resolution, which will also result in 
the growth of entropy. Such coarse-graining is very similar to the Boltzmann definition of 
entropy which counts the total number of microstates compatible with a given macrostate, 
irrespective of whether these microstates can be reached from a given initial condition or not. 
Comparing the collisionless and collisional MD simulations we saw that the dynamics of 
observables in systems with relatively small number of masses N is equally well described by 
either of the two simulation methods. The collisionless simulations are effectively a solution 
of the Vlasov equation, while collisional simulations include residual correlations which lead 
to the entropy production in a finite N system, the equivalence of the two methods implies 
that the evolution of the observables in SGS can be equally well calculated either using exact 
fine-grained distribution function or using its coarse-grained version. The same conclusion 
was also reached by analyzing non-interacting particle systems for which Vlasov equation is 
exact. We thus conclude that conservation of fine-grained entropy by Vlasov equation does not 
invalidate it in any way from providing an accurate description of violent relaxation dynamics 
that leads to quasi stationary states with increased coarse-grained entropy.
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