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Electromagnetic instability of the Thomson problem
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Abstract. – The classical Thomson problem of n charged particles confined to the surface
of a sphere of radius a is analyzed within the Darwin approximation of electrodynamics. For
n < nc(a), the ground state corresponds to a hexagonal Wigner crystal with a number of
topological defects. However, if n > nc(a) the Wigner lattice is unstable with respect to small
perturbations and the ground state becomes spontaneously magnetized for finite n.

The Thomson problem, finding the ground state of electrons inside a sphere with a uniform
neutralizing background, has a time honored position in the history of modern physics [1–7].
The original question was posed by Thomson [8] after his discovery of the electron in 1897.
Thomson conjectured that the knowledge of the positions of the electrons inside the atoms
is essential to understanding the regularity of the chemical elements in the periodic table.
At the time, however, the proton still had to wait 14 years to be discovered, so in order to
keep his atom neutral, Thomson was forced to introduce a uniform neutralizing background.
The model became known as the “plum pudding” atom and the question that needed to be
answered was: What are the positions of the electrons inside a uniformly (positively) charged
sphere? Surprisingly, after more than a century this problem still has no general solution.

If the background charge is made to vanish, the electrostatic energy will be a minimum
only if all the electrons are located at the surface. This is a general consequence of the
Earnshaw theorem [9] which precludes the existence of a stable equilibrium with purely elec-
trostatic interactions. Curiously, the Coulomb potential is precisely on the borderline where
this behavior is possible. If instead of 1/r, the electrons interacted by a 1/r1+ε potential with
ε > 0, the bulk occupation of the sphere would be energetically favorable for a sufficiently
large number of electrons [10]. Unfortunately, even the restricted-surface Thomson problem
remains unsolved for an arbitrary number of electrons [11,12].

In this letter we will show that if the relativistic corrections to the Coulomb law are
properly taken into account, even our intuitive picture of the ground state as consisting of

(∗) E-mail: deluca@df.ufscar.br
(∗∗) E-mail: savio@dm.ufscar.br

(∗∗∗) E-mail: levin@if.ufrgs.br

c© EDP Sciences
Article published by EDP Sciences and available at http://www.edpsciences.org/epl or http://dx.doi.org/10.1209/epl/i2004-10537-2

http://www.edpsciences.org/epl
http://dx.doi.org/10.1209/epl/i2004-10537-2


J. De Luca et al.: The Thompson problem 85

stationary particles located at fixed positions on the surface of a sphere must be abandoned.
Instead, we find that for sufficiently large electron density, the energy is minimized by the
particles undergoing a coherent motion and the sphere becomes spontaneously magnetized!

The starting point for our analysis is the well-known Darwin Lagrangian [13–23], which
takes into account the relativistic corrections to the Coulomb law resulting from the parti-
cle motion,
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Equation (1) is correct to order v2/c2. The velocity-dependent correction to the Coulomb
energy arises from the electromagnetic coupling between the moving particles. Since the
Lagrangian (1) does not contain explicit time dependence, the energy of the system
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The ground state for n electrons on the surface of a sphere of radius a is then determined by
the minimization of eq. (3).

We note that if the terms of order 1/c2 are neglected, we recover the classical formulation
of the Thomson problem in which the electromagnetic coupling between the electrons is purely
of the Coulomb form. In this case, the velocity-dependent contribution to the Hamiltonian
is positive or zero, and the ground state corresponds to stationary particles residing at fixed
positions on the surface of the sphere. For large n, this structure resembles a hexagonal Wigner
crystal containing some topological defects. In general, however, the 1/c2 terms cannot be
omitted and a full minimization of eq. (3) must be performed. To proceed, it is convenient to
rewrite the energy in adimensional form. Defining the reduced displacement and velocity as
r∗ = r/a and v∗ = v/c, the reduced energy becomes

E∗ ≡ E
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where re ≡ q2/mc2 is the classical electron radius and a∗ = a/re.
It is convenient to work in the spherical coordinate system with unit vectors n̂, θ̂, φ̂. The

reduced velocity of electron i on the surface of the sphere is then v̂∗
i = θ̂vθi + φ̂vφi.

Minimization of E∗, eq. (4), is performed using a general-purpose quasi-Newton method
where the Hessian update is given by the BFGS formula [24]. Gradients are computed ana-
lytically. A line search with cubic fit is used with the additional safeguard against evaluations
beyond light speed. The procedure is highly non-trivial. In fact it is known that already for the
classical Thomson problem, in the absence of relativistic corrections, there exists an exponen-
tially large number of metastable states [25]. Thus, it is quite unlikely that any minimization
procedure will be able to locate the exact ground state for a large number of electrons. This,
however, is not of great importance since the metastable states have energies very close to that
of the exact ground state [10,25]. Performing the minimization of E∗ we find that for reduced



86 EUROPHYSICS LETTERS

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

φ

θ

Fig. 1 – The velocity field of electrons in the supercritical region, n = 400 and a = 0.7ac.

surface charge density σ∗ = n/a∗2 such that σ∗ < σ∗
c (subcritical region), the electrons form

a stationary Wigner crystal with some topological defects. Above the critical charge density
σ∗ > σ∗

c (supercritical region), the Wigner crystal, however, becomes unstable and a new
ground state with moving electrons is formed. In fig. 1 we show the characteristic distribution
of particles in this new ground state. The arrows indicate the relative magnitude and direction
of the particle velocities. The figure shows bands of correlated antiferromagnetic velocities
that try to adapt to the topology of the sphere. We stress that when the instability occurs,
vi/c � 1 for all the particles, so that the Darwin Lagrangian remains valid, up to quantum
corrections. The melting of the Wigner crystal is an example of a classical zero-temperature
phase transition.

To better understand the nature of the instability of the Wigner lattice, it is convenient
to rewrite the Darwin energy in a matrix form. Defining a 2n component velocity vector
V = {v∗

1 ,v∗
2 , . . . v∗

n}, eq. (4) can be rewritten to order 1/c2 as
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where I is a 2n × 2n identity matrix and D is a position-dependent matrix constructed from
the last term of eq. (4). The quadratic term in velocity is non-negative if all the eigenvalues
of the matrix

A = I +
1
a∗D (6)

are positive. In this case the ground state will have V = 0 and the electrons will be organized
into a Wigner crystal. On the other hand, as soon as one of the eigenvalues of A becomes
negative, the Wigner lattice will lose stability, and a new ground state, with energy below
that of the Wigner crystal, will be established. The phase transition occurs when λA

min = 0,
where λA

min is the minimum eigenvalue of the matrix A.
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Fig. 2 – The reduced critical radius as a function of n. The solid line is a fit given by eq. (7).

It is important to note that the energetic bifurcation of eq. (5) is simultaneous with the
dynamical instability of the Wigner lattice. If the Euler-Lagrange equations of motion are
linearized around the stationary positions of the Wigner lattice, one can show that the Lya-
punov instability occurs precisely when A loses convexity. Unfortunately, in the supercritical
region, the equations of motion are differential-algebraic and due to the singularity of A are
very difficult to integrate numerically [26].

To determine the critical charge concentration at which the Wigner crystal loses stability,
we adopt the following procedure. For a given number of electrons n, the Coulomb energy is
minimized to determine the positions of all the particles. For purely Coulombic interactions,
the ground-state location of the electrons is independent of the size of the sphere, since a
scales out of the expression for the electrostatic energy. Once the ground state coordinates
are known, the eigenvalues λD of the matrix D can be calculated numerically. The criticality
condition λA

min = 0 is then equivalent to the requirements that λD
min = −a∗. In fig. 2 we show

the result of this procedure.
The points in fig. 2 can be very well fitted by

a∗
c = 0.4323n

1
2 − 12.680

n
. (7)

Equation (7) implies existence of a well-defined thermodynamic limit for the phase transition,
limn → ∞, a∗

c → ∞ and σ∗
c → 5.35.

To further explore the nature of the ground state for σ > σc, we define an order parameter

µ∗ =
∑

i

r∗i × v∗
i . (8)

Clearly, µ∗ is just proportional to the total magnetic moment of the sphere. In the subcritical
region, the electron velocities are zero and µ∗ = 0. The value of the magnetic moment in the
supercritical region is plotted in fig. 3. We find that if the magnetic moment is scaled with
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Fig. 3 – Magnetic moment in the supercritical region, the data points are the averages over five
random initial configurations.

n−2/5 and is plotted as a function of the reduced surface charge concentration σ∗−σ∗
c , all the

points for different values of a∗ and n fall on the same universal curve,

g(x) = 0.545x1/2. (9)

Thus, although locally the orientation of the velocity vectors is antiferromagnetic, globally the
symmetry is broken and the sphere acquires a net magnetic moment. The magnetic moment
is sub-extensive and vanishes with a square-root singularity as σ → σ+

c .
We next proceed to study the extensive property of the electromagnetic energy E∗. For

σ < σc, a very accurate expression for the ground state of the Thomson problem [27, 28] can
be obtained using a simple argument. Consider a uniformly positively charged spherical shell
on which n electrons move. This problem defines a spherical one-component plasma (SOCP).
The electrostatic (Coulomb) energy can be written as

FSOCP = EC +
q2n2

2a
− q2n2

a
. (10)

The first term is the Coulomb energy of interaction between n electrons on the surface of the
sphere, the second term is the self-energy of the positive background charge, and the third term
is the energy of interaction between n electrons and the background. At zero temperature,
the classical SOCP will freeze into a hexagonal Wigner crystal (with some topological defects)
whose energy is

FSOCP = −M
q2n

d
, (11)

where M is the Madelung constant and d is the characteristic size of the Wigner-Seitz cell,
πd2n = 4πa2. Combining eqs. (10) and (11), we arrive at a very simple expression for the
Coulomb energy of n electrons on the surface of the sphere,

EC =
n2q2

2a
− M

q2n3/2

2a
. (12)
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Fig. 4 – The ∆E∗/n as a function of σ∗ for various combinations of n and a∗.

Equation (12) with M = 1.1046 gives a very accurate fit to the ground-state energy of the
surface Thomson problem with purely Coulomb interactions [10, 27]. Note that for a planar
OCP [29] M = 1.1061, so that the topological defects affect very little the value of the
Madelung constant. It is also important to notice that although EC is not extensive,

∆EC ≡ 1
q2

(
EC − n2q2

2a

)
(13)

is. Therefore, if ∆EC/n is plotted as a function of n/a2 for different combinations of n and
a, all points should fall onto one universal curve,

f(x) = −M

2
√

x. (14)

We can now check if this universality also holds for the Thomson problem with the Darwin
coupling between the particles. That is if

∆E∗ ≡ E∗ − 1− n2

2a∗ (15)

is such that ∆E∗ = nf(σ∗), with f(x) given by eq. (14). In fig. 4 ∆E∗/n is plotted as a
function of σ∗ for various combinations of n and a∗. It is quite surprising that even in the
supercritical region σ∗ > 5.4, the deviation of E∗ from the energy of a stationary Wigner
crystal remains very small. This is in spite of the fact that for σ > σc, the velocities of
individual particles can be quite large. Evidently, the local antiferromagnetic ordering of the
velocity vectors leads to significant cancellations which diminish the overall contribution of
the Darwin term to the total energy.

We have shown that if the relativistic corrections are taken into account, the classical
Thomson problem of the electrons confined to the surface of a sphere exhibits an electromag-
netic instability. While for σ < σc, the ground state of electrons is a Wigner crystal with
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some topological defects, for σ > σc, the Wigner lattice is unstable and a small perturbation
can make the system evolve to a new ground state. This ground state is characterized by a
local antiferromagnetic order [21–23], but finite net magnetic moment. The surface charge
concentration at the phase transition has a well-defined thermodynamic limit n → ∞, a → ∞,
while σ∗

c → 5.4. This surface charge density, however, is so large that quantum effects must
be taken into account [30,31]. The relativistic corrections to the Coulomb energy should not,
therefore, affect the stability of a normal plasma.
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