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Abstract. We study, using both theory and molecular dynamics simulations,
the relaxation dynamics of a microcanonical two-dimensional self-gravitating
system. After a sufficiently large time, a gravitational cluster of N particles
relaxes to the Maxwell–Boltzmann distribution. The time taken to reach the
thermodynamic equilibrium, however, scales with the number of particles. In the
thermodynamic limit, N → ∞ at fixed total mass, an equilibrium state is never
reached and the system becomes trapped in a non-ergodic stationary state. An
analytical theory is presented which allows us to quantitatively describe this final
stationary state, without any adjustable parameters.
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1. Introduction

Systems interacting through long-range forces behave very differently from those in which
particles interact through short-range potentials. For systems with short-range forces, for
arbitrary initial condition, the final stationary state corresponds to the thermodynamic
equilibrium and can be described equivalently using either microcanonical, canonical, or
grand-canonical ensembles. On the other hand, for systems with unscreened long-range
interactions, equivalence between ensembles breaks down [1, 2]. Often these systems are
characterized by a negative specific heat [3]–[5] in the microcanonical ensemble and a
broken ergodicity [6, 7]. In the limit of infinite number of particles, N → ∞, these systems
never reach the thermodynamic equilibrium and become trapped in a stationary out of
equilibrium state (SS) [8, 9]. Unlike normal thermodynamic equilibrium, the SS does not
have a Maxwell–Boltzmann velocity distribution. For finite N , relaxation to equilibrium
proceeds in two steps. First, the system relaxes to a quasi-stationary state (qSS), in
which it stays for time τ×(N), after which it crosses over to the normal thermodynamic
equilibrium with the Maxwell–Boltzmann (MB) velocity distribution [10]. In the limit
N → ∞, the lifetime of qSS diverges, τ× → ∞, and the thermodynamic equilibrium is
never reached.

Unlike the equilibrium state, which only depends on the global invariants such
as the total energy and momentum and is independent of the specifics of the initial
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particle distribution, the SS explicitly depends on the initial condition. This is the case
for self-gravitating systems [11], confined one-component plasmas [12, 13], geophysical
systems [14], vortex dynamics [15]–[17], etc [18], for which the SS state often has a
peculiar core–halo structure [12]. In the thermodynamic limit, none of these systems
can be described using the usual equilibrium statistical mechanics, and new methods
must be developed.

In this paper we will restrict our attention to self-gravitating systems. Unfortunately,
it is very hard to study these systems in 3D [19, 20]. The reason for this is that the 3D
Newton potential is not confining. Some particles can gain enough energy to completely
escape from the gravitational cluster, going all the way to infinity. In the thermodynamic
limit, one must then consider three distinct populations: particles which will relax to form
the central core, particles which will form the halo, and particles which will completely
evaporate. The existence of three distinct classes of particles makes the study of 3D
systems particularly difficult. On the other hand, the interaction potential in 2D is
logarithmic, so all the particles remain gravitationally bound. Like for magnetically
confined plasmas the stationary state of a 2D gravitational system should, therefore,
have a core–halo structure [12]. We thus expect that the insights gained from the study of
confined plasmas might prove to be useful for understanding the 2D gravitational systems.

2. The model

Our system consists of N particles with the total mass M in a two-dimensional space.
At t = 0 the particles are distributed over the phase space with the initial distribution
f0(r,v), and then allowed to relax. Our goal is to calculate the one-particle distribution
function f(r,v), once the relaxation process has been completed and the stationary state
has been established. For now, we will restrict our attention to the azimuthally symmetric
systems.

The mean gravitational potential at r at time t satisfies the Poisson equation

∇2ψ = 4πGmn(r; t) (1)

where m = M/N , n(r; t) = N
∫
f(r,v; t) d2v is the particle number density, and G is

the gravitational constant. It is convenient to define dimensionless variables by scaling
lengths, velocities, the potential, and the energy with respect to L0 (an arbitrary length

scale), V0 =
√

2GM , ψ0 = 2GM and E0 = MV 2
0 = 2GM2, respectively. In 3D space, our

system corresponds to infinitely long parallel rods of line density m interacting through a
pair potential φ(r) = 2Gm2 ln(r).

3. The thermodynamic equilibrium: finite N

If the system has a finite number of particles, after a sufficiently large time τ×(N), it will
relax to thermodynamic equilibrium with the MB distribution function, given exactly by

fMB = Ce−β(v2/2+ω(r)) (2)

where C is a normalization constant, β = 1/T is the Lagrange multiplier used to conserve
the total energy, and ω(r) is the potential of mean force [21]. For a gravitational system of
mass M , the correlations between the particles vanish as N becomes large, so ω(r) ≈ ψ(r).
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Substituting equation (2) in equation (1), we obtain the classical Poisson–Boltzmann
equation in its adimensional form

∇2ψ =
4π2C

β
e−βψ. (3)

The solution of this equation is [22]

ψ(r) =
2

β
ln

(

λ2 +
π2C

2λ2
r2

)

. (4)

For large r this potential must grow as

lim
r→∞

[ψ(r) − ln(r)] = 0, (5)

which requires that β = 4 and λ2 = π2C/2. With these values, the distribution function
equation (2) automatically satisfies the constraint∫

d2r d2vf(r,v) = 1, (6)

while the value of λ is obtained from the conservation of energy
∫

d2r d2v

[
v2

2
+
ψ(r)

2

]

f(r,v) = E0, (7)

where E0 is the renormalized initial energy; see appendix A. In this paper we will restrict
our attention to initial distributions of the water-bag form,

f0(r,v) = ηΘ(rm − r)Θ(vm − v), (8)

where Θ(x) is the Heaviside step function and η = 1/π2r2
mv

2
m. For simplicity, from now

on we will measure all lengths in units of rm, so that rm = 1. The renormalized energy
(see appendix A) then reduces to

E0 =
v2
m

4
− 1

8
. (9)

Performing the integral in equation (7) with ψ(r) given by equation (4), we obtain

λ2 = e2(2E0−1). (10)

This provides a complete solution for the equilibrium thermodynamics of a 2D self-
gravitating system in the limit of large (but finite) N . We next compare the analytical
solution presented above with the full N -body molecular dynamics simulation [19]. To do
this we calculate the number density of particles in [r, r + dr]

N(r) = 2πNr

∫
d2v fMB(r,v) =

2Nλ2r

(λ2 + r2)2
(11)

and the number density of particles with velocity in [v, v + dv],

N(v) = 2πNv

∫
d2r fMB(r,v) = 4Nve−2v2 . (12)

Figure 1 shows an excellent agreement between the theory and the simulations. It
is important to stress, however, that reaching the MB equilibrium distribution required
a week of CPU time (a million dynamical times for N = 10 000 particles; see section 7).
Up to the crossover time τ×(N), the system remained trapped in a quasi-stationary state,
with the one-particle distribution very different from the equilibrium one. We now turn
to the discussion of this non-equilibrium quasi-stationary state.
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Figure 1. (a) Position and (b) velocity distributions for a system with E0 =
−0.043 3673. The solid line is the theoretical prediction obtained using the MB
distribution function, equation (2), and the points are the results from molecular
dynamics simulation with N = 10000 particles.

4. The thermodynamic limit

For systems interacting through short-range potentials, the final stationary state
corresponds to the thermodynamic equilibrium and is exactly described using the MB
distribution. In spite of a popular belief that in the thermodynamic limit for systems with
long-range unscreened interactions the mean field becomes exact, this is not quite true.
Or rather, this is true mathematically, but is irrelevant for real physical systems, since
when N → ∞ it takes an infinite time for such a system to relax to the thermodynamic
equilibrium. What is correct is that in the thermodynamic limit the dynamical evolution
of a system with long-range interactions is governed exactly by the collisionless Boltzmann
(Vlasov) equation [23]

Df

Dt
≡ ∂f

∂t
+ v · ∇f +

F

m
· ∇vf = 0, (13)

where f is the one-particle distribution function and F is the mean force felt by a particle
at position r. The MB distribution, together with the Poisson equation for the mean-field
potential, is a stationary solution of the Vlasov equation. Thus, if we start with this
distribution it is guaranteed to be preserved by the Vlasov dynamics. However, unlike for
the collisional Boltzmann equation, the MB distribution is not a global attractor of the
Vlasov dynamics—an arbitrary (non-stationary) initial distribution will not evolve to the
MB distribution. Thus, the collisionless relaxation described by the Vlasov equation is
much more complex than the collisional relaxation governed by the Boltzmann equation
for systems with short-range interactions. The final stationary state of Vlasov dynamics
will depend explicitly on the initial particle distribution.

The Vlasov equation has an infinite number of conserved quantities, called Casimir
invariants. Any local functional of the distribution function is a Casimir invariant of
the Vlasov dynamics. In particular, if we discretize the initial distribution function into
surface levels with values {ηj}, the hypervolume ξ(ηj) =

∫
δ(f(r,v; t) − ηj) ddr ddv of

each level will be preserved by the Vlasov flow. The evolution of the distribution function
corresponds to the process of filamentation and proceeds ad infinitum from large to small
length scale. Thus on a fine-grain scale, the evolution never stops and the stationary
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state is never reached. However, in practice, there is always a limit to the maximum
resolution, and only a coarse-grained distribution function is available in simulations or
in experiments. It is this coarse-grained distribution which appears in practice as the
stationary state of a collisionless relaxation dynamics.

Numerical solution of the Vlasov equation is a very difficult task. Since the 1960s
there has been a tremendous effort to find an alternative way to predict the final stationary
state without having to explicitly solve the Vlasov equation [3, 11, 12, 19, 24, 25]. One of
the first statistical approaches was proposed by Lynden-Bell and has become known as
the violent relaxation theory. This theory is based on the assumption that there exists an
efficient phase space mixing during the dynamical evolution. This assumption is similar
to the ergodicity of the Boltzmann–Gibbs statistical mechanics. For systems with short-
range interactions, ergodicity and mixing are almost always found to exist in practice, but
are very difficult to prove explicitly. This, however, is not the case for the efficient mixing
hypothesis for systems with long-range interactions. In fact it was found that for most
initial conditions, the phase space mixing is very poor. For magnetically confined plasmas,
efficient mixing was found to exist only for very special initial conditions, and in general
these systems relax to a stationary state very different from the one predicted by the
Lynden-Bell theory. Similarly, for 3D gravitational systems, violent relaxation theory was
found to work only if the initial distribution satisfied the, so called, virial condition [19, 20].
Otherwise strong particle–density wave interactions broke the ergodicity and resulted in
a core–halo phase separation.

4.1. Violent relaxation

We first briefly review the violent relaxation theory. The basic assumption of this theory
is that during the temporal evolution, the system is able to efficiently explore the whole of
phase space. To obtain the stationary (coarse-grained) distribution f̄(r,v), the initial
distribution f0(r,v) is discretized into p levels, and the phase space is divided into
macrocells of volume ddr ddv, which are in turn subdivided into ν microcells, each of
volume hd, for a d-dimensional system. Since the Vlasov dynamics is incompressible,
Df/Dt = 0, each microcell can contain at most one discretized level ηj . The number
density of the level j inside a macrocell at (r,v)—the number of microcells occupied by
the level j divided by ν—will be denoted by ρj(r,v). Note that by construction, the total
number density of all levels in a macrocell is restricted to being

∑

j

ρj(r,v) ≤ 1 (14)

(see figure 2). Using a standard combinatorial procedure [3, 12] it is then possible to
associate a coarse-grained entropy with the distribution of {ρj}. The entropy is found to
be that of a p-species lattice gas,

S = −
∫

ddr ddv

hd

{
p∑

j=1

ρj(r,v) ln[ρj(r,v)] +

[

1 −
p∑

j=1

ρj(r,v)

]

ln

[

1 −
p∑

j=1

ρj(r,v)

]}

,

(15)

with the Boltzmann constant set to 1. If the initial condition is of the water-bag form,
equation (8) (p = 1), the maximization procedure is particularly simple, yielding a
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Figure 2. Coarsening of phase space described by the Vlasov dynamics: (a) initial
and (b) final stationary states for a distribution with initial phase space density
η. In this example, d = 1, p = 1 and ν = 9.

Fermi–Dirac distribution,

f̄(r,v) = ηρ(r,v) =
η

eβ[ε(r,v)−μ] + 1
, (16)

where ε(r,v) = 1
2
v2 +ψ(r) is the mean particle energy, and β and μ are the two Lagrange

multipliers required by the conservation of the total number of particles and the total
energy, equations (6) and (7).

5. Virial cases

For a 2D self-gravitating system the virial theorem requires that 〈v2〉 = 1/2, in a stationary
state (appendix B). If the initial distribution does not satisfy this condition, the system
will undergo strong oscillations before relaxing into the final stationary state in which the
virial theorem is satisfied. For a water-bag initial distribution the virial condition reduces
to the requirement that vm = 1. For future convenience, we will define the virial number
for water-bag distributions to be μ ≡ 1/vm, so that μ = 1, when the initial distribution

satisfies the virial condition. If μ �= 1, the envelope radius, defined as re(t) =
√

2〈r2〉, will
vary with time until a stationary state is achieved. Note that with the above definition,
re(0) = 1, as it should. It is possible to show that the temporal evolution of re(t)
satisfies

r̈e(t) +
1

re(t)
=
ε2(t)

r3
e(t)

, (17)

where ε2 = 4[〈r2〉〈ṙ2〉 − 〈r · ṙ〉2]. The derivation of this equation is given in appendix C.
For an initial water-bag distribution, 〈r(0) · ṙ(0)〉 = 0 and 〈r2(0)〉〈ṙ2(0)〉 = v2

m/4, so, if the
initial distribution satisfies the virial condition, vm = 1 ⇒ r̈e = 0, and the large envelope
oscillations are suppressed. As was already noted for magnetically confined plasmas and
3D self-gravitating systems [12, 19], we expect the violent relaxation theory to work well
when the initial distribution satisfies the virial condition and there are no macroscopic

doi:10.1088/1742-5468/2010/05/P05007 7
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Figure 3. Position (a) and velocity (b) distributions for a system satisfying
the virial condition. The solid line is the theoretical prediction obtained using
the distribution function of equation (16), while the points are the results from
molecular dynamics simulation with N = 10000 particles.

Figure 4. (a) Position distribution for a nearly virial self-gravitating system
with initial μ = 1.2. The solid line is the theoretical prediction obtained using
the distribution function of equation (16), while the points are the results from
molecular dynamics simulation with N = 10000 particles.

envelope oscillations. To check this, we compare the predictions of the theory with the
full N -particle molecular dynamics simulations. At t = 0, particles are distributed over
the phase space in accordance with the water-bag distribution (8) which satisfies the
virial condition, μ = 1. We then numerically solve the Poisson equation (1) with the
distribution function given by equation (16) and compare the results with the molecular
dynamics simulations. As can be seen from figure 3 there is a reasonably good agreement
between the theory and the simulations. However, if the virial condition is not met
exactly, one notices a deviation in the tail region of the particle distribution; see the
inset of figure 4. For initial distributions with μ significantly different from 1, there
is a clear qualitative change in the SS distribution function. In this case the original
homogeneous cluster separates into a high density core region surrounded by a diffuse
halo (see figure 5)—the violent relaxation theory fails completely and a new approach
must be developed [12, 19, 26].

doi:10.1088/1742-5468/2010/05/P05007 8
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Figure 5. Position (a) and velocity (b) distributions for a system with μ = 1.7.
The solid line is the prediction of the violent relaxation theory equation (16),
while points are the results from molecular dynamics simulation with N = 10000
particles.

6. The core–halo distribution

The failure of the violent relaxation theory is a consequence of the inapplicability of the
efficient mixing hypothesis for strongly oscillating gravitational systems (see figures 4
and 5). Density oscillations excite parametric resonances which favor some particles
gaining a lot of energy at the expense of the rest. The resulting particle–wave interactions
are a form of non-linear Landau damping which allows some particles to escape from the
main cluster to form a diffuse halo. The process of evaporation will continue as long as
the oscillations of the core persist. Oscillations will only stop when the core exhausts all
of its free energy, and its effective temperature drops to T ≈ 0, β → ∞ in equation (16).
Note that because of the incompressibility restriction imposed by the Vlasov dynamics
equation (14), the core cannot freeze—i.e., collapse to the minimum of the potential
energy. Instead, the distribution function of the core particles progressively approaches
that of a fully degenerate Fermi gas [19],

f̄core (r,v) = ηΘ (εF − ε(r,v)) (18)

where εF is the effective Fermi energy. The final stationary state of the cluster will then
correspond to a cold core surrounded by a high energy diffuse halo,

f̄ (r,v) = ηΘ (εF − ε(r,v)) + χΘ(ε(r,v) − εF)Θ(εR − ε(r,v)), (19)

where εR is the energy of the one-particle resonance. The parameter χ and the effective
Fermi energy εF are determined using the conservation of particle number and energy.
The extent and the location of the parametric resonance can be calculated using the
canonical perturbation theory [27]. In figure 6 we show the Poincaré section of a test
particle i moving under the action of an oscillating potential calculated using the envelope
equation (17),

r̈i(t) − L2
i

r3
i (t)

=

⎧
⎪⎪⎨

⎪⎪⎩

− ri(t)

r2
e(t)

for ri(t) ≤ re(t)

− 1

ri(t)
for ri(t) ≥ re(t),

(20)
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Figure 6. (a) Poincaré plot of a test particle in an oscillating potential,
equation (20) with ten different initial conditions, plotted when the envelope is
at its minimum. (b) N -particle simulation for a non-virial system with μ = 1.2.
An excellent agreement is found between the extent of the halo in the N -particle
simulation and the one-particle resonant orbit shown in the Poincaré plot.

with

r̈e(t) +
1

re(t)
=

ε2
0

r3
e(t)

, (21)

where Li = |ri × vi| is the modulus of the test particle angular momentum, conserved by
the dynamics, and ε(t) is fixed at its initial value ε(t) = ε0 = vm = 1/μ. The resonant
orbit is the outermost curve of the Poincaré plot of figure 6. The first resonant particles
move in an almost simple harmonic motion with energy εR = ln(rR), where rR is the
intersection of the resonant trajectory with the v = 0 axis.

Empirically we find that the location of the one-particle resonance rR for values of
|μ− 1| > 0.1 is very well approximated by a simple expression [28]

rR = 2(1 + | lnμ|)/μ. (22)

As the relaxation proceeds, the oscillating core becomes progressively colder, while a halo
of highly energetic particles is formed. As more and more particles are ejected from the
core, their motion becomes chaotic, and a halo distribution becomes smeared out. We find
that, similar to what happens for magnetically confined plasmas, the distribution function
of a completely relaxed halo is very well approximated by the Heaviside step function
Θ(εR − ε(r,v)). For notational simplicity, from now on, we will drop the overbar on the
distribution function f(r,v), but it should always be kept in mind that f is stationary
only within the coarse-graining procedure described above.

7. The analytical solution of the core–halo problem

In order to obtain the density and the velocity distribution after the SS state is achieved,
we solve the Poisson equation (1)

∇2ψ(r) = 2π

∫
f (r,v) d2v, (23)

doi:10.1088/1742-5468/2010/05/P05007 10
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Figure 7. Position (a) and velocity (b) distributions for a system with μ =
1.7. The solid line is the theoretical prediction obtained using the distribution
function, equation (19), and the points are the results from molecular dynamics
simulation with N = 10000 particles.

with the constraints (6) and (7). Since the initial mass distribution has azimuthal
symmetry, the potential must have the form

ψ(r) = ψcore(r)Θ (rc − r) + ψhalo(r)Θ(r − rc)Θ(rR − r) + ψout(r)Θ(r − rR). (24)

Substituting this into Poisson equation and noting that εF = ψ(rc), we obtain

ψcore(r) = εR + C1[(η/χ− 1)J0(r
∗
c) + J0(r

∗)] (25)

ψhalo(r) = εR + C2J0(r
∗∗) + C3Y0(r

∗∗) (26)

ψout(r) = ln (r) , (27)

where J0 and Y0 are the Bessel functions of the first type and of order 0; rc is the core
radius; r∗ = 2πr

√
η and r∗∗ = 2πr

√
χ. The integration constants C1,2,3 and the value of

rc can be determined using the continuity of the potential and of the gravitational field.
The parameter χ can then be obtained using the conservation of energy. Once C1,2,3 are
calculated (see appendix D), we are left with just two equations for rc and χ:

E(rc, χ) − E0 = 0 ψ′
core(rc) = ψ′

halo(rc), (28)

where the prime denotes the derivative with respect to r and

E(rc, χ) =
εR
2

− π4χ(η − χ)J2 (r∗c) r
2
c [Y0 (r∗∗c )J0 (r∗∗R ) − J0 (r∗∗c ) Y0 (r∗∗R )]2

4ηJ0 (r∗c)
. (29)

This completely determines the distribution function of the final stationary state
achieved by a self-gravitating system when its initial distribution deviates from the
virial condition. In figure 7, we compare the predictions of the theory with the
molecular dynamics simulations. An excellent agreement is found without any adjustable
parameters.

Finally, we explore the lifetime τ×(N) of a qSS of a self-gravitating system with a
finite number of particles. To do this we define the crossover parameter

ζ(t) =
1

N2

∫ ∞

0

[N(r, t) −Nch(r)]
2 dr (30)
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Figure 8. (a) ζ(t) for different numbers of particles in the system. After relaxing
into the qSS, the system crosses over to an MB distribution after time τ×(N).
Inset (a) shows that the relaxation to the core–halo state takes approximately
t ≈ 2000τD and does not depend on the number of particles in the system. When
the time is scaled with τ×(N) all the data in (a) (for large times) collapse onto
one universal curve (b).

where N(r, t) is the number density of particles inside shells located between r and r+dr
at each time of simulation t and Nch(r) = 2πNr

∫
fch(r,v) d2v where fch(r,v) is the

stationary distribution given by equation (19). The dynamical timescale is defined as

τD = rm/
√

2GM . In figure 8(a) we plot the value of ζ(t) for systems with different
numbers of particles. Figure 8(b) shows that if we scale the time with τ× = NγτD,
where γ = 1.35, all the curves collapse onto one universal curve, showing the divergence
of the crossover time in the thermodynamic limit. It is interesting to note that for a
Hamiltonian mean-field (HMF) model, τ×(N) was found to diverge with the exponent
γ = 1.7 [31], while for a virial 3D self-gravitating system the exponent was found to be
γ ≈ 1. Unfortunately, at the moment there is no theory which allows us to predict these
exponents a priori.

8. Conclusions

We have studied the thermodynamics of 2D self-gravitating system in the microcanonical
ensemble. It was shown that the gravitational clusters containing a finite number of
particles relax to the equilibrium state characterized by the MB distribution. Prior to
achieving the thermodynamic equilibrium, however, these systems become trapped in a
quasi-stationary state, where they stay for time τ×, which diverges as N1.35 for large N .
Thus, in the limit N → ∞ at fixed total mass M , thermodynamic equilibrium cannot
be reached in a finite time. A new approach, based of the conservation properties of the
Vlasov dynamics and on the theory of parametric resonances, is formulated and allows
us to quantitatively predict the one-particle distribution function in the non-equilibrium
stationary state. Finally, it is curious to consider what will happen to a self-gravitating
system in a contact with a thermal bath—the canonical ensemble. In appendix B, it
is shown that for a 2D self-gravitating system a stationary state is possible if and only
if 〈v2〉 = 1/2, i.e. when the kinetic temperature is T = 1/4. If such a system is put
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into contact with a thermal bath which has T > 1/4, there will be a constant heat flux
from the reservoir into the system. This heat will be converted into the gravitational
potential energy—since the kinetic energy is fixed by the virial condition—making the
cluster expand without a limit. Conversely if the bath temperature is T < 1/4, the
heat flux will be from the system into the bath. Again, since the system can only exist
in a stationary state if T = 1/4, the energy for the heat flux can come only from the
gravitational potential. In this case the gravitational cluster will contract without a
limit, concentrating all of its mass at the origin. Thus, in the canonical ensemble no
thermodynamic equilibrium is possible, unless the reservoir is at exactly T = 1/4. We
hope that the present work will also help shed new light on the collisionless relaxation in
3D self-gravitating systems. Unfortunately the 3D problem is significantly more difficult,
since besides the core–halo formation, the particles evaporating to infinity must also be
accounted for.
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Appendix A. The total energy

The gravitational potential energy U of a system is

U = − 1

4π

∫
(−∇ψ)2 d2r (A.1)

where the integration extends over all space. Unlike the 3D case, the gravitational
potential of a 2D system diverges at infinity. Therefore, some care must be taken with
the limits. Performing the integration by parts we obtain

U =
1

2

∫ (

ψ(r) − lim
r0→∞

ψ(r0)

)

f(r,v; t) d2r d2v, (A.2)

where r0 is the radius of the bounding sphere. From equation (5), ψ(r0) = ln(r0), and the
total energy is given by

E =

∫ (
v2

2
+
ψ(r)

2

)

f(r,v; t) d2r d2v − 1

2
lim
r0→∞

ln(r0). (A.3)

The divergence in the last term is common to all energy calculations in 2D. For example,
if at t = 0 the system is distributed with a water-bag distribution equation (8), its energy
is

E0 =
v2
m

4
− 1

8
+

1

2
ln (rm) − 1

2
lim
r0→∞

ln(r0). (A.4)

The gravitational self-energy in 2D is always divergent. However, since this divergence is
always the same, it can be easily renormalized away. We simply add an infinite constant,
1
2
limr0→∞ ln(r0), to all gravitational self-energies. The renormalized (finite) energy E of
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a self-gravitating system is then

E =

∫ (
v2

2
+
ψ(r)

2

)

f(r,v) d2r d2v (A.5)

which for a water-bag distribution equation (8) becomes

E0 =
v2
m

4
− 1

8
+

1

2
ln(rm). (A.6)

Appendix B. The virial theorem

The Hamiltonian of a general self-confined system is given by

H =
∑

i

p2
i

2m
+

1

2

∑

ij

V (ri − rj)

where pi is the momentum of particle i, and V (ri − rj) is the interaction potential. The
virial function I is defined as

I =

〈 ∑

i

ripi

〉

.

Taking the time derivative and using Hamilton’s equations we obtain

d

dt
I =

〈∑

i

p2
i

m

〉

−
〈 ∑

i

ri
∂

∂ri
Ṽ

〉

=
∑

i

〈
p2
i

m

〉

−
〈∑

i

ri
∂

∂ri
Ṽ

〉

(B.1)

where

Ṽ = 1
2

∑

ij

V (ri − rj).

If Ṽ is a homogeneous function of order p

Ṽ (r) = λ−pṼ (λr),

Euler’s theorem requires that

pṼ =
∑

i

ri
∂

∂ri
Ṽ .

For a stationary state dI/dt = 0, and we obtain the usual result 2K = p〈Ṽ 〉, where K is
the mean kinetic energy.

In two dimensions, Ṽ is a sum of logarithms and the Euler equation does not apply
directly. However, we can still derive a 2D virial theorem by writing the inter-particle
interaction potential as V (r) = 2Gm2 limp→0(|r|p)/p, which is a logarithm plus an infinite
constant. This is a homogeneous function of order p = 0, so we can use the Euler theorem
to write

Gm2N(N − 1) =
∑

i

ri
∂

∂ri
Ṽ . (B.2)
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Note that since the right-hand side of this equation only contains the derivative of the
potential, this expression is equally valid for p = 0 and for the logarithmic potential.
Substituting equation (B.2) into equation (B.1), we arrive at the 2D virial theorem [30]:

〈v2〉 = GM
N − 1

N
. (B.3)

In the thermodynamic limit, and after rescaling the velocity to put everything into
adimensional form, we obtain the result 〈v2〉 = 1/2, quoted in section 5.

Appendix C. The envelope equation

We define the rms radius of the mass distribution as R ≡ √〈r2〉. Differentiating twice
with respect to time we obtain

R̈ =
〈r2〉〈ṙ2〉
R3

− 〈r · ṙ〉2
R3

+
〈r · r̈〉
R

. (C.1)

This reduces to

R̈ =
ε2

4R3
+

〈r · r̈〉
R

(C.2)

where ε2 ≡ 4(〈r2〉〈ṙ2〉 − 〈r · ṙ〉2) is the emittance which commonly appears in plasma
physics [29]. The last term can be simplified using the Poisson equation (1) in its
dimensionless form,

〈r · r̈〉 =

∫
r · r̈ f(r,v, t) d2r d2v

=
1

2π

∫
r · r̈ ∇2ψ d2r

= −
∫
r2∂ψ

∂r
∇2ψ dr

= −
∫
r
∂ψ

∂r

∂

∂r

(

r
∂ψ

∂r

)

dr

= −1

2

∫ ∞

0

dr
∂

∂r

[(

r
∂ψ

∂r

)2
]

= lim
r0→∞

−1

2

(

r
∂ψ

∂r

)2 ∣
∣
∣
∣
r=r0

, (C.3)

which can be obtained directly using equation (5) as

〈r · r̈〉 = −1/2. (C.4)

For a water-bag initial distribution (8) we define the envelope radius as re = R
√

2, so that
for t = 0, re(0) = 1, and rewrite (C.2) as

r̈e(t) +
1

re(t)
=
ε2(t)

r3
e(t)

. (C.5)

This is the envelope equation. If initially, 〈v2〉 = 1/2, then r̈e = 0 and the envelope will
not oscillate. This is precisely the virial condition.
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Appendix D. The potential for the core–halo distribution

Integrating the core–halo distribution function over velocity, the dimensionless Poisson
equation (23) becomes

∇2ψ = 4π2

⎧
⎪⎨

⎪⎩

η(εF − ψ) + χ(εR − εF) for ψ < εF

χ(εR − ψ) for εF ≤ ψ ≤ εR

0 for ψ > εR.

(D.1)

We define ψcore for ψ < εF, ψhalo for εF ≤ ψ ≤ εR, and ψout for ψ > εR. Changing variables
using r∗ = 2πr

√
η and r∗∗ = 2πr

√
χ, we can rewrite (D.1) as

ψ′′
core +

ψ′
core

r∗
+ ψcore = εF +

χ

η
(εR − εF)

ψ′′
halo +

ψ′
halo

r∗∗
+ ψhalo = εR

ψ′′
out +

ψ′
out

r
= 0.

(D.2)

The solution of the first two of these equations can be written in terms of the Bessel
functions of first type and of order 0,

ψcore(r) = εF +
χ

η
(εR − εF) + C1J0(r

∗) + C1′Y0(r
∗) (D.3)

ψhalo(r) = εR + C2J0(r
∗∗) + C3Y0(r

∗∗). (D.4)

The last equation is solved by

ψout(r) = C4 ln r + C4′ , (D.5)

where {Ci} are the integration constants. The regularity of the solution at the origin and
equation (5) require that C1′ = 0, C4′ = 0 and C4 = 1. The potential reduces to

ψcore(r) = εR + C1[(η/χ− 1)J0(r
∗
c) + J0(r

∗)] (D.6)

ψhalo(r) = εR + C2J0(r
∗∗) + C3Y0(r

∗∗) (D.7)

ψout(r) = ln (r) , (D.8)

where we have defined rc such that εF = ψ(rc). The other requirements for continuity of
the potential and its derivative are

ψcore(rc) − ψhalo(rc) = 0

ψhalo(rR) − ψout(rR) = 0

ψ′
halo(rR) − ψ′

out(rR) = 0.
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Solving these equations yields the integration constants C1,2,3 as a function of (rc, χ) and
the parameters (εR, η),

C1 =
πχ

(
Y0

(
2πrc

√
χ
)
J0

(
2πrR

√
χ
) − J0

(
2πrc

√
χ
)
Y0

(
2πrR

√
χ
))

2ηJ0

(
2πrc

√
η
) (D.9)

C2 = −πY0

(
2πrR

√
χ
)

2
(D.10)

C3 =
πJ0

(
2πrR

√
χ
)

2
. (D.11)

The remaining equation of continuity of ψ′(r) at rc and the conservation of energy will
determine rc and χ; see equation (28).
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