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ABSTRACT
We present a new method for simulating ungrounded charged metal slabs inside an electrolyte solution. The ions are free to move between the
interior and exterior regions of the slab–electrolyte system. This leads to polarization of both sides of each slab, with a distinct surface charge
induced on each surface. Our simulation method is based on the exact solution of the Poisson equation using periodic Green functions. To
efficiently perform the calculations, we decouple the electrostatic energy due to surface polarization from that of purely Coulomb interaction
between the ions. This allows us to combine a fast 3D Ewald summation technique with an equally fast calculation of polarization. As a
demonstration of the method, we calculate ionic density profiles inside an electrolyte solution and explore charge neutrality violation in
between charged metal slabs.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012073., s

I. INTRODUCTION

Metal nanoparticles have attracted a lot of attention due to their
many possible applications,1–5 one of which is drug delivery.6,7 To
understand the interactions between the metal nanoparticles and
stability of suspensions containing such particles, a variety of simula-
tion methods have been developed.8–12 Unfortunately, due to parti-
cle polarizability, the simulation methods are difficult to implement
and require a lot of CPU time, thus limiting their practical use. The-
oretical and simulation approaches were also developed in order to
elucidate polarization effects in dielectrics.13–20 Recently, it was the-
oretically predicted that like-charged spherical metal nanoparticles
can attract each other inside an electrolyte solution.5 The theoreti-
cal approach was based on the mean-field Poisson–Boltzmann (PB)
theory, which is valid only for solutions containing a 1:1 electrolyte.
If one wants to explore the interaction between nanoparticles in
solutions containing multivalent ions, one needs to go beyond the
simple PB theory. Unfortunately, at the moment, there are no reli-
able theoretical methods that can be used to study the interaction
between metal nanoparticles in solutions containing a multivalent
electrolyte. Simulations provide a viable alternative. However, even
for two nanoparticles inside an electrolyte solution, such simulations

are very involved. An alternative is to consider two metal slabs and
then to appeal to the Derjaguin approximation to account for the
curvature of particle surfaces. It is, therefore, the goal of the present
paper to develop a simulation method that will allow us to calcu-
late the ionic distribution in an electrolyte solution containing two
parallel metal slabs.

This paper is organized as follows: we first calculate a closed
form electrostatic potential for different regions of the electrolyte
with parallel grounded metal slabs. We then extend this solu-
tion to slabs that are not grounded and that carry a net surface
charge. Following this, we perform NVT Monte Carlo simula-
tions to obtain ionic density profiles inside the electrolyte solu-
tion and explore charge neutrality violation between the metal
slabs.

II. METHOD
If an ion is confined between grounded metal surfaces, the

electrostatic potential can be calculated using the method of image
charges. The difficulty is that one needs an infinite number of image
charges for each ion. This substantially slows down the simulations,
since large sums must be performed. A number of methods were
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proposed to address this difficulty. Some approaches use a brute
force sum of image charges, and others use a minimization proce-
dure to calculate the induced charge on the surfaces,15,21–24 which
is then used to obtain the electrostatic potential. Unfortunately,
there is an intrinsic slowness to both methods. A possible alterna-
tive is to model a metal surface using parameterized Lennard-Jones
potentials.25,26

The fundamental difficulty of simulating systems with long
range interaction is that the electrostatic potential cannot be cut off.
This prevents one from using simple periodic boundary conditions
that are standard for systems with short range forces. Instead, the
simulation box must be periodically replicated so that the electro-
static potential inside the simulation cell results not only from the
ions inside the cell but also from their infinite replicas. In the case
of homogeneous electrolytes, summation over the replicas can be
efficiently performed using Ewald techniques. The situation, how-
ever, becomes significantly more complex if one attempts to simulate
the system with dielectric or metal interfaces. In recent papers,27–29

the authors proposed the use of periodic Green functions to simu-
late electrolytes confined by dielectric surfaces or metal electrodes.
The advantage of this method is that the polarization contribu-
tion to the electrostatic energy can be decoupled from the direct
Coulomb interaction between the ions. The direct interaction can
then be efficiently calculated using a modified 3D Ewald summa-
tion method, while the polarization contribution is calculated using
fast converging sums obtained from the Green functions. Further-
more, for grounded metal surfaces, it is possible to analytically calcu-
late the induced surface charge. This makes the method of periodic
Green functions particularly appropriate for calculating the differ-
ential capacitance of super-capacitors containing ionic liquids.28,29

In this paper, we extend these techniques to efficiently simulate
two infinite charged metal slabs inside an electrolyte solution (see
Fig. 1).

Consider first an ion of charge qi at position ri = (xi, yi, zi) in
the region z > 0 in front of an infinite grounded metal slab located
at z = 0 (see Fig. 2). To account for the periodic boundary condition
of the simulation cell, the charge is periodically replicated in x and y
directions with periodicity Lxy. The electrostatic potential at position
r = (x, y, z), satisfies the Poisson equation

FIG. 1. Two metal slabs of width h and surface area L2
xy separated by a distance

L inside an electrolyte solution.

FIG. 2. Ion of charge qi in the region z > 0 in front of a grounded metal slab of width
h with its right face located at z = 0. The ion is replicated in x and y directions with
periodicity Lxy .

∇2G(r; ri) = −
4πqi
ϵw

∞
∑

mx ,my=−∞
δ(r − ri + mxLxyx̂ + myLxyŷ), (1)

where mx ,y are integers and ϵω is the dielectric constant of water.
The periodic delta function can be expressed using a Fourier trans-
form, and the Poisson equation can be solved analytically (see the
supplementary material for details). The Green function is found
to be

G(r; ri) =
2πqi
ϵωL2

xy

∞
∑

m=−∞

1
k
(e−k∣z−zi ∣ − e−k(z+zi))

× cos[2πmx

Lxy
(x − xi) +

2πmy

Lxy
(y − yi)], (2)

where k = 2π
√

m2
x/L2

xy + m2
y/L2

xy. In this calculation, we assumed
that the metal slab was grounded. This means that as an ion and its
replicas move, the surface charge distribution on the grounded metal
slab changes in such a way as to keep the electrostatic potential of
the slab constant. This excess charge is provided by the battery (or
ground) to which the slab is connected. Furthermore, since the elec-
tric field inside a conductor must vanish, the induced charge must
be distributed on the right-hand face of the slab in such a way as to
precisely cancel the electric field produced by the ion in the interior
of the slab. What happens if the slab is not connected to the bat-
tery? In this case, there is no source for the extra charge. Instead,
the electronic charge inside the slab must reorganize itself in such
a way as to cancel the electric field produced by the outside ion in
the interior of the slab. Using the uniqueness property of the Laplace
equation, we know that if we obtain a solution that satisfies all the
boundary conditions, it must then be unique. Consider the solu-
tion for a grounded metal slab given by G(r; ri). We know that this
solution leads to the induced surface charge that is nonuniformly
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distributed over the surface area L2
xy but which sums up precisely to

−qi. This excess charge is provided by the battery. In the case when
there is no battery, there is no source for the extra charge. Therefore,
we must add a countercharge to cancel the induced charge while
keeping the electric field in the interior of the metal slab at zero.
This can be done by placing a charge qi/2 uniformly distributed over
the area L2

xy on the face of the slab located at z = 0 and charge qi/2
over the face located at z = −h. The electrostatic potential produced
by the ion placed in front of a neutral, ungrounded, metal slab can
then be expressed as the sum of G(r; ri) and a linear potential pro-
duced by the countercharge uniformly distributed on the two faces
of the slab. Since this construction satisfies the Laplace equation with
all the boundary conditions, we know that it must be the unique
solution.

With the insights gained from the study of a single slab, we can
now consider an electrolyte containing two parallel metal slabs, each
of width h and separated by a face-to-face distance L (see Fig. 1).
Again, we start by first considering grounded metal slabs. The ion qi
can be located in one of the three regions: I, II, and III (see Fig. 1).
If the ion is either in region I or III, the Green function in Eq. (2)
can be easily modified to the new geometry by simply shifting the
origin of the coordinate system. Therefore, if the ion is in region I,
the Green function is

GI(r; ri) =
2πqi
ϵωL2

xy

∞
∑

m=−∞

1
k
(e−k∣z−zi ∣ − ek(z+zi+2h))

× cos[2πmx

Lxy
(x − xi) +

2πmy

Lxy
(y − yi)]. (3)

If the ion is region III, we find

GIII(r; ri) =
2πqi
ϵωL2

xy

∞
∑

m=−∞

1
k
(e−k∣z−zi ∣ − e−k(z+zi−2L−2h))

× cos[2πmx

Lxy
(x − xi) +

2πmy

Lxy
(y − yi)]. (4)

On the other hand, if the ion is located inside region II—between the
two grounded metal slabs—the Green function for this situation was
derived in Ref. 28 and is given by

GII(r; ri) =
2πqi
ϵωL2

xy

∞
∑

m′=−∞

1
k(1 − e−2kL)

× [e−k∣z−zi ∣ − e−k(z+zi) − e−2kLek(z+zi) + e−2kLek∣z−zi ∣]

× cos[2πmx

Lxy
(x − xi) +

2πmy

Lxy
(y − yi)]. (5)

We note that an ion inside region I induces a charge −qi on the left
face of the left slab, while the right face of this slab remains neutral.
This charge is nonuniformly distributed over the surface area of the
slab, L2

xy, inside the simulation box. The charge comes from the bat-
tery to which the slab is connected to keep it at a fixed potential. If
the ion is located in region III, the charge −qi will be induced on the
right face of the right slab, while its left face remains neutral. Finally,

if the ion is located at position zi, in between the two slabs (region
II), it will induce charge −qi(L − zi)/L on the right face of the left
slab and charge −qizi/L on the left face of the right slab.27 The Green
functions can be separated into the direct Coulomb interaction G0

and the polarization contribution G̃j so that Gj = G0 + G̃j, where j
specifies the region. The direct Coulomb interaction energy can then
be easily calculated using a modified 3D Ewald summation30 (see the
discussion in the supplementary material).

The Green functions presented above are for metal slabs, the
potentials of which are fixed by an external source, i.e., battery. As
the position of the ion changes, the surface charge changes as well,
so as to keep the electrostatic slab potential constant. If we are inter-
ested in studying neutral slabs, the net amount of charge on each
slab must remain zero, independent of the position of the ion. This
means that an additional surface charge must be added/subtracted
to compensate for the induced charge sourced by the battery—if we
want to use the Green functions derived above. The extra charge
must be placed on the four faces of the slabs in such a way as to
leave the electric field inside each slab equal to zero. The procedure
is similar to the one presented earlier for a single metal slab.

We start by labeling the surfaces of the two slabs 1, 2, 3, and
4 from the left to right in Fig. 1. The left slab is designated as “l”
and the right one as “r.” If slabs are grounded, the ion qi induces
surface charge on the slabs. In the case of neutral slabs, this charge
must be canceled by the added surface charges, σ1, σ2, σ3, and σ4, on
the respective slab faces in order to use the Green functions given by
Eqs. (3)–(5). Recall that the induced charge distributes itself in such
a way as to exactly cancel the ionic electric field inside the conductor.
The neutralizing surface charge, therefore, must also be arranged in a
way as to preserve the zero electric field inside the two conductors as
well as to neutralize completely the induced charge. We define σ l and
σr as the total additional surface charge on the left and right slabs,
needed to neutralize the induced charge. This charge is opposite of
the induced charge that is drawn to the slab when it is grounded. If
the ion is located in region I, then

σl =
qi
L2
xy

,

σr = 0.
(6)

If the ion is in region III, then

σl = 0,

σr =
qi
L2
xy

.
(7)

If the ion is in region II at position zi, then surface charge is induced
on both slabs,27

σl =
qi
L2
xy

(L − zi)
L

,

σr =
qi
L2
xy

zi
L

.
(8)

Furthermore, the condition of zero electric field inside conductors
requires that

σ1 + σ2 = σl, (9)
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σ3 + σ4 = σr , (10)

σ1 = σ4, (11)

σ2 = −σ3. (12)

Solving these equations for an ion located in one of the three regions,
we obtain the additional neutralizing charge that must be placed on
each surface in order to be able to use the Green functions calculated
for the grounded slabs,

qi in region I

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ1 = σ4 = +
qi

2L2
xy

,

σ2 = −σ3 = +
qi

2L2
xy

,

qi in region II

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ1 = σ4 = +
qi

2L2
xy

,

σ2 = −σ3 = +
qi

2L2
xy
(1 − 2zi

L
),

qi in region III

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ1 = σ4 = +
qi

2L2
xy

,

σ2 = −σ3 = −
qi

2L2
xy

.

The electrostatic potential Φ produced by the neutralizing charge
must be added to the Green functions calculated with the Dirich-
let boundary condition to obtain the total electrostatic potential for
neutral metal slabs. The potential must be symmetric under the
exchange of source and the observation point and must be continu-
ous across the surfaces (see the supplementary material for details).
Performing the calculations, we find, for the ion of charge qi located
in region I,

ΦI(r; ri) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2πqi
ϵωL2

xy
(z + zi + 2h +

L
2
) for z < −h

− 2πqi
ϵωL2

xy
(z − zi − h −

L
2
) for 0 > z > L

− 2πqi
ϵωL2

xy
(z − zi − 2h − L

2
) for z > L + h.

(13)

For the ion located in region II,

ΦII(r; ri) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2πqi
ϵωL2

xy
(z − zi + h +

L
2
) for z < −h

− 2πqi
ϵωL2

xy
(z + zi −

zzi
L/2 −

L
2
) for 0 > z > L

− 2πqi
ϵωL2

xy
(z − zi − h −

L
2
) for z > L + h.

(14)

Finally, for the ion located inside region III,

ΦIII(r; ri) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2πqi
ϵωL2

xy
(z − zi + 2h +

L
2
) for z < −h

2πqi
ϵωL2

xy
(z − zi + h +

L
2
) for 0 > z > L

− 2πqi
ϵωL2

xy
(z + zi − 2h − 5L

2
) for z > L + h.

(15)

TABLE I. Electrostatic interaction potential between two ions in regions (i, j) for a
system with two neutral metal slabs. We omit (r j ; r i ) from all expressions.

I II III

I GI + ΦI ΦII ΦIII
II ΦI GII + ΦII ΦIII
III ΦI ΦII GIII + ΦIII

The electrostatic potential produced by the ion of charge qi
located inside the region j for a system containing two neutral metal
slabs is

Vj(r; ri) = Gj(r; ri) + Φj(r; ri), (16)

where Gj(r; ri) is the Green function calculated for the grounded
metal slabs. The Green function contributes to the interaction poten-
tial only for ions located within the same region j. It does not act
across the different regions. On the other hand, the potential Φj(r;
ri) acts in all the regions. The electrostatic interaction potentials
between charges located in regions I, II, and III for neutral metal
slabs are summarized in Table I.

III. ENERGIES
The total electrostatic energy can be written as

U =
NI

∑
j=1

qj
⎡⎢⎢⎢⎢⎣

NI

∑
i≠j
[GI + ΦI] +

NII

∑
i=1

ΦII +
NIII

∑
i=1

ΦIII

⎤⎥⎥⎥⎥⎦

+
NII

∑
j=1

qj
⎡⎢⎢⎢⎢⎣

NII

∑
i≠j
[GII + ΦII] +

NIII

∑
i=1

ΦIII

⎤⎥⎥⎥⎥⎦

+
NIII

∑
j=1

qj
NIII

∑
i≠j
[GIII + ΦIII], (17)

where we have omitted (rj; ri) for clarity. We can split U into
the contributions arising from the interaction of ions in the same
region and across the different regions. The latter is controlled by
the potential Φ. We find

U = U0I + U0II + U0III + UG̃I
+ UG̃II

+ UG̃III
+ UΦI + UΦII + UΦIII , (18)

where the direct Coulomb interaction within the region j, U0j , can
be efficiently calculated using a modified 3D Ewald summation
method.30 UG̃j

accounts for the polarization contribution to the total
energy within the region j. Finally, UΦj is the energy due to the
neutralizing charge that we added to keep the slabs neutral. This
potential acts within the region j and across the different regions.

For region I, the polarization energy UG̃I
can be written as

UG̃I
= − π

ϵωL2
xy

∞
∑

m′=−∞

1
k
[f1,I(m)2 + f2,I(m)2] − 2π

ϵωL2
xy
QIMI , (19)

where QI =
NI

∑
i=1

qi, MI =
NI

∑
i=1

qizi, and NI is the number of particles

inside region I. The number of integers (mx, my) necessary to obtain
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a converged energy depends on the lateral size of the simulation
box Lxy. The choice of h is irrelevant since the potential is con-
stant inside a slab so that we can set h = 0. The functions f i ,I(m) are
defined as

f1,I(m) =
NI

∑
i=1

qi cos[ 2π
Lxy
(mxxi + myyi)]ekzi (20)

and

f2,I(m) =
NI

∑
i=1

qi sin[ 2π
Lxy
(mxxi + myyi)]ekzi . (21)

For region II, we find

UG̃II
= − π

ϵωL2
xy

∞
∑

m′=−∞

1
k(1 − e−2kL){f1,II(m)2 + f2,II(m)2

+ e−2kL(f3,II(m)2 + f4,II(m)2)

− 2e−2kL[f3,II(m)f1,II(m) + f2,II(m)f4,II(m)]}

− 2π
ϵωL2

xy
(M

2
II

L
−QIIMII), (22)

where QII =
NII

∑
i=1

qi, MII =
NII

∑
i=1

qizi, and NII is the number of particles in

region II. The functions f i ,II(m) are

f1,II(m) =
NII

∑
i=1

qi cos[ 2π
Lxy
(mxxi + myyi)]e−kzi , (23)

f2,II(m) =
NII

∑
i=1

qi sin[ 2π
Lxy
(mxxi + myyi)]e−kzi , (24)

f3,II(m) =
NII

∑
i=1

qi cos[ 2π
Lxy
(mxxi + myyi)]ekzi , and (25)

f4,II(m) =
NII

∑
i=1

qi sin[ 2π
Lxy
(mxxi + myyi)]ekzi . (26)

For region III, the polarization contribution is

UG̃III
= − π

ϵωL2
xy

∞
∑

m′=−∞

1
k
[f1,III(m)2 + f2,III(m)2]

+
2π

ϵωL2
xy
(QIIIMIII + Q2

IIIL), (27)

where QIII =
NIII

∑
i=1

qi, MIII =
NIII

∑
i=1

qizi, and NIII is the number of particles

in region III, and the functions f i ,III(m) are

f1,III(m) =
NIII

∑
i=1

qi cos[ 2π
Lxy
(mxxi + myyi)]e−k(zi−L) (28)

and

f2,III(m) =
NIII

∑
i=1

qi sin[ 2π
Lxy
(mxxi + myyi)]e−k(zi−L). (29)

The contributions UΦj can be written as

UΦI =
π

ϵωL2
xy
[QtMI + QI(MI −MII −MIII) +

L
2
QIQt], (30)

UΦII =
π

ϵωL2
xy
[MII(QIII −QI +

2
L
MII)

+ QII(MI −MIII − 2MII +
2
L
Qt)], (31)

and

UΦIII =
π

ϵωL2
xy
[MIII(−QI −QII − 2QIII)

+ QIII[MI + MII +
L
2
(QI + QII + 5QIII)]], (32)

where Qt = QI + QII + QIII .
With the present method, we can model neutral slabs in an elec-

trolyte solution. If slabs are non-neutral, the excess surface density
σs1 and σs2 on each slab will lead to an additional external electro-
static potential that will act on the ions. This potential can be written
as

Φex(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π
ϵω
[(σs1 + σs2)z + (σs1 − σs2)

L
2
] for z < 0

2π
ϵω
(σs2 − σs1)(z −

L
2
) for 0 > z > L

−2π
ϵω
[(σs1 + σs2)(z − L) + (σs1 − σs2)

L
2
] for z > L,

(33)
where we have set the width of slabs h = 0 and the zero of the poten-
tial at z = L/2. The excess surfaces charge will lead to an additional
contribution to the total energy,

Uex =
N

∑
i=1

qiΦex(zi). (34)

IV. MONTE CARLO SIMULATIONS
The Monte Carlo simulations are performed using the

Metropolis algorithm in the NVT ensemble. Metal slabs are sepa-
rated by a distance L and their width is set to h = 0, without any loss
of generality. The electrolyte is confined within Lz/4 ≥ z ≥ −Lz/4.
For Lz > z > Lz/4 and −Lz/4 > z > −Lz , there is a vacuum region.
The lateral extent of the simulation cell is Lz = 3Lxy so that Lz ≫ L.
The vacuum region is included in order to use the recently devel-
oped30 efficient modified 3D Ewald summation method to account
for the direct Coulomb interaction. The ions have radius rc = 2 Å,
while water is modeled as a uniform medium of dielectric constant
ϵω. The phase space is sampled using short and long displacement
moves.31 The Bjerrum length is λB = q2β/ϵω, where β is the inverse
thermal energy and q is the proton charge. We set λB = 7.2 Å, the typ-
ical value for water at room temperature. The ionic density profiles
are obtained using 5 × 104 uncorrelated samples.
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FIG. 3. Density profiles of cations and anions for the 1:1
electrolyte. [(a) and (c)] The slabs are metal. [(b) and (d)]
The slabs are nonpolar charged hard walls. In both cases,
the surface charge density is σs1 = σs2 = σs = −0.04 C/m2.
The separation between the slabs is L = 50 Å, and the slab
thickness is h = 0.

Note that f j(m) functions, Mj, and Qj must be updated for
each particle move—there is, however, no need to recalculate the
whole sum, but only the contribution that depends on the position
of the particle that is being moved. This makes the energy update
very efficient. An essential characteristic of the new algorithm is
that the components of the total energy are decoupled both from
each other and between different regions (with the exception of the
terms UΦj and Uex that come from the surface potentials). Finally,
we also note that parity of functions f j(m) allows us to rewrite the
sums in a way that requires only half of the m terms in the energy
calculations.

In Figs. 3 and 4, we compare the density profiles of 1:1 and 3:1
electrolytes for metal and nonmetal negatively charged slabs sepa-
rated by the distance L = 50 Å. The region outside the slabs is taken
to be sufficiently large to allow the ionic density profiles to relax to
their bulk values. The results for nonpolar surfaces were taken from
the previous work.32 We see a significant effect of polarizability on
the ionic distributions. This is particularly dramatic in the case of
electrolytes with multivalent ions. In this case, the large valence of
cations leads to strong charge-image attraction, which results in a
remarkable adsorption of cations to the surface. In Fig. 4, we see that
the buildup of counterions near the surface is so large as to drive the

FIG. 4. Density profiles of cations and anions for the 3:1
electrolyte. [(a) and (c)] The slabs are metal. [(b) and
(d)] The slabs are charged nonpolar hard walls. In both
cases, the surfaces charge density is σs1 = σs2 = σs
= −0.04 C/m2. The separation between the surfaces is
L = 50 Å, and the slab thickness is h = 0. Note a very strong
adsorption of multivalent counterions to the charged metal
slabs. Furthermore, even the monovalent co-ions (anions)
become adsorbed to the like-charged metal slabs.
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FIG. 5. Deviation from charge neutrality in between the slabs as a function of
slab separation. Charge neutral state, σ in/σs = 1, is obtained at large separations.
The bulk 3:1 salt concentration is 50 mM, while the surface charge density is σs

= −0.08 C/m2. The symbols are the simulation data, while the lines are the
interpolation curves.

adsorption of co-ions to a like-charged surface. Strong adsorption of
counterions can lead to the reversal of the electrophoretic mobility
of metal nanoparticles.

In Ref. 32, the breakdown of charge neutrality between charged
nonmetal surfaces was studied using MC simulations. For two like-
charged slabs with the total surface charge density σs each, the charge
neutral state is defined as σin = σs, where σin is the total ionic charge
density in between the two slabs,

σin =
⟨Q⟩
L2
xy

, (35)

where ⟨Q⟩ is the average total charge in between the two slabs. In
Fig. 5, we compare the ratio |σin/σs| for metal and non-metal slabs.
We observe that the polarizability of surfaces diminishes the charge
neutrality violation at short slab separations.

V. CONCLUSION
We have presented a new method to efficiently simulate ionic

distribution around two infinite charged metal slabs immersed in
an electrolyte solution. The approach is based on the exact solution
of the Poisson equation that allows us to calculate the interaction
potential between two charges in the presence of neutral metal slabs.
In this paper, we have considered two metal slabs; however, our
approach can be easily extended to an arbitrary number of slabs. We
find that the ionic density profiles are significantly modified by the
slab polarizability. In the case of 3:1 electrolytes, we find the effect of
polarizability to be so strong as to lead to adsorption of co-ions to a
like-charged surface. The new simulation approach may be useful for
studying anomalous screening in the presence of surfaces33 as well as
order–disorder transition in confined ionic liquids. Finally, we note
that the method developed here can now be combined with a mod-
ified Derjaguin approximation5 to calculate the force between two
spherical metal nano-particles. This will be a subject of the future
work.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed derivation of the
Green function for a periodic charge in front of a grounded metal

slab and a derivation of the potential produced by the neutralizing
surface charge.
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