
Relaxation and emittance growth of a thermal charged-particle beam
Tarcísio N. Teles,a� Renato Pakter,b� and Yan Levinc�

Instituto de Física, UFRGS, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil

�Received 10 July 2009; accepted 6 October 2009; published online 26 October 2009�

We present a theory that allows us to accurately calculate the distribution functions and the
emittance growth of a thermal charged-particle beam after it relaxes to equilibrium. The theory can
be used to obtain the fraction of particles, which will evaporate from the beam to form a halo. The
calculated emittance growth is found to be in excellent agreement with the simulations. © 2009
American Institute of Physics. �doi:10.1063/1.3254245�

The understanding of physics involved in the transport
of high-intensity charged-particle beams is of fundamental
importance in the development of a new generation of accel-
erators and electromagnetic wave generators to be used in
applications such as heavy ion fusion, high-energy physics,
communication, materials processing, and cancer therapy. A
very detrimental effect that may seriously influence the effi-
ciency of such devices is a halo formation and emittance
growth of the beam.1–5 These not only cause degradation of
the beam quality but may also be responsible for the activa-
tion of accelerator channel wall and pulse shortening in mi-
crowave devices. Emittance growth is generally associated
with the relaxation of initially nonstationary beam toward a
more stable stationary configuration. The emittance growth
can be calculated if the final stationary distribution is
known.3,6,7 However, the determination of this distribution is
not an easy task6,8,9 because particles in an intense beam
interact through long-range forces, which prevent the system
from relaxing to the true thermodynamic equilibrium.10–12

Instead these systems get trapped in metastable states, the
lifetime of which diverges with the number of particles. To
understand the properties of these states, one cannot use the
standard statistical mechanics, and new nonequilibrium theo-
ries must be developed.13

In this letter, we will present a theoretical framework
that will allow us to accurately calculate the density and the
velocity distributions of particles in the final stationary state
achieved by a space-charge dominated beam focused by a
uniform external magnetic field. Our approach is based on
the theory of violent relaxation in gravitational systems,14

modified so as to explicitly account for the effects of single
particle resonances1 responsible for the halo formation.13 The
theory is applicable to arbitrary initial conditions. In this let-
ter we will show how the theory can be used to accurately
calculate the density and the velocity distributions as well as
to account for the emittance growth of a charged-particle
beam launched with a thermal �Maxwell� velocity distribu-
tion. The predictions of the theory will be tested against the
molecular dynamics simulations.

The physical system considered here is an intense
charged-particle beam of perveance K=2q2Nb /
�b

3vz
2m—where c is the speed of light in vacuo, and q, m, and

�b= �1− �vz /c�2�−1/2 are the charge, mass, and the relativistic

factor of the beam particles, respectively—propagating with
an axial velocity vzêz through a magnetic focusing channel
enclosed by a cylindrical conducting wall located at r=rw.8,15

The external focusing magnetic field is given by B=B0êz. It
is convenient to work in the Larmor frame, which rotates
with respect to the laboratory frame with angular velocity
�L=qB0 /2�bvzmc, normalized to vz. In the Larmor frame,
the external magnetic field produces a parabolic confining
potential U�r�=�zr

2 /2, with the focusing field parameter �z

=�L
2 /c2. The effective electromagnetic scalar potential be-

tween the particles � incorporates both the self-electric and
the self-magnetic fields, Es and Bs. This potential satisfies
the Poisson equation with the boundary condition ��rw�=0,

�2� = − �2�K/Nb�nb�r,s� , �1�

where Nb is the number of particles per unit axial length, r is
the position vector in the transverse plane, and nb�r ,s�
=Nb�fd2v is the transverse beam density profile, given in
terms of the one particle distribution function f�r ,v ;s�. In
the Larmor frame, the dynamics of the beam reduces to that
of a two dimensional one component plasma with logarith-
mic interaction between the particles, confined by a parabolic
potential U�r�. The axial coordinate s=z=vzt plays the role
of time for this two dimensional system.

We will suppose that the initial �transverse� distribution
of the beam is Gaussian in velocity space and is uniform in
cross section,

f0�r,v� =
1

2�2�2rm
2 ��rm − r�e−�v2/2�2�, �2�

where �2 is the initial mean square transverse velocity and rm
is the beam radius. The quality of the beam is inversely
proportional to the emittance, defined as �2=4�r2��v2�, for a
stationary beam. For the distribution �2�, the emittance is
�0=2�rm.

It will be convenient to discretize Eq. �2� into a p-level
distribution

fp
0�r,v� = �

j=1

p

	 j
 j
0�r,v� , �3�

where 
 j
0�r ,v�	��v−v j−1���v j −v���rm−r� and v j and 	 j

are the maximum velocity and the amplitude of the level j,
respectively, with v0=0. For a perfect description of Eq. �2�,
an infinite number of levels �p→�� in Eq. �3� will be nec-
essary. In practice, however, we find that a small number of
levels are already sufficient to provide a very accurate ap-
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proximation for the beam dynamics. For a given value of p,
the optimal values of 	 j and v j can be obtained by minimiz-
ing the functional F=��f0− fp

0�2d2rd2v, with the constraints
on the kinetic energy and normalization,

�
F + 1�� v2

2
fp

0d2rd2v − �2 + 2�� fp
0d2rd2v − 1�

= 0, �4�

where 1 and 2 are the two Lagrange multipliers. Minimi-
zation of Eq. �4� yields the optimal parameters �	 j� and �v j�.
The many-body dynamics of systems with unscreened long-
range interaction is governed by the collisionless Boltzmann
�Vlasov� equation. The distribution functions that satisfy the
Vlasov equation evolve in time as the density of an incom-
pressible fluid. In particular this means that the p hypervol-
umes, ��	 j�=���fp

0�r ,v�−	 j�ddrddv, of the distribution �3�
will be preserved by the Vlasov flow.14

In Ref. 14 it was argued that the stationary solution of
the Vlasov equation could be obtained by maximizing the
coarse grained entropy, with the constraints imposed by the
conservation of energy and the hypervolumes of the p levels
of the initial distribution function. For matched beams and
water-bag initial conditions, the resulting distribution was
shown to be in excellent agreement with the molecular dy-
namics simulations.13 However, for mismatched beams, the
plasma oscillations result in parametric resonances, which
lead to a significant particle evaporation. After the relaxation
process is complete, the stationary beam phase separates into
a cold core, surrounded by a halo of highly energetic par-
ticles. For a water-bag initial condition �p=1�, it was shown
that the core was very well described by a cold Fermi–Dirac
distribution with the temperature T�TF /40, where TF is the
“Fermi temperature” of the beam. The halo was reasonably
approximated by a step function with energy range of one
particle resonance. The full distribution function had the
form of

f�r,v� = fc�r,v� + fh�r,v� . �5�

For a p-level system, which is used to approximate the ther-
mal distribution given by Eq. �2�, a similar phase separation
will occur. The form of the core distribution function can be
obtained, once again, by maximizing the coarse grained en-
tropy to yield

fc�r,v� = �
j=1

p

�	 j − ��
 j�r,v� , �6�

with


 j�r,v� =
e−�	j��r,v�+�j

�i=1
p e−�	i��r,v�+�i + 1

, �7�

where the mean particle energy is ��r ,v�=v2 /2+U�r�+��r�
and � and �� j� are the Lagrange multipliers for the energy
and the hypervolumes conservation. The oscillations of the
mismatched beam excite the parametric resonances, resulting
in a halo formation.13 The parameter � determines the frac-
tion of the particles, which will evaporate to form the halo of
the beam. The coarse grained distribution can no longer pre-
serve all the hypervolumes of the original fine-grained dis-
tribution function so that only the lower energy hypervol-
umes will be conserved, while the particles from the higher

energy states will evaporate to form a halo. We find that the
halo can be modeled accurately by the distribution

fh�r,v� = ����� − ��r,v�� + �����r,v� − ������R

− ��r,v��e−���−���. �8�

The extent of the halo1 is up to one particle resonance energy
�R. The low energy part of the halo distribution is flat, while
for energies ����=�R /2, it decays exponentially with expo-
nent ��8. We can now, in principle, numerically solve Eqs.
�1�, �5�, �7�, and �8� to calculate the stationary distribution
function f�r ,v� of the relaxed beam. There is, however, one
problem. Equations �7� and �8� contain p+2 parameter: �,
�� j�, and �. The conservation of energy, norm, and lower
energy hypervolumes gives us p+1 additional equations,

� d2rd2v��r,v�f�r,v� = �0,

� d2rd2vf�r,v� = 1,

� d2rd2v
 j�r,v� =� d2rd2v
 j
0�r,v� , �9�

where 1� j� p−1 and �0 is the average energy per particle
of the initial thermal distribution,

�0 = �2 + �z

rm
2

4
+ K�1

8
−

1

2
ln� rm

rw
� . �10�

There, however, still remains one missing condition neces-
sary to uniquely determine the distribution function. For
water-bag distributions, this condition was provided by the
requirement that in the relaxed state, the core temperature is
very low, T�TF /40. It is difficult, however, to numerically
implement this condition for p-level distributions. On the
other hand, if we discretize the original thermal distribution
into only one level �p=1�, the condition T�TF /40 is easily
implemented and allows us to uniquely close all the equa-
tions and calculate the relaxed distribution function.13 We
find that although the core distribution is not well described
by a p=1 system, the halo part of the distribution is found to
be quite accurate. This allows us to fix the value of �. Using
this �, we can now improve the description of the core re-
gion by including additional levels into the discretization
procedure. To compare the predictions of the theory with the
simulations, we calculated the number of particles in the in-
terval �r ,r+dr�, N�r�dr=2�Nbrdr�d2vf�r ,v�, and the num-
ber of particles with velocities between v and v+dv,
N�v�dv=2�Nbvdv�d2rf�r ,v�, for various initial conditions.
The simulations are based on the Vlasov dynamics in which
particles interact with the mean-field potential. This avoids
the collisional effects present in finite size systems but which
must vanish for one component plasmas in thermodynamic
limit. The simulation code uses the Gauss law to calculate
the mean electric field felt by each particle.7 For axisymmet-
ric beams studied in this work, this proves to be very effi-
cient since the electric field at a radial coordinate r is deter-
mined simply by counting the total number of particles with
coordinates smaller than r. Simulations were performed with
20 000 particles. As can be seen from the Figs. 1 and 2, the
agreement between the theory and the simulations is excel-
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lent. In the figures, the distances are measured in units of
��0 /�L, and the velocities are in units of ��0�L. We have
also defined a scaled perveance K�	K /�L�0 and the mis-
match parameter, �	rm /r0, which measures the deviation of
the initial beam radius from the corresponding virial value
r0=�K+4�2 /�L, for which the oscillations of the beam en-
velope are very small. In particular, we find that the discreti-
zation of the Gaussian by only four levels already provides
us with an almost perfect description of the core region.

As a direct application of the theory developed above,
we calculate the emittance growth of an originally thermal
beam. This quantity is of fundamental importance for the
design and development of high-intensity space-charge
dominated beams.16 The calculations are performed for
beams of varying scaled perveance K� and mismatch param-
eter �. The results are compared with the molecular dynam-
ics simulations. Once again, an excellent agreement is found
between the theory and the simulations �Fig. 3�.

To conclude, we have presented a theory that allows us
to calculate the density and the velocity distributions of an

initially thermal beam after it relaxes to the final stationary
state. Comparing to the simulations, the theory is found to be
extremely accurate without any adjustable parameters. In
particular, it can be used to calculate the emittance growth
and the fraction of particles, which will evaporate as the
beam evolves to its final stationary state.

This work was supported by CNPq, FAPERGS, and
INCT-FCx of Brazil and by the Air Force Office of Scientific
Research �AFOSR�, USA, under Grant No. FA9550-09-1-
0283.

1R. L. Gluckstern, Phys. Rev. Lett. 73, 1247 �1994�.
2S. Banna and L. Schächter, Appl. Phys. Lett. 80, 2842 �2002�.
3C. K. Allen, K. C. D. Chan, P. L. Colestock, K. R. Crandall, R. W. Garnett,
J. D. Gilpatrick, W. Lysenko, J. Qiang, J. D. Schneider, M. E. Schulze, R.
L. Sheffield, H. V. Smith, and T. P. Wangler, Phys. Rev. Lett. 89, 214802
�2002�.

4Yu. Chekh, A. Goncharov, I. Protsenko, and I. G. Brown, Appl. Phys. Lett.
86, 041502 �2005�.

5P. Muggli, B. E. Blue, C. E. Clayton, F. J. Decker, M. J. Hogan, C. Huang,
C. Joshi, T. C. Katsouleas, W. Lu, W. B. Mori, C. L. O’Connell, R. H.
Siemann, D. Walz, and M. Zhou, Phys. Rev. Lett. 101, 055001 �2008�.

6M. Reiser, J. Appl. Phys. 70, 1919 �1991�.
7R. P. Nunes, R. Pakter, and F. B. Rizzato, J. Appl. Phys. 104, 013302
�2008�; Phys. Plasmas 14, 023104 �2007�.

8R. C. Davidson and H. Qin, Physics of Intense Charged Particle Beams in
High Energy Accelerators �World Scientific, Singapore, 2001�.

9J. Zhou, K. R. Samokhvalova, and C. Chen, Phys. Plasmas 15, 023102
�2008�.

10T. Padmanabhan, Phys. Rep. 188, 285 �1990�.
11P.-H. Chavanis, Physica A 359, 177 �2006�.
12R. Bachelard, C. Chandre, D. Fanelli, X. Leoncini, and S. Ruffo, Phys.

Rev. Lett. 101, 260603 �2008�.
13Y. Levin, R. Pakter, and T. N. Teles, Phys. Rev. Lett. 100, 040604 �2008�.
14D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 �1967�.
15M. Reiser, Theory and Design of Charged Particle Beams �Wiley, New

York, 1994�.
16T. P. Wangler, K. R. Crandall, R. Ryne, and T. S. Wang, Phys. Rev. ST

Accel. Beams 1, 084201 �1998�.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

N
(r

)
/

N
b

r

10
-4

10
-3

10
-3

10
-2

10
-1

2 3 4

FIG. 1. The relaxed particle density of an initially thermal beam with scaled
perveance K�=1 and mismatch of 75% ��=1.75�. The points are the results
of the simulations, and the solid line is the prediction of the theory. Inset
shows the exponential decay of the halo close to one particle resonance
energy.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

N
(r

)
/

N
b

r

(a)

0

0.4

0.8

1.2

1.6

0 1 2 3 4

N
(v

)
/

N
b

v

(b)

FIG. 2. The density and velocity distributions: solid line is the prediction of
the theory, and points are the results of the molecular dynamics simulation.
The scaled perveance is K�=1 and mismatch is 50% ��=1.50�.
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FIG. 3. The final emittance of an initially thermal beam. The points are the
result of molecular dynamics simulation, and the lines are the predictions of
the theory.
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