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Surface tension of strong electrolytes
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Abstract. – We present a theory which accounts for the increase in interfacial tension of
water due to the presence of 1:1 electrolyte. The agreement between the theory and experi-
ment is excellent, extending all the way to relatively high salt concentrations of 1 M. For low
concentrations of electrolyte the theory reduces to the Onsager-Samaras limiting law.

Contrary to surfactant solutions, aqueous electrolytes possess surface tensions higher than
pure water. An explanation of this curious phenomenon has been advanced by Wagner [1]
based on then recently introduced Debye-Hückel theory of strong electrolytes [2]. This work
was further extended by Onsager and Samaras (OS) [3], who were able to derive a limiting
law for surface tension similar to the one obtained by Debye and Hückel for bulk properties of
electrolyte solutions. The OS limiting law is universal in the sense that it does not depend on
specifics of electrolyte [4–7]. For low concentrations, good agreement has been found between
the OS theory and the experiments [5, 6]. However, at larger concentrations the OS theory
strongly underestimates the value of surface tension as compared to experiments [8].

Since the original work of Wagner and OS, the route to surface tension has relied on the
Gibbs adsorption isotherm [9,10]. This equation relates the derivative of surface tension with
respect to chemical potential to the number of ions adsorbed into the interfacial region [8,
11, 12]. The calculation is intrinsically grand canonical, since the interface is thought to
be in contact with a reservoir of solute, i.e. bulk electrolyte. It has been argued, however,
that a canonical calculation, besides being conceptually simpler, might actually lead to better
results as it relies on fewer approximations [13]. Within the canonical formalism the Helmholtz
free energy is directly related to the surface tension, bypassing use of the Gibbs adsorption
isotherm.

To see how this work, consider a neutral electrolyte solution of Nt = N+ + N− ions
and Ns solvent molecules confined to a cylinder of height H and a cross-sectional area A.
The interface can be idealized as the Gibbs dividing surface for which the surface excess of
solvent is zero [14]. At fixed volume and temperature, the differential Helmholtz free energy
is dF = σ dA + µt dNt + µs dNs, where σ is the surface tension and µt and µs are the solute
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Fig. 1 – Electrolyte solution with liquid and vapor separated by the Gibbs dividing surface. The
dielectric constant of vapor is ε0 and that of electrolyte is ε. The hydration of ions prevents their
centers from coming closer than d = a/2 to the Gibbs dividing surface.

and the solvent chemical potentials, respectively. Canonically, the number of solute and
solvent particles is fixed. Euler’s theorem for first-order homogeneous functions then allows
to integrate the above equation leading to the expression for the excess surface tension over
that of pure solvent,

σex = lim
A→∞

1
A

lim
H→∞

(
F − F bulk

)
. (1)

The bulk free energy can be obtained by imposing periodic boundary conditions before taking
the thermodynamic limit. Thus, within the canonical formalism the excess surface tension is
equivalent to the Helmholtz free energy per unit area necessary to create an interface.

To perform calculations we shall resort to restricted primitive model (RPM) of electrolyte.
Within this approach, Nt ions are treated as hard spheres of diameter a and charge ±|q| located
at the center. The solvent and vapor are modeled as uniform mediums of dielectric constant
ε and ε0, respectively. We shall take the Gibbs dividing surface [14] as the interface between
liquid and vapor. In aqueous solutions, ions are surrounded by water molecules so that a is
the diameter of a hydrated ion. Polarization of surrounding solvent and the corresponding
decrease of free energy are responsible for electrolyte’s good solubility in water. To leave
the aqueous environment, an ion has to shed its hydration sphere, which requires high cost
in free energy. Therefore, very few ions will be present in the vapor phase. Furthermore,
hydration prevents the centers of ions from coming closer than d = a/2 to the Gibbs dividing
surface [8, 11], see fig. 1.

The bulk free energy of electrolyte can be calculated straightforwardly by imposing periodic
boundary conditions in fig. 1, and then taking the thermodynamic limit. Note that with
periodic boundary conditions there is no interface and no ion free layer. Application of Debye-
Hückel theory [2] leads directly to the classic result

F bulk = kBTNt

[
ln

(
cbΛ3

) − 1
] − q2κ

3ε
Nt, (2)

where Λ is the de Broglie thermal wavelength, cb = Nt/2AH is the bulk concentration of
electrolyte, and κ =

√
8πq2cb/εkBT is the inverse Debye length. The first term is the entropic

mixing contribution, while the second term is due to electrostatic interactions between the
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particles. It is important to note that in the bulk the mean electrostatic potential is zero, so
that the electrostatic contribution to the free energy is purely correlational.

To simplify the calculations we have taken a point particle limit. This is quite reasonable
if the concentration of electrolyte is low. However, we expect that for canonical calculation of
surface tension the limit a → 0 should provide a reasonable approximation even at moderate
densities, if the ion-free layer of width d = a/2 is taken into account. The reason for this is
that in eq. (1) enters only the difference between the total free energy and the bulk free energy.
Thus, the contributions to surface tension arising from the hard cores of solute particles —
away from the ion-free layer— should mostly cancel out.

In the presence of an interface the system becomes inhomogeneous. The total free en-
ergy can still, however, be subdivided into that due to an ideal entropy of mixing and an
electrostatic contribution [15],

F = kBTNt

[
ln

(
cΛ3

) − 1
]
+ F el, (3)

where because of an ion-free layer the concentration now is c = Nt/2A(H − d).
The electrostatic contribution to the total free energy can be calculated in the spirit of

Debye-Hückel theory. Let us fix an ion some distance zc from the interface. What is the
potential that this ion feels? Clearly there are two contributions, one arising from the induced
charge due to dielectric discontinuity across the Gibbs dividing surface, and another due to
polarization of ionic atmosphere. Inside the electrolyte, the electrostatic potential satisfies the
linearized Poisson-Boltzmann equation

∇2ϕ − κ2ϕ = −4πq

ε
δ(z − zc), (4)

where to simplify the calculations we have fixed the inverse screening length at its bulk value
(z → ∞). Inside the ion-free layer and in the vapor phase no free charges are present, and
the electrostatic potential satisfies the Laplace equation, ∇2ϕ = 0. The boundary condition is
the continuity of electrostatic potential and the displacement field across the Gibbs dividing
surface, and across the interface separating electrolyte from the ion-free layer. Since the
dielectric constant of vapor is so much smaller than that of water, ε/ε0 ≈ 80, it is reasonable
to set it equal to zero, ε0 = 0.

To solve eq. (4) it is convenient to set up a cylindrical coordinate system [16, 17] (z, s),
see fig. 1. Fourier transforming in the s-direction and taking the limits A → ∞ and H → ∞,
eq. (4) can be integrated to yield, for z ≥ d,

ϕ(s, z) =
1
2π

∫ ∞

0

k dkJ0(ks)ϕ̃(k, z), (5)

where J0(x) is the Bessel function of order zero, and

ϕ̃(k, z) =
2πq

εp

{
e−p|z−zc| + e−p(z+zc−2d) p cosh(kd) − k sinh(kd)

p cosh(kd) + k sinh(kd)

}
, (6)

with p =
√

k2 + κ2. Substituting eq. (6) into eq. (5) yields the expression for electrostatic
potential in the region z ≥ d. The potential felt by the fixed ion can be obtained by taking
the limit z → zc and s → 0 in eq. (5),

ψ(zc) = −qκ

ε
+

q

ε

∫ ∞

0

dke−2k(zc−d) k
[
p cosh(kd) − k sinh(kd)

]
p
[
p cosh(kd) + k sinh(kd)

] . (7)
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The first term of eq. (7) is the electrostatic potential resulting from ionic atmosphere. The
integral is due to the existence of the liquid-vapor interface. The adsorption potential, i.e.
the work necessary to bring an ion from bulk to some distance z from the interface, can be
obtained from eq. (7) using the Güntelberg charging process [18], in which the ion is charged
from zero to its full charge q,

W (z) =
q2

2ε

∫ ∞

0

dke−2k(z−d) k
[
p cosh(kd) − k sinh(kd)

]
p
[
p cosh(kd) + k sinh(kd)

] . (8)

The adsorption potential induces an inhomogeneity in the ionic density given by the normalized
Boltzmann distribution,

ρ±(z) =
N±e−βW (z)

A
∫ H

d
e−βW (z) dz

. (9)

The electrostatic energy is

E =
A|q|
2

∫ H

d

[
ρ+(z) + ρ−(z)

]|ψ(z)|dz, (10)

which in the limit H → ∞ reduces to

E = −q2κ

2ε
Nt + 2Ac

∫ ∞

d

e−βW (z)W (z) dz. (11)

The electrostatic free energy can now be obtained using the Debye charging process in which
all the particles are charged simultaneously from zero to their full charge [2, 15,19],

F el = 2
∫ 1

0

E(λq)
dλ

λ
. (12)

Fig. 2 – The solid curve is the excess surface tension given by eq. (13). The dashed curve is the surface
tension in the point particle limit, d = 0. The dotted curve is the Onsager-Samaras limiting law.
Circles are the experimental data for NaCl from ref. [20]. Inset shows that, for very low concentrations,
eq. (13) approaches the OS limiting law.
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Fig. 3 – Surface tension as a function of concentration for three monovalent electrolytes.

Substituting eq. (2) and eq. (3) into eq. (1) yields the expression for excess surface tension,

σex = 2kBTcd + σex
0 I

(
d

b
, κb

)
, (13)

where σex
0 = q2c/2ε and b = q2/2εkBT is half the Bjerrum length. For water at room temper-

ature b ≈ 3.6 Å. The scaling function I(x, y) follows directly from eqs. (11) and (12).
The first term of eq. (13) is the result of decrease in entropy of mixing, compared to

that of bulk electrolyte, due to the ion-free layer. The second term is purely electrostatic,
arising from the dielectric discontinuity across the liquid-vapor interface and the positional
correlations between the ions of electrolyte. Although the dielectric constant of water varies
continuously across the interface, we have approximated it by a step function, discontinuous
across the Gibbs dividing surface. For water at room temperature ε = 78.54. In fig. 2 we plot
the excess surface tension due to NaCl, a = 4.25 Å. Excellent agreement is found between
theory and experiment, extending all the way to 1 M concentrations of electrolyte.

In fig. 3 we present a plot of surface tension for two other aqueous monovalent electrolytes at
room temperature, KCl and LiCl. It is evident that the excess surface tension is an increasing
function of the hydration diameter. Unfortunately, no experimental data was available to us
to compare the theory with experiment for these electrolytes.

A simple theory which accounts for the increase in surface tension of water due to 1:1
electrolyte is presented. Unlike the original Onsager-Samaras grand-canonical calculation
based on the Gibbs adsorption isotherm, our method is intrinsically canonical. This provides
a clearer understanding of the approximations necessary in order to make the calculations
tractable. Thus, we show that hydration of ions leads to formation of an ion-free layer which
increases the excess surface tension by as much as 50% for high concentrations of electrolyte.

Good agreement between theory and experiment —extending all the way to fairly high
salt concentrations up to 1 M, without any adjustable parameters— suggests that the theory
captures the main physical effects responsible for the observed phenomenon. For very low
concentrations of salt, the excess surface tension approaches the Onsager-Samaras limiting
law σex

l = σex
0 [− ln(κb) − 2γE + 3/2], where γE = 0.577215665 . . . is Euler’s constant.
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