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Mean-field beyond mean-field: the single particle
view for moderately to strongly coupled charged
fluids†

Ladislav Šamaj,a Alexandre P. dos Santos,b Yan Levinb and Emmanuel Trizacc

In a counter-ion only charged fluid, Coulomb coupling is quantified by a single dimensionless parameter.

Yet, the theoretical treatment of moderately to strongly coupled charged fluids is a difficult task, central to

the understanding of a wealth of soft matter problems, including biological systems. We show that the

corresponding coupling regime can be remarkably well described by a single particle treatment, which,

at variance with previous works, takes due account of inter-ionic interactions. To this end, the prototypical

problem of a planar charged dielectric interface is worked out. Testing our predictions against Monte

Carlo simulation data reveals an excellent agreement.

I. Introduction

Charged fluids are abundant in man-made or natural systems,
in which thermalized mobile ions interact via Coulomb forces
collectively, and also with more macroscopic charged bodies
such as colloids, proteins, or DNA. The first theoretical attempt
for describing inhomogeneous Coulomb fluids dates back about
a century ago, to the pioneering works of Gouy in Lyon1 and
Chapman in Oxford.2 These predate the Debye and Hückel
approach which aimed at accounting for the unusual thermo-
dynamic properties of electrolytes like NaCl, where dissociation
leads to a fluid of Na+ and Cl� ions in water.3 These early
treatments are all mean-field in spirit. It was realized in the
1980s that by discarding electrostatic correlations, mean-field
theory precludes some counter-intuitive effects such as the
electrostatic attraction of like charge surfaces, revealed by experi-
ments, simulations, and theoretical approaches, see ref. 4–12
and references therein. It is now recognized that the validity of
mean-field treatments, epitomized by the Poisson–Boltzmann
theory of extensive use in colloid science,14 requires the necessary
condition of sufficiently small electrostatic coupling; in terms
of the coupling parameter X to be defined below and which
measures electrostatic against thermal energies, this means
X { 1 up to X C 1. On the other hand, systems with moderate
to strong coupling are profuse, starting with nucleic acids and
cell membranes in aqueous solutions. Charges are pivotal to

their stability in vivo. The study of these biological objects from
the physics perspective has rekindled interest in Coulomb fluids,
with particular emphasis on a strong coupling regime. Yet,
analytical progress for moderately to strongly coupled charged
fluids has proven to be elusive, as will be illustrated below. Our
goal here is to fill this gap, with a theoretical treatment that is
both physically transparent, and remarkably accurate. It takes
advantage of the existence of a correlation hole around indivi-
dual ions in the system, a well-known feature, which has never-
theless not been turned into an explicit analytical treatment so
far. It is also relevant to emphasize from the outset that our
approach deals with salt-free systems, where only counterions
are present in the solution. This situation, with no added buffer
electrolyte, applies to deionized suspensions (see e.g. the experi-
ments reported in ref. 15).

II. Length scale separation

The limit of asymptotically large couplings admits a simple
description, in elementary settings such as that sketched in
Fig. 1a. It can be understood by a length scale analysis, which
we now illustrate on the emblematic primitive counter-ion only
model. For strongly charged plates, most counterions remain
in a close vicinity of the surface. The characteristic distance
a between the condensed counter-ions is ruled by electro-
neutrality: sa2

p q, where se is the plate surface charge density
at z = 0 and �qe is the ion’s charge, with e the elementary
charge. The typical extension, or excursion of the counter-ions
from the surface, is denoted m. This quantity, called the Gouy
length, follows by the balance of thermal energy kT with the
energy of an ion �qe at position z, m = ekT/(2pqse2). The dimen-
sionless coupling parameter, defined as X = 2psq3e4/(ekT)2,
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is proportional to a2/m2. When X c 1, Coulomb interaction
between the counter-ions exceeds thermal energy, so that the
mobile counter-ions in the vicinity of a plate are strongly
attracted to the surface, and at the same time repelled from
the adjacent counterions, X c 1 ) m { a. This results in a
correlation hole size a,17,18 exceeding a typical transverse
excursion of counter-ions from the surface characterized by
the Gouy length m, see Fig. 1a, where the key length scales are
depicted. For colloidal particles with bare charge Z = 104e and a
radius of R = 103 Å, in aqueous solution, the coupling para-
meter is X E 0.26 for monovalent counterions (q = 1), 2.1
for divalent counter-ions, and 7.0 for trivalent counter-ions.
However, since X is inversely proportional to the square of the
dielectric constant, for solvents of lower dielectric constants
such as mixtures containing water and alcohol, X can easily
reach 50 for moderately charged surfaces with trivalent coun-
terions. It is also relevant to provide reasonable bounds for the
possible values of X, as a function of valence q. In water at room
temperature, highly charged interfaces have se on the order of
one e per nanometer square, and therefore X is on the order
of q3. With trivalent ions, this means X C 30, which is already
way into the regime covered by our treatment.

The length scale separation provides the grounds for a
surprisingly simple picture of a strongly correlated Coulomb

system where the ions react mostly to the bare plate potential,
while ion–ion interactions become insignificant as X-N.11,12,18

Thus, the ionic density profile takes an exponential form
r(z) p exp(�z/m) characteristic of a particle in a constant field.
The proportionality factor can be determined by the contact
value theorem.13 This ‘‘ideal gas’’ barometric law has been fully
validated by numerical simulations.19,20 Corrections beyond the

ideal gas regime can be computed in a 1
� ffiffiffiffi

X
p

expansion by a
perturbation around the Wigner crystal,21 which forms when
X exceeds some (very large) crystallization value Xc C 3.104.22

It is generally believed that single particle ideas fail in situations
where scale separation no longer holds: for instance if X is in some
crossover regime of moderate coupling or in the situation of
Fig. 1b with a dielectric mismatch. We shall see that although
the ideal gas view indeed severely breaks down in these generic
cases – which as a matter of fact significantly limits its practical
interest – a ‘‘correlation hole modified’’ single-particle treat-
ment can be effectively applied. It is our purpose to present this
fully analytical, self-consistent approach. The theory developed
here allows accurate determination of the counter-ion density
distribution r, which is in striking agreement with computer
simulation results. This leads to an unexpected conclusion that
somewhat beyond the usual mean-field regime of weakly coupled
fluids, an even simpler mean-field provides a quantitative descrip-
tion. In the limiting cases where the ideal gas formulation is
relevant, our analysis recovers it.

III. Correlation hole: treatment and
consequences

We now address the simplest geometry where lack of scale
separation forestalls the ideal gas single particle physics: the
planar interface alluded to above, with a dielectric jump between
the solvent (dielectric constant e) and the confining charged
body (dielectric constant e0) occupying the lower half space as
shown in Fig. 1b. Although simplified, such a geometry provides
a paradigmatic testbed to shape intuition and theoretical ideas.
The situation D = (e � e0)/(e + e0) > 0 is the most relevant one,
since the dielectric constant of materials like glass, proteins, or
polarizable colloids is much smaller than that of water: each
charge admits an image of the same sign,23 with a resulting
repulsive interaction. It also encompasses the air–liquid inter-
faces, for which e/e0 C 80. The case D o 0 leads to attractive
images,24 and to the disappearance of the depletion zone in
Fig. 1b. The extreme limit corresponds to a grounded electrode
with e0 - N for which D = �1. In this case the ions can no
longer be modeled as point particles and a hardcore must be
introduced. In this paper we will restrict our attention to systems
with D 4 0.

The mobile ions are attracted to the oppositely charged
interface at z = 0, but concomitantly each charge�qe at position
z has a dielectric image of charge �qeD at �z,23 which strongly
repels it. A depletion zone ensues;25 it is quite straightforward
to estimate its size z*, which turns out to be of the same order
as a. Thus, one can no longer consider that ions are far from

Fig. 1 Schematic side view of the system, without (panel a) and with
(panel b) dielectric mismatch. The mobile counter-ions, point-like, are
drawn as spheres for the sake of illustration. In (a), the dielectric constant
of the solvent (e) and that of the interface (e0) are equal. We will also
consider in (b) the case where both constants differ, for which the
dielectric mismatch is quantified by D = (e � e0)/(e + e0). Panels (a) and (b)
depict regimes of large Coulomb coupling (Xc 1). Then, the characteristic
distance a between the counter-ions is set by electro-neutrality: sa2

p q,
where se is the plate surface charge density at z = 0 and �qe is the ion’s
charge, with e as the elementary charge. The typical extension m follows by
balancing thermal energy kT with the energy of an ion�qe at position z in the
potential �2psez/e created by the bare plate: m = ekT/(2pqse2), the so-called
Gouy length. The coupling parameter is defined as X = 2psq3e4/(ekT)2. Thus,
Xp a2/m2 and Xc 1) m{ a. In panel (b), repulsive dielectric images should
be considered (e0 o e) and a depletion zone of size z* appears. The typical
extension of the profile, m0, is no longer given by m.16
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each other compared to their distance to the plate: the intru-
sion of a new length scale, z*, explains the failure of the single
particle ideal gas picture. Nevertheless, the ionic profile’s exten-
sion, m0, remains the smallest length scale of the problem.16

Hence, we are led to neglect the correlations between the ion’s
fluctuations, while taking due account of their interactions in an
effective way, at variance with the ideal gas formulation. The
problem we face reduces to computing the effective potential u
that a given ion experiences, when at a distance z away from the
interface. When known, u directly leads, through a Boltzmann
weight, to the main quantity of interest, the density profile:
r(z) p exp(�bu), with b = 1/(kT) being the inverse temperature.
We emphasize that when explicit analytical expressions are
sought, the state of the art lies in the single particle ideal gas
view, in which case the potential of mean-force u stems from the
force due to the plate at z = 0 and the test particle image
charge.11,12,19,26 We shall see that this treatment is inappropriate
for Da 0, so that there is no analytical treatment available in the
literature to study this general case. We attempt here to fill the
gap. In other words, while the idea of correlation holes in more
or less correlated Coulombic fluids is not novel,8,10,17,18,27–30

transforming the corresponding insight into a fully analytical
theory is new; it is the subject of our paper.

Since practically relevant values of the coupling parameter are
orders of magnitude smaller than the crystallization threshold, we
envision the ions as forming a liquid, essentially two dimensional
since we do not aim at covering the limit of too small X (we will
address the range X4 10 here31). The key structural features of this
liquid are embodied in the pair correlation function g(r),32,33 a
function of inter-ion distance providing the density of neighbors.
This g(r) is more or less structured depending on the value of X,19

but is always strongly depleted at small distances r due to the
strong Coulomb repulsion:17,27,30,34–36 we recover the correlation
hole depicted in Fig. 1. The second characteristic is that the size
of this hole is essentially X-independent: being set by electro-
neutrality, it is always given by the length scale a introduced in
the caption of Fig. 1;19 besides, each particle has six coordination.37

We claim that these gross features are sufficient for a proper
account of the ionic profile, without inclusion of further details.
Two levels of simplification will be provided, having in common
the existence of a correlation hole around the test particle, in the
form of a concentric disk. (1) Apart from the test particle, the fluid
of counter-ions is assumed to be structureless beyond R0 (meaning
g(r) = 1 for r 4 R0). The size of the hole is set by balancing the hole
and ion charges: pR0

2se = qe. This leads to a system of a moving ion
in the field of a plate at z = 0, a punctured plate at z* having a
circular hole of size R0, plus the dielectric images of all charges, of
the same sign but weighted with a prefactor D, and located at the
symmetric position with respect to the mid plane at z = 0. We call
this route the correlation hole + strong coupling with zero neighbor
(ch0). (2) In a refined approach, we set g(r) = 1 beyond the first
neighbors. Then, each particle with its 6 neighbors is in the center
of a hole with radius R6, now such that psR6

2 = q + 6q = 7q. Taking
into account image charges leads to the model represented in
Fig. 2, referred to as ch6. For both ch0 and ch6 routes, the process of
smearing out an infinite number of counter-ions leads to a

punctured charged plate, with a hole concentric with the test ion.
Its interaction with the test particle is essential for a good account
of the density profile.

IV. Results

To explore the range of the validity of the theory all the results will
be compared with the Monte Carlo simulations performed using
the 3D Ewald summation with a correction for slab geometry and
for surface polarization. More details regarding simulations can be
found in ref. 44 and 45. An interested reader can also consult an
efficient implementation of slab geometry simulations for charged
interfaces, which has recently been developed in ref. 46.

The analysis now proceeds in two steps.38 First, the optimal
distance z* is derived, which yields the maximum of the ionic
profile r(z). Second, the effective one-particle potential u is com-
puted. For the sake of simplicity, we start by presenting the ch0

approach. We fix all ions at z = z* (including the test particle), and
calculate E0, the energy per particle of the system, made up of 3
charged planes, two of which are punctured and located at �z*,
and 2 discrete charges (image included). It proves convenient to
add and subtract the image plane at z = �z*, the potential of a
charged disc with the same density as the plate,�Dse. In doing so,
one obtains a non-punctured plate at z = �z*, and a disc of charge
density Dse, with radius R0. The resulting energy per particle is

E0 z�ð Þ ¼ 2p
e
ð1þ DÞsqe2z� � 1

2
D
2p
e
sqe2 2z�ð Þ

� 1

2
Dqs

e2

e

ðR0

0

dr
2prffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 2z�ð Þ2
q

þ q2e2

2e
D

1

2z�
¼ 2p

e
sqe2z� þ q2e2

2e
D

1

2z�

� pDqs
e2

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0

2 þ 2z�ð Þ2
q

� 2z�
� �

:

(1)

Turning to the ch6 case, we have to consider 3 charged planes, two
of which are punctured and located at�z*, and 14 discrete charges.

Fig. 2 Schematics of the ch6 approach. A test particle (filled disc) is
singled out at elevation z. Other counter-ions are assumed to be at their
typical location z*. Upon smearing out the counter-ions beyond a cutoff
distance R6, one obtains a punctured plate with charge density �se. The
empty circles stand for the 6 nearest neighbors of the test particle. The
symmetrically located dielectric images – discrete (displayed in gray) or
continuous – are also shown. The simplified ch0 view leads to a very similar
setup, with the difference that there are no discrete neighbors: these ions are
also smeared out, so that the hole becomes smaller, of radius R0 ¼ R6

� ffiffiffi
7
p

.
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Proceeding along similar lines as above, the energy per particle
now reads

E0 z�ð Þ ¼ 2p
e
sqe2z� þ q2e2

2e
D

1

2z�
þ 6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 4z�2
p

� �

� pDqs
e2

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R6

2 þ 2z�ð Þ2
q

� 2z�
� �

:

(2)

Introducing the dimensionless variable t = 2z*/a where

a ¼ 3�1=4
ffiffiffiffiffiffiffiffiffiffi
2q=s

p
(ref. 39) and minimizing E0 with respect to t,

we have to solve

1� D
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R6=að Þ2þt2
q � 1

2
64

3
75 ¼

ffiffiffi
3
p

4p
D
t2
þ 6Dt

1þ t2ð Þ3=2

" #
:

Once t and thus the depletion zone extension z* are found,
we have to dissociate the test particle from the ionic layer, move
it along the z axis as depicted in Fig. 2, and compute the
resulting potential u(z). This is another elementary electrostatics
exercise,40 with the result

buðzÞ ¼ ð1þ DÞ~zþ XD
4~z

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~R6

� �2þ ~z� ~z�ð Þ2
q

� D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~R6

� �2þ ~zþ ~z�ð Þ2
q

þ 6Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 þ ~z� ~z�ð Þ2

q þ 6XDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 þ ~zþ ~z�ð Þ2

q
(3)

where tilde distances are rescaled by the Gouy length, e.g.
z̃ = z/m. The ch0 counterpart of eqn (3) is again very similar,
without the last two terms in 6X and with the substitution R̃6 - R̃0

for the hole size. Since R̃6
2 = 14X, we have R̃0

2 = 2X. Finally,
the suitably normalized Boltzmann weight is the density profile
sought for:

rðzÞ ¼ s
q

e�buðzÞÐ
e�buðz0Þdz0

: (4)

By accounting solely for the interaction with the plate at z = 0
and with the test particle image, one has bu = (1 + D)z̃ + XD/(4z̃),
which, when inserted into eqn (4), leads to the ideal gas profile

proposed in ref. 26 and 41. Such an approach is expected to fail as
soon as the aforediscussed scale separation is violated, that is,
whenever Da 0.42 This is confirmed in Fig. 3. On the other hand,
the rather rough ch0 picture significantly improves the agreement
with Monte Carlo data, while the extended ch6 description fares
remarkably well (see Fig. 3). Extensive simulations have also been
performed for larger X values, confirming the accuracy of the
ch6 route for all values of the dielectric jump D, while a simple
ch0 description is also shown to be quite accurate. In view of the
underlying physical hypothesis (such as the two dimensional
assumption for the fluid of counter-ions), better justified for
strongly coupled systems, very good agreement at X = 10 rather
comes as a surprise. A similar remark holds for ch0, a crude, but
nonetheless trustworthy approximation. It is interesting to com-
pare and contrast our theory with the approach of ref. 10 which
also relies on the idea of singling out a test particle. However, at
variance with our treatment, (a) the remaining ions are treated
at the Poisson–Boltzmann level; (b) the approach is restricted to
D = 0, and thus to a regime where many-body effects are
less pronounced; (c) the numerical resolution of a highly non-
linear partial differential equation is required, with subsequent
numerical integration of some auxiliary potential. In contrast,
our treatment is fully analytical, and reduces to three simple
equations presented above.

It is of particular interest to analyze the well documented
D = 0 situation, where e = e0. There, the ideal gas view provides
the dominant large coupling profile.11,19,21 As seen in Fig. 4, both
ch0 and ch6 perform significantly better, and account correctly
for the deviations from the exponential behavior: the over-
populated tail with respect to exponential behavior is a finger-
print of the repulsive effect of the fellow counter-ions forming a
layer at z C 0, which becomes more pronounced as the test
particle moves away from this plane. We have found similar
agreement at D = 0 for larger X values.

Finally, we have tested our approach at very large couplings
(X 4 103), see Fig. 5. While the ideal gas picture of ref. 26 and
41 is inoperative, the ch6 theory agrees well with the simulation
data, in spite of the fact that the fluid of the counter-ions
is strongly modulated. We thus have considered extensions
of ch6, of the chn type, including a growing number of neighbors

Fig. 3 Density profile of counter-ions for D = 0.95 (meaning e/e0C 40), X = 10 (left graph) and for D = 1, X = 25 (right graph). The ch0 and ch6 predictions
are compared to the ideal gas profile proposed in ref. 26, and to the results of Monte Carlo simulations (taken from ref. 26 for the left graph). Here,
lB = be2/e is the Bjerrum length.
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in the approach (n = 6, 12, 18, 30. . .), which we locate at their
ground state position, in order to reach gradually the X - N

hexagonal arrangement. Pushing this logic, we show in Fig. 5
the chN prediction, where all ions are in their ground state
position, except the test particle. It is still possible to compute
analytically the resulting one body potential u making use of
the lattice summation techniques developed in ref. 43. There
is barely any difference between the ch6 and chN predictions.
Incidentally, all chn formulations, for n between 6 and N, remain
extremely close for all couplings we have investigated, which
emphasizes the robustness of the approach.47 Furthermore, the
depletion zone extension, z*, hardly depends on the level n in a
chn treatment, from n = 0 up to n - N!

V. Conclusion

In conclusion, we have presented a theory that accounts very
accurately for the ionic density profiles of salt-free systems at
moderate and strong couplings. Extensive comparisons with
Monte Carlo simulations have been carried out. Our approach
is accurate for X 4 10, and thus covers a wealth of experi-
mentally relevant situations; for instance, DNA with trivalent
counter-ions (q = 3) has X around 100. The couplings that both

evade mean-field and our analysis, namely X in the range,1,10

must be addressed by computer simulation. Our formulation relies
on basic electrostatics considerations, at variance with other more
complex treatments such as the splitting field-theory,30,34,35,48

and invokes transparent physical hypothesis pertaining to ionic
correlations. The latter are accounted for at a one body level,
which qualifies the approach as mean-field. Furthermore, besides
accuracy, our treatment has been shown to be very robust. More
complex geometries, such as a slit, explored for small separations
in ref. 41 provide possible applications for the theory presented
in this paper.

Another important perspective includes addition of co-ions,49

which brings an extra coupling parameter and hard core effects.
This leads to significant complications, but can elaborate on
the no-salt treatment presented here, in the spirit of previous
approaches.50,52 On general grounds, salt ions ‘‘dress’’ the
interactions between multivalent counterions,50 in a way that
may be complex, but that may admit rather simple limiting laws.
For instance, with highly asymmetric electrolytes, counter-ions
may be in a strong coupling regime while coions are not. This
leads to a picture where the counterions interact through a
screened potential, which allows further progress.50 Alternatively,
if coions themselves are strongly coupled, they will form Bjerrum
pairs with the counter-ions, leading to a system with excess
counter-ions and a number of dipoles, see e.g. ref. 51. In a first
approximation, neglecting pair formation,52 the formalism pre-
sented here is directly applicable.

Acknowledgements

The support received from the grant VEGA No. 2/0015/15 and
from CNPq, INCT-FCx, and US-AFOSR under the grant FA9550-
16-1-0280 is acknowledged.

References

1 G. L. Gouy, J. Phys., 1910, 9, 457.
2 D. L. Chapman, Philos. Mag., 1913, 25, 475.
3 P. Debye and E. Hückel, Phys. Z., 1923, 24, 185.
4 P. Linse and V. Lobaskin, Phys. Rev. Lett., 1999, 83, 4208.
5 J. Z. Wu, D. Bratko, H. W. Blanch and J. M. Prausnitz,

J. Chem. Phys., 1999, 111, 7084.
6 W. M. Gelbart, R. F. Bruinsma, P. A. Pincus and V. A.

Parsegian, Phys. Today, 2000, 53, 38.
7 F. J. Solis and M. O. de la Cruz, Phys. Today, 2001, 54, 71.
8 A. Y. Grosberg, T. T. Nguyen and B. I. Shklovskii, Rev. Mod.

Phys., 2002, 74, 329.
9 Y. Levin, Rep. Prog. Phys., 2002, 65, 1577.

10 Y. Burak, D. Andelman and H. Orland, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2004, 70, 016102.

11 A. Naji, S. Jungblut, A. G. Moreira and R. R. Netz, Physica A,
2005, 352, 131.

12 R. Messina, J. Phys.: Condens. Matter, 2009, 21, 113102.
13 D. Henderson and L. Blum, J. Chem. Phys., 1978, 69,

5441.

Fig. 4 Same as Fig. 3, without dielectric mismatch (D = 0), and X = 51. The
density profile is maximum for z = 0, at contact with the plate: there is no
depletion zone (z* = 0). The reduced density is defined as ~r = r/(2plBs

2).

Fig. 5 Counter-ion profile at large coupling for D = 1, symbols are the
results of MC simulations. The ‘‘Wigner strong coupling’’ prediction (chN)
is also shown: it is almost indistinguishable from the ch6 treatment.

Soft Matter Paper



This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 8768--8773 | 8773

14 D. Andelman, in Soft Condensed Matter Physics in Molecular
and Cell Biology, ed. W. C. K. Poon and D. Andelman, Taylor
& Francis, New York, 2006.

15 T. Palberg, M. Medebach, N. Garbow, M. Evers, A. Barreira
Fontecha, H. Reiber and E. Bartsch, J. Phys.: Condens.
Matter, 2004, 16, S4039.

16 When D 4 0, m0 a m; it can be shown that m0 p mX1/4 at
large X, see ref. 24.

17 I. Rouzina and V. A. Bloomfield, J. Phys. Chem., 1996,
100, 9977.

18 B. I. Shklovskii, Phys. Rev. E: Stat. Phys., Plasmas, Fluids,
Relat. Interdiscip. Top., 1999, 60, 5802 (Phys. Rev. Lett., 1999,
82, 3268).

19 A. G. Moreira and R. R Netz, Phys. Rev. Lett., 2001,
87, 078301 (Eur. Phys. J. E: Soft Matter Biol. Phys., 2002,
8, 33); R. R. Netz, Eur. Phys. J. E: Soft Matter Biol. Phys., 2001,
5, 557.
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50 M. Kanduč, A. Naji, J. Forsman and R. Podgornik, Phys. Rev.
E: Stat., Nonlinear, Soft Matter Phys., 2011, 84, 011502.

51 A. P. dos Santos, A. Diehl and Y. Levin, J. Chem. Phys., 2010,
132, 104105.

52 F. Paillusson and E. Trizac, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2011, 84, 011407.

53 P. F. Damasceno, M. Engel and S. C. Glotzer, Science, 2012,
337, 453.

Paper Soft Matter




