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Abstract. – A model of a finite cylindrical ion channel through a phospholipid membrane
of width L separating two electrolyte reservoirs is studied. Analytical solution of the Poisson
equation is obtained for an arbitrary distribution of ions inside the trans-membrane pore. The
solution is asymptotically exact in the limit of large ionic strength of electrolyte on the two sides
of membrane. However, even for physiological concentrations of electrolyte, the electrostatic
barrier sizes found using the theory are in excellent agreement with the numerical solution of the
Poisson equation. The analytical solution is used to calculate the electrostatic potential energy
profiles for pores containing charged protein residues. Availability of a semi-exact interionic po-
tential should greatly facilitate the study of ionic transport through nanopores and ion channels.

Ion channels are water-filled holes which facilitate exchange of electrolyte between the exte-
rior and interior of a cell. Pores are formed by specific proteins embedded into the phospholipid
membrane [1]. Depending on the conformation of the protein, the pore can be open or closed.
When open, the protein is very specific to the kind of ions that it allows to pass through the
channel [2,3]. In order to function properly the channel has to conduct thousands of ions in a
period of few milliseconds. Considering that the channel passes through a phospholipid mem-
brane which has a very low dielectric constant and is very narrow, producing high energetic
penalties for ions entering the nonopores, it is fascinating to contemplate how Natures man-
ages to perform this amazing task. In fact, as long ago as 1969, Parsegian observed that for an
infinitely long cylindrical channel [4] of radius a = 3 Å, the electrostatic barrier is over 16kBT ,
which should completely suppress any ionic flow [5]. Later numerical work by Levitt [6], Jor-
dan [7] and others demonstrated that for more realistic finite channels the barrier is dramat-
ically reduced. For example, for a channel of length L = 25 Å and radius a = 3 Å, the barrier
is about 6kBT , which although still quite large, should allow ionic conductivity. Recently the
study of ion channels has expanded to other parts of applied physics. Water-filled nanopores
are introduced into silicon oxide films, polymer membranes, etc. [8,9]. In all of these cases the
dielectric constant of the interior of a nanopore greatly exceeds that of the surrounding media.
To quantitatively study the conductance of a nanopore one has three options: the all-atom

molecular-dynamics simulation (MD) [3]; the Brownian-dynamics simulation (BD) [10,11] with
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implicit water treated as a uniform dielectric continuum; or the mean-field Poisson-Nernst-
Planck theory (PNP) [12], which treats both water and ions implicitly. While clearly the
most accurate, MD simulations are computationally very expensive [13]. Brownian dynamics
is significantly faster than MD, but because of the dielectric discontinuities across the various
interfaces a new solution of the Poisson equation is required for each new configuration of
ions inside the pore. The simplest approach to study the ionic conduction is based on the
PNP theory [12]. This combines the continuity equation with the Poisson equation and
Ohm’s and Fick’s laws. PNP is intrinsically mean-field and is, therefore, bound to fail when
ionic correlations become important. This has been well studied for its static version — the
Poisson-Boltzmann equation, which is known to break down for aqueous electrolytes with
multivalent ions and also for monovalent electrolytes in low dielectric solvents [14, 15]. For
narrow channels, the cylindrical geometry, combined with the field confinement, results in
a pseudo–one-dimensional potential of very long range [16, 17]. Under these conditions the
correlational effects dominate, and the mean-field approximation fails [14]. Indeed recent
comparison between the BD and the PNP showed that PNP breaks down when the pore radius
is smaller than about two Debye lengths [10, 11]. At the moment, therefore, it appears that
a semi-continuum (implicit solvent) Brownian-dynamics simulation is the best compromise
between the cost and accuracy [13,18,19] for narrow pores. Unfortunately even this, simplified
strategy demands a tremendous computational effort. The difficulty is that BD requires
a new solution of the Poisson partial differential equation at each time step. This can be
partially overcome by using lookup tables [11] and variational methods [20], but still requires
a supercomputer. If the interaction potential between the ions inside the channel were known,
the simulation could proceed orders of magnitude faster. However, up to now the only exact
solution to the Poisson equation in a cylindrical geometry was for the case of an infinitely
long pore [4,5,16]. In this letter we shall provide another exact solution, but now for a finite
trans-membrane channel.

We shall work in the context of a primitive model of electrolyte and membrane. The
membrane will be modeled as a uniform dielectric slab of width L located between z = 0 and
z = L. The dielectric constant of the membrane and the channel forming protein is taken
to be εp ≈ 2. On both sides of the membrane there is an electrolyte solution composed of
point-like ions and characterized by the inverse Debye length κ. A channel is a cylindrical hole
of radius a and length L filled with water. As is usual for continuum electrostatic models [13],
we shall take the dielectric constant of water inside and outside the channel to be the same,
εw ≈ 80. It is convenient to set up a cylindrical coordinate system (z, ρ, φ) with the origin
located on the symmetry axis of the channel at z = 0. Suppose that an ion is located at an
arbitrary position x′ inside the channel. The electrostatic potential ϕ(z, ρ, φ;x′) inside the
channel and membrane satisfies the Laplace equation

∇2ϕ = −4πq
εw

δ(x − x′) . (1)

For z > L and z < 0, ϕ(x;x′) satisfies the linearized Poisson-Boltzmann or the Debye-Hückel
equation [14]

∇2ϕ = κ2ϕ . (2)

The inverse Debye length is related to the ionic strength I of electrolyte, ξ−1
D = κ =

√
8πλBI,

where λB = q2/εkBT is the Bjerrum length and I = (α2cα + αcα + 2c)/2. Here cα is the
concentration of α : 1 valent electrolyte and c is the concentration of 1 : 1 electrolyte. All
the usual boundary conditions must be enforced: the potential must vanish at infinity and
be continuous across all the interfaces; the tangential component of the electric field and the
normal component of the electric displacement must be continuous across all the interfaces.
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These boundary conditions guaranty the uniqueness of solution. Unfortunately, even this
relatively simple geometry cannot, in general, be solved exactly. We observe, however, that
an exact solution is possible in the limit that κ → ∞. In this special case the system of
differential equations becomes separable. Our, strategy then will be to solve exactly this
asymptomatic problem and then extend the solution to finite values of Debye length.
We start by making the following fundamental observation. The condition κ → ∞ signifies

that electrolyte perfectly screens any electric field —the Debye length is zero. This, combined
with the boundary condition —electrostatic potential must vanish at infinity— implies that in
this limit ϕ(0, ρ, φ;x′) = ϕ(L, ρ, φ;x′) = 0, for any position x′ of an ion inside the pore. This
is a dramatic simplification. Now it is no longer necessary to solve the Debye-Hückel equation,
but only the Poisson equation with a perfect grounded conductor boundary conditions at z = 0
and z = L. To proceed we expand the δ(z − z′) in eigenfunctions of the differential operator

d2ψn

dz2
+ k2

nψn = 0 , (3)

satisfying the perfect-conductor boundary condition. The normalized eigenfunctions are
ψn(z) =

√
2/L sin(knz), with kn = nπ/L. The Sturm-Liouville nature of the differential

equation (3) guarantees us that

δ(z − z′) =
2
L

∞∑
n=1

sin(knz) sin(knz
′) . (4)

Similarly,

δ(φ− φ′) =
1
2π

∞∑
m=−∞

eim(φ−φ′) . (5)

Next we write

ϕ(x,x′) =
q

πεwL

∞∑
n=1

∞∑
m=−∞

eim(φ−φ′) sin(knz) sin(knz
′)gnm(ρ, ρ′) . (6)

Substituting this into eq. (1) we find that the Green function gnm(ρ, ρ′) satisfies the modified
Bessel equation

1
ρ

d
dρ

ρ
dgnm

dρ
−

(
k2

n +
m2

ρ2

)
gnm = −4π

ρ
δ(ρ− ρ′), (7)

the solution of which can be found using the usual techniques [4, 21]. We obtain

gmn(ρ, ρ′) = 4πIm(knρ<)[Km(knρ>) + γmnIm(knρ>)], (8)

where ρ> and ρ< are the larger and the smaller of the set (ρ, ρ′) and

γmn =
Km(kna)K ′

m(kna)(εp − εw)
εwI ′m(kna)Km(kna)− εpIm(kna)K ′

m(kna)
. (9)

Here Im,Km, I
′
m,K

′
m are the modified Bessel functions of the first and second kind and their

derivatives, respectively. Equation (8) is valid for ρ> ≤ a. When ρ > a,

gmn(ρ, ρ′) =
4πεw
kna

Km(knρ)Im(knρ
′)

εwI ′m(kna)Km(kna)− εpIm(kna)K ′
m(kna)

. (10)

Equations (6), (8), and (10) are exact for an ion inside a pore with perfect-conductor boundary
conditions at z = 0 and z = L. If the ion is located on the axis of symmetry, z′ = z0, ρ′ = 0,
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only the m = 0 term in eq. (6) survives, and the electrostatic potential inside the channel at
position z, ρ takes a particularly simple form, ϕin(z, ρ; z0) = ϕ1(z, ρ; z0) + ϕ2(z, ρ; z0), where

ϕ1(z, ρ; z0) =
4q
εwL

∞∑
n=1

sin(knz) sin(knz0)K0(knρ) , (11)

and
ϕ2(z, ρ; z0) =

4q(εw − εp)
εwL

∞∑
n=1

K0(kna)K1(kna)I0(knρ) sin(knz) sin(knz0)
εwI1(kna)K0(kna) + εpI0(kna)K1(kna)

. (12)

Equations (11), (12) are exact in the κ → ∞ limit. To see how these equations can be extended
to finite values of κ, it is important to first understand their physical meaning. Potential ϕ2

is mostly the result of the charge induced on the interface between the high dielectric aqueous
interior of the pore and the low dielectric membrane. We expect that this term will be affected
very little by the precise value of the Debye length of the surrounding electrolyte solution.

The potential ϕ1 contains the contribution from the ion located at z0 and from the induced
charge on the pore/electrolyte and the membrane/electrolyte interfaces. It will, therefore,
strongly depend on the precise value of κ. Furthermore, we observe that eq. (11) is exactly
the potential produced by a charge q located inside an infinite slab of water of width L
bounded by two grounded perfectly conducting planes [21]. This key observation allows us
to explicitly resum the series in eq. (11). However, it is possible to do even better, and now
enforce the exact boundary condition, namely that for z < 0 and z > L the electrostatic
potential must satisfy the Debye-Hückel equation (2). Using the Bessel J representation of
the delta-function one can constructs the Green function [22] which satisfies all the boundary
conditions for the slab geometry and has the required symmetry property [21] between the
source and the observation points. We then find

ϕ1(z, ρ; z0) =∫ ∞

0

dk
J0(kρ)

{
α2(k)ek|z−z0|−2kL+α(k)β(k)[e−k(z+z0)+ek(z+z0)−2kL]+β2(k)e−k|z−z0|}

β2(k)− α2(k) exp[−2kL] , (13)

where α(k) = [k −√
k2 + κ2]/2k, β(k) = [k +

√
k2 + κ2]/2k, and J0(x) is the Bessel function

of first kind and order zero. Equation (13) provides an analytic continuation of eq. (11) into
finite κ parameter space. It can be checked explicitly that in the limit κ → ∞, eq. (13) exactly
sums the series in eq. (11). Finally, for the region ρ > a the electrostatic potential is

ϕout(z, ρ; z0) =
4q
L

∞∑
n=1

1
kna

K0(knρ) sin(knz) sin(knz0)
εwI1(kna)K0(kna) + εpI0(kna)K1(kna)

. (14)

Equation (14) is exact only for the perfect conductor boundary conditions, however, the huge
jump in the dielectric constant going from the membrane’s interior to the aqueous electrolyte
will leave ϕout mostly unaffected even for finite values of κ.

If the channel contains N ions and charged protein residues their interaction energy is
given by

V =
1
2

N∑
i,j

qiϕ
j , (15)

where qi is the charge of ion/residue i and ϕj is the electrostatic potential produced by the
ion/residue j at the position of ion/residue i. Similarly the electrostatic barrier that an ion
feels as it moves through a charge free channel is [14],

U(z) =
q

2
lim
ρ→0

[
ϕ(z, ρ; z)− q

εwρ

]
+

qκ

2εw
. (16)
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Fig. 1 – Electrostatic potential barriers for an ion of charge q moving along the axis of symmetry
through a channel of L = 35 Å and a = 3 Å. External electrolyte concentration from bottom to top is
0.15, 1, 2 and 3M.

Fig. 2 – Electrostatic potential barrier for an ion of charge q moving through a pore of L = 25 Å and
a = 2.5 Å. External electrolyte concentration is 2.5M. Symbols are the result of a numerical
integration of the system of Poisson-Boltzmann (bulk electrolyte) and Poisson equation (pore
interior) from ref. [23].

The last term in eq. (16) is the electrostatic “solvation” energy that a point-like ion loses
as it moves from the bulk electrolyte into the interior or a pore. This energy can be calculated
using the Debye-Hückel theory and is equivalent to the excess chemical potential resulting
from the screening of ionic electric field by the surrounding electrolyte [14]. The limit in
eq. (16) is easily obtained by noting that

1
ρ
=

∫ ∞

0

J0(kρ)dk . (17)

We are now in a position to explore some of the quantitative consequences of the current
theory. In fig. 1 we first plot the potential energy barrier for an ion of charge q moving through
a channel of L = 35 Å and a = 3 Å and various external electrolyte concentrations. For the
physiological salt concentration (150mM) we find the barrier height to be 8.13kBT . Using
numerical solution of the Poisson equation, Levitt obtained a barrier of 8.48kBT . Some of the
difference between the two values can be attributed to the fact that in numerical calculations
presence of external electrolyte was not taken into account. As the length of the channel
increases, the role of external electrolyte becomes relatively less important. Indeed for a
channel of L = 50 Å and a = 2 Å, we obtain a barrier of 18.65kBT , while the Levitt’s numerical
solution produced 17.2kBT [6] and Jordan’s 18.6kBT [7]. The only numerical work known to
us that explicitly takes into account the existence of the external electrolyte is ref. [23]. The
authors of that paper numerically solved the non-linear Poisson-Boltzmann equation for the
external electrolyte and the Poisson equation for the interior of the channel. For a pore of
L = 25 and a = 2.5 Å, and electrolyte concentration of 2.5M, they find a barrier of 9.5kBT ,
while we obtain 9.8kBT . In fig. 2 we compare the full electrostatic energy barrier obtained from
the numerical solution with our analytical results. The agreement, once again, is quite good.
Availability of a semi-exact interaction potential allows us to easily explore the potential

energy landscape Φ = V + U of an ion of charge q moving through a channel which also
contains some fixed charged protein residues. For example, consider a channel of L = 35 Å and
a = 3 Å and suppose that there is one protein residues of charge −q, embedded into the surface
of the channel at (z = L/2, ρ = a, φ). In fig. 3 we show the potential energy profile for an ion
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Fig. 3 – Potential energy profile for an ion of charge q moving along the axis of symmetry through a
channel of L = 35 Å and a = 3 Å containing a protein residue of charge −q embedded into its wall
(ρ = a) at z = L/2 (solid line); containing two charged residues at z = 5 and z = 30 Å (dotted line);
containing three residues at z = 5, 17.5 and z = 30 Å (dashed line). External electrolyte concentration
is 150mM.

Fig. 4 – Potential energy profile for an ion of charge q moving along the axis of symmetry through
a pore of L = 35 Å and a = 3 Å, containing two charged residues hidden in the membrane’s interior
(ρ = 6 Å) located at z = 5 and z = 30 Å. External electrolyte concentration 150mM.

moving along the axis of symmetry through such a channel. Instead of a potential barrier, this
ion encounters a potential well of depth more than 10kBT ! It will, therefore, find it extremely
difficult to pass through such a channel.

Now, suppose that two charged residues are embedded into the channel wall, one close
to the entrance of the channel at z = 5 Å and another close to its exit at z = 30 Å, both
at ρ = 3 Å. The electrostatic potential, now develops a double-well structure, fig. 3. Each
minimum is relatively less deep than in a channel with only one central residue. One might
then suppose that adding more charged residues will diminish the depth of the wells even
further. This, however, is not the case. In fig. 3 we also show the potential-energy landscape
of a channel containing three uniformly spaced residues. Evidently instead of decreasing the
depth of the potential well, it has dramatically increased! There is, however, a mechanism
which Nature can use to diminish the depth of potential wells —hide the charged residues in
the membrane’s (or protein’s) hydrophobic interior [24]. In fig. 4 we plot the potential energy
profile for the same channel as in fig. 3, but with the two charged residues hidden in the
membrane’s hydrophobic interior at ρ = 6 Å. In this case the deep potential well is replaced
by a shallow binding site followed by an activation barrier of only 2.5kBT . This can be easily
overcome by an external electric field or a chemical potential gradient. We find that there
is an optimum location for hiding charged residues in order to produce the smallest barrier
for channel penetration. The formalism developed above allows us to easily explore all the
parameter space in order to find this optimum position.

To conclude, we have presented an analytically solvable model of electrostatics inside an ion
channel. The solution found is exact in the limit of large electrolyte concentrations. However,
comparison with the numerical work shows that it remains valid even at intermediate and low
electrolyte concentrations. The analytical solution can be used to dramatically speed up the
Brownian-dynamics simulations of ionic transport through cylindrical pores. The biological
and structural information can be partially taken into account through a proper placement of
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charged protein residues. Furthermore, even if a more detailed atomistic molecular-dynamics
simulation is necessary, availability of a rapid Brownian-dynamics model can serve for a initial
exploration of the parameter space.
In this work water inside the pore has been treated as a uniform dielectric continuum

identical to the bulk. While this is acceptable for wider pores, the approximation will certainly
fail for very narrow pores such as gramicidin. To properly account for the polarization of water
in this geometry, one must go beyond the continuum dielectric approximation [25]. Until now,
the only option for these cases was to perform all-atom molecular-dynamics simulations. The
current work suggests that another way might be possible. The continuum description with
εw = 80 and εp = 2 can be used for the bulk water outside the channel, for the membrane, and
for the trans-membrane protein, while inside the channel (now with εin = 1) one might try
to obtain an accurate analytical electrostatic potential. The Coulomb interactions between
the water molecules inside the channel could then be treated explicitly, without any need for
continuum dielectric approximation. This would then allow to perform very fast molecular-
dynamics simulations of ionic transport, free of the drawbacks associated with the implicit
solvent models. The work in this direction is now in progress.
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