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Adsorption isotherms of charged nanoparticles

Alexandre P. dos Santos,a Amin Bakhshandeh,a Alexandre Diehlb and Yan Levina

We present theory and simulations which allow us to quantitatively calculate the amount of surface

adsorption excess of charged nanoparticles onto a charged surface. The theory is very accurate for

weakly charged nanoparticles and can be used at physiological concentrations of salt. We have also

developed an efficient simulation algorithm which can be used for dilute suspensions of nanoparticles of

any charge, even at very large salt concentrations. With the help of the new simulation method, we are

able to efficiently calculate the adsorption isotherms of highly charged nanoparticles in suspensions

containing multivalent ions, for which there are no accurate theoretical methods available.

I. Introduction

The interaction between lipid membranes, DNA, electrodes, and
other charged surfaces with nanoparticles is of fundamental
importance in biochemistry, biophysics, and diagnostic medicine.
It is well known that salt can modify significantly the interaction
between biomolecules in aqueous suspensions, affecting their
stability.1–11 The Derjaguin–Landau–Verwey–Overbeek (DLVO)
theory12 attributes the stability of suspensions to the competition
between electrostatic and dispersive, van der Waals (vdW), forces.
Electrostatic repulsion between colloidal particles prevents them
from coming into a close contact at which strong dispersion forces
can make the particles stick together, resulting in flocculation and
precipitation. The vdW attraction is very short-ranged and is only
weakly affected by the presence of an electrolyte. On the other
hand, the Coulomb repulsion between like charged particles is
strongly susceptible to the presence of the electrolyte, which
screens the electrostatic interactions. The DLVO theory provides
a qualitative understanding of the stability of colloidal systems in
suspensions containing the 1 : 1 electrolyte. The theory, however, is
not able to account for either the ionic specificity (Hofmeister
effect),13–17 like-charge attraction,18–21 or the reversal of the electro-
phoretic mobility often observed in suspensions containing multi-
valent ions.22–24 In this paper, we will explore the interaction
between nanoparticles and charged surfaces. Our goal is to
quantitatively calculate the adsorption isotherms for dilute

suspensions of nanoparticles in solutions containing large –
physiological – concentrations of electrolyte.

When studying Coulomb systems the starting point is often the
Poisson–Boltzmann (PB) equation. Indeed, it has been observed
that the PB equation can very accurately describe the density
profiles of monovalent ions near a charged wall. However, since
the PB equation does not take into account either electrostatic
correlations or steric repulsion between ions it is bound to fail
if used to calculate the adsorption isotherms of charged nano-
particles near a charged wall.25 Nevertheless, we will show that a
very simple modification of the PB equation can extend its validity
to study an important class of weakly charged nanoparticles,
allowing us to quantitatively calculate their adsorption isotherms.
For more strongly charged nanoparticles, or if solution contains
multivalent ions, we will present a simulation method which
allows us to obtain adsorption isotherms at infinite dilution of
nanoparticles, which are often of great practical interest.

This paper is organized as follows: in Section II, we introduce
a modified PB (mPB) equation which allows us to accurately
calculate the density profiles of weakly charged nanoparticles
near a charged surface. In Section III we present an efficient
Monte Carlo (MC) simulation method which can be used to
obtain the adsorption isotherms for very dilute suspensions
of nanoparticles at large salt concentrations. In Section IV, we
compare the theory with the simulations and discuss suspensions
containing multivalent ions. In Section V, conclusions of the
present work are presented.

II. Model and theory

Consider a spherical colloidal particle of radius a and charge Z
in an electrolyte solution. If Z is not too large, there is no
counterion condensation, and the electrostatic potential produced
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by a colloidal particle inside a 1 : 1 electrolyte solution can be
found analytically by solving the linearized PB equation25,26

bfðrÞ ¼ lBZ
ekea

1þ kea

� �
e�ker

r
; (1)

where r is the distance from the center of the nanoparticle,

ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8plBrs

p
is the bulk inverse Debye length, rs is the salt

concentration, lB = q2/ekBT is the Bjerrum length, q is the
proton charge and e is the dielectric constant of the medium.
We observe that the electrostatic potential in eqn (1) is identical
to the potential produced by a point charge of

Zeff ¼ Z
ekea

1þ kea

� �
: (2)

Note that Zeff can be significantly larger than the bare charge Z.
The interpretation of this curious result is that if we want to
replace a finite sized colloidal particle by a point particle and
require that this point particle produces the same electric field
at a distance r c a, the charge of the point particle must be
larger than the bare colloidal charge in order to account for
the absence of screening inside the colloidal core.27,28 This
suggests that in the absence of the counterion condensation, the
system of weakly charged nanoparticles can be mapped onto a
system of point particles with an effective charge given by eqn (2).

The dispersion interactions between nanoparticles and the
surface can be taken into account using the Hamaker potential
which can be written as12

UvðzÞ ¼ �
A

6

�a

ðz� �aÞ þ
2�a

½4�aþ 2ðz� �aÞ�

��

þ log
2ðz� �aÞ

4�aþ 2ðz� �aÞ

� ���
;

(3)

where A is the Hamaker constant, set to 1.3 � 10�20 J, E3.15kBT
corresponding to polystyrene–polystyrene interaction in water
at room temperature,29 and %a = a � 4 Å is the vdW radius of the
nanoparticle (radius minus the hydration layer).30 We expect
that the pairwise additive approximation on which the Hamaker
potential is based will break down at short separations, where we
would need to use the Lifshitz theory.31 In the present paper we
will neglect this non-additive short distance effect.

Now, suppose that we have a dilute suspension of charged nano-
particles inside a 1 : 1 electrolyte solution. If an oppositely charged
surface is introduced into solution some of the particles will become
adsorbed to it. The surface adsorption excess can be defined as

G ¼
ð1
0

½rðzÞ � rð1Þ�dz; (4)

where r(z) is the number density of nanoparticles at a distance
z from the surface and r(N) = rB is the bulk nanoparticle
concentration.

To calculate the surface adsorption excess we need to know
the density profile of nanoparticles r(z). It is well known that
for weakly charged small ions, Poisson–Boltzmann theory is
very accurate, however, it fails for large or strongly charged
ions.25 On the other hand, from the above argument we

observed that for nanoparticles which are not too strongly
charged, the effect of the hardcore can be taken into account
by simply renormalizing the colloidal charge. In this sense, we
can map weakly charged nanoparticles onto point particles
with an effective charge. Since the PB equation works very well
for point-like ions, we expect that it will also work reasonably
well for our weakly charged nanoparticles which are mapped
onto point-like particles with an effective charge.11,32 Note that
in this formalism, the electrostatic correlations between the
nanoparticles and the ions are taken into account through the
charge renormalization. A modified PB (mPB) equation for this
system can then be written as

r2fðzÞ ¼ � 4pq
ew

sþ qrþðzÞ � qrþðzÞ þ ZrðzÞ
� �

;

rðzÞ ¼ rBe
�bZeff ðzÞfðzÞ�bUvðzÞ�bUeðzÞ;

rþðzÞ ¼ rse
�bqfðzÞ;

r�ðzÞ ¼ rse
bqfðzÞ;

(5)

where z is the distance from the charged wall, f(z) is the mean
electrostatic potential, r(z), r+(z), and r�(z) are the density
profiles of nanoparticles, cations, and anions, respectively,
and rs is the bulk concentration of salt. The hardcore potential
Ue(z) prohibits the centers of nanoparticles from coming nearer
than a distance a to the surface. The vdW interaction between
the nanoparticles and the surface is given by eqn (3). The
effective charge which appears in the mPB equation, eqn (5),
is calculated using the local density approximation

Zeff ¼ Z
ekðzÞa

1þ kðzÞa

� �
; (6)

where

kðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plB rþðzÞ þ r�ðzÞ

� �q
(7)

is the local inverse Debye length. This is similar to the well
known WKB approximation.33 The Bjerrum length is set to
7.2 Å, value for water at room temperature. The mPB equation
can be solved numerically using the Picard iteration method.
To check the accuracy of the mPB equation we compare its
predictions with the results of Monte Carlo simulations.

III. Monte Carlo simulations

In order to accurately construct the nanoparticle density profile
for dilute suspensions at physiological concentrations of salt
a very large simulation cell containing many ions is required.
The long range Coulomb force prevents us from using simple
periodic boundary conditions, requiring more sophisticated Ewald
summation methods which are computationally very expensive.
Furthermore the presence of many salt ions results in very low
MC acceptance rates, requiring the introduction of clusters34 or
inversion moves,35 leading to additional complications. To overcome
these difficulties we have developed a new approach for calculating
adsorption isotherms of dilute suspensions using MC simulations.
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Our algorithm is based on the fundamental observation that the
density profile of nanoparticles can be written as

r(z) = rBe�bo(z), (8)

where o(z) is the potential of mean force. For very dilute
suspension of nanoparticles in a solution containing a large
amount of salt, the interaction between nanoparticles can be
ignored, so that the potential of mean force depends only on
the surface charge density and the concentration of electrolyte.

The MC simulations are performed in a box of sides Lx = Ly =
218 Å and Lz = 5Lx. The electrolyte is confined in the z direction
between z = 0 and z = L = 150 Å. A charged wall with a uniform
surface charge density s = �0.03 C m�2 is located at z = 0.
A nanoparticle has charge Z = 5q and effective radius a = 20 Å,
similar to lysozyme,36 where q is the proton charge, and is
placed at position z and x = 0 and y = 0. We also consider

Nc ¼
89

a
� Z

aq

� �	
LxLy counterions of charge aq, where a is the

ionic valence. Positive and negative ions from the dissociation
of the a : 1 electrolyte are also present in the system. All ionic
species have a radius of 2 Å. Water is treated as a uniform
medium of dielectric constant e = 80e0, where e0 is the dielectric
constant of vacuum. The electrostatic interactions are determined
by summing over all the periodic replicas of the system using
the Ewald summation method, modified for slab geometry.37,38

Here we adopt a recently introduced efficient simulation algorithm
developed specifically for this geometry.39 The electrostatic
energy of a periodically replicated system, containing N charged
particles, is

U ¼
X1
ka0

2p
ewV jkj2

exp �jkj
2

4ke2

� �
AðkÞ2 þ BðkÞ2
� �

þ 2p
ewV

Mz
2 �QtGz

� �
þ 1

2

XN
iaj

qiqj
erfc ke ri � rj



 

� �
ew ri � rj


 



� 2p
ew

XN
i¼1

sziqi;

(9)

where

AðkÞ ¼
XN
i¼1

qi cos k � rið Þ;

BðkÞ ¼ �
XN
i¼1

qi sin k � rið Þ;

Mz ¼
XN
i¼1

qizi;

Qt ¼
XN
i¼1

qi;

Gz ¼
XN
i¼1

qi zið Þ2:

(10)

The k-vector is defined as k ¼ 2p
nx

Lx
; 2p

ny

Ly
; 2p

nz

Lz

� �
, where n are

integers. V = LxLyLz is the volume of the simulation box, ke = 4/Lx is
the dumping parameter of the Ewald summation method, and qi

and ri are the charge and the position of particle i, respectively. The
MC simulations are performed using the Metropolis algorithm
with 107 movements to achieve equilibrium and 100 movements
per particle to obtain uncorrelated states. The force profiles are
obtained using 30 000 uncorrelated states. To achieve convergence
of the electrostatic energy we use around 400 k-vectors.

For a nanoparticle fixed at a distance z from the charged
surface, we calculate the ensemble averaged electrostatic and
entropic forces acting on the particle. The electrostatic force is
given by

Felec ¼ �
@U

@z

 �
; (11)

where U is the electrostatic energy of the system.39

The entropic force is obtained using the approach of
Wu et al. which requires performing a virtual displacement of
the nanoparticle and counting the number of overlaps with the
ions of the electrolyte.40 It is given by

Fent ¼
Nch i � Nf

� �
bDR

; (12)

where Nc is the number of virtual overlaps between the colloid
and the ions after a small displacement DR = 0.5 Å that brings
colloids and plate closer together (superscript c stands for
closer) and Nf is the number of overlaps of the colloids and
the ions after a displacement DR that moves the colloids and
the plate farther apart (superscript f stands for farther).

After the force profile is calculated, the potential of mean
force is obtained by integration

oðzÞ ¼ UvðzÞ þ
ð1
z

Felec z0ð Þ þ Fent z
0ð Þ½ �dz0: (13)

The great advantage of this method is that the calculation of force
is easily parallelized by running it on different CPUs for each z.

IV. Results

In Fig. 1, we plot the density profiles of nanoparticles for
different salt concentrations obtained using a numerical solution
of eqn (5). The agreement between simulations and theory is
excellent. In the same figure, the dashed lines show the density
profiles which are obtained if charge renormalization is not taken
into account. In this case we see a very strong deviation from the
results of MC simulations. The electrostatic and vdW plus hard
core potentials are shown in Fig. 2 for a specific set of parameters.

The adsorption isotherms can be calculated by performing
the integral in eqn (4). In Fig. 3 we plot the scaled adsorption
isotherms, �G = G/rB, as a function of salt concentration for
various surface charge densities on the wall. We see a very
strong dependence of surface adsorption excess on the surface
charge density at low salt concentrations. For larger concentrations,
Debye screening of electrostatic interactions leads to a much
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weaker dependence of surface adsorption excess on the wall
surface charge density.

For dilute colloidal suspensions, counterion condensation
becomes important when Z 4 4a(1 + ka)/lB.25,41 Indeed, when
the nanoparticle charge exceeds this limit we see a significant
deviation between theory and simulations. Furthermore, in
this regime, we find that using more sophisticated theories
to account for the counterion condensation and charge
renormalization42–46 is not sufficient to improve the agree-
ment between theory and simulations. Therefore, in order to
calculate the adsorption isotherms of strongly charged nano-
particles, or if suspension contains multivalent ions, we are
forced to rely on computer simulations which were discussed
in Section III.

Fig. 1 Density profiles of nanoparticles for salt concentrations of 100, 150 and 200 mM near a charged wall with s = �0.03 C m�2. Symbols are the
results of MC simulations and solid lines are the predictions of the present theory. The dashed lines represent a solution of the PB equation without taking
into account charge renormalization. The bare nanoparticle charge is Z = 5q and the radius is a = 20 Å.

Fig. 2 The scaled electrostatic potential, bq f(z), is shown by the solid
line, and vdW plus hard core potential, bUv(z) + bUe(z), the dashed line. The
parameters are the same as Fig. 1 for salt at 150 mM.

Fig. 3 Surface excess vs. salt concentration calculated using mPB theory. In (a), Z = 5q, while the surface charge densities are s = �0.01, �0.02, �0.03,
�0.04 and �0.05 C m�2, from bottom to top, respectively. In (b), s = �0.03 C m�2 while the charge on the nanoparticle is Z = 3q, 5q, 7q and 9q from
below to above, respectively.
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In Fig. 4 we present �G for a dilute suspension, as a function
of the added a : 1 electrolyte. We see that screening of electro-
static interactions by the electrolyte significantly reduces the
nanoparticle adsorption. Furthermore, increasing cation valence,
a, dramatically decreases the amount of adsorption, see Fig. 4.
The figure also shows that for the 1 : 1 electrolyte the adsorption
isotherm calculated using the mPB equation is in excellent
agreement with the results of MC simulations. For more
strongly charged nanoparticles, or in the presence of multi-
valent ions, there are no accurate theoretical methods available
and one must rely on MC simulations. For example, in the case
of highly charged nanoparticles, we observe more adsorption
than that predicted using the modified PB equation, eqn (5).
The mechanism of this attraction is both electrostatic and
entropic in its origin. The counterions condensed onto nano-
particle are repelled from the charged wall, shifting to the far
side of the nanoparticle, leading to enhanced electrostatic and
entropic attraction.

V. Conclusions

We have presented a theory which enables us to accurately calcu-
late the density profiles and adsorption isotherms of weakly
charged nanoparticles. Both electrostatic and dispersion inter-
actions between the nanoparticles and a charged surface are
taken into account. The theory can be used even at large –
physiological – concentrations of salt. However it fails for
strongly charged nanoparticles and strongly charged surfaces.
For such systems we have developed an efficient MC algorithm
which can be used to obtain both density profiles and the
adsorption isotherms, which are of great practical importance
in various applications. The simulations show that the counter-
ion condensation near a strongly charged surface results in a
short distance entropic repulsion which is not properly captured
by the mPB equation. The strength of this repulsion depends on
the surface charge density and salt concentration. For physio-
logical salt concentrations used in the present paper the mPB
equation remains accurate for surface charge densities up to

s = �0.03 C m�2. However for smaller salt concentration, the
range of validity of the mPB equation increases. For example, for
E60 mM salt concentration, we find that the mPB equation
remains accurate for surfaces with s up to �0.06 C m�2. Finally,
we note that the simulation approach developed in this paper
can be easily applied to solutes of arbitrary shape and can also be
extended to explicit solvent models.
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