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ABSTRACT
We present a simulation method that allows us to calculate the titration curves for systems undergoing protonation/deprotonation
reactions—such as charged colloidal suspensions with acidic/basic surface groups, polyelectrolytes, polyampholytes, and proteins. The new
approach allows us to simultaneously obtain titration curves both for systems in contact with salt and acid reservoir (semi-grand canonical
ensemble) and for isolated suspensions (canonical ensemble). To treat the electrostatic interactions, we present a new method based on Ewald
summation—which accounts for the existence of both Bethe and Donnan potentials within the simulation cell. We show that the Donnan
potential dramatically affects the pH of a suspension. Counterintuitively, we find that in suspensions with a large volume fraction of nanopar-
ticles and low ionic strength, the number of deprotonated groups can be 100% larger in an isolated system, compared to a system connected
to a reservoir by a semi-permeable membrane—both systems being at exactly the same pH.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166840

In many physics, chemistry, and biology applications, one
needs to understand systems with active surface groups.1–16 Depend-
ing on the pH and salt concentration inside the solution, a surface
group can be either protonated or deprotonated.3,17–21 The state in
which a group finds itself depends on its intrinsic acid dissociation
constant, the local concentration of hydronium ions, the electro-
static potential in the vicinity of the group, the steric repulsion
between ions, etc. For some simple surfaces—such as metal oxide
or colloidal particles with regular arrangement of surface groups,
it is possible to develop a theoretical approach, which can fairly
accurately predict the resulting surface charge and its dependence
on salt and pH inside the solution.22–25 Unfortunately, no purely
theoretical approach is possible for more complex systems, such as
polyelectrolytes or proteins. Furthermore, even in the case of simple
surfaces in solutions containing multivalent ions, one finds that the-
oretical approaches begin to fail.26,27 For such complex systems, one
is forced to rely on computer simulations.19,28–30 The constant pH
(cpH) simulation method is the most popular tool to obtain titra-
tion curves of such systems.31,32 There is, however, a fundamental
difficulty in using such an approach indiscriminately. In cpH simu-
lations, proteins, colloidal particles, or polyelectrolytes are confined
inside a simulation box, while ions can be freely exchanged with
the reservoir of acid and salt.33–35 The cpH simulation method is,

therefore, intrinsically semi-grand canonical.30 When performing a
cpH simulation, a proton is implicitly brought into the system from
an external reservoir at a fixed pH. To keep the charge neutrality
inside the simulation cell, one of the cations or protons inside the
bulk of the cell is arbitrarily deleted. However, such an arbitrary
deletion does not respect the detailed balance and leads to incor-
rect results, unless the system contains a lot of salt and is very dilute
in polyelectrolyte.28,30 Fortunately, it is easy to correct the standard
cpH algorithm by combining a protonation move with a simultane-
ous grand canonical insertion of an anion and a deprotonation move
with a simultaneous grand canonical deletion of an anion.19,28–30,36,37

This restores the detailed balance of the cpH algorithm, making it
internally consistent. This corrected version of the cpH algorithm
will be used in the present Communication.

In a real physical system, to confine polyelectrolytes or colloidal
particles within some region of space requires a semi-permeable
membrane, which would separate the system from the reservoir
containing acid and salt. Since the counterions are at larger con-
centration inside the system than they are in the reservoir, they will
tend to diffuse across the membrane.38 The net ionic flux will end
when a sufficiently large electrostatic potential difference is estab-
lished between the reservoir and the system, forcing the reversal of
the flow. This is known as the Donnan potential.39,40 In fact, one does
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not need to have a membrane to establish a finite Donnan poten-
tial. For example, a colloidal column in a gravitational field41–43 will
spontaneously establish a finite Donnan potential along the verti-
cal direction. This happens because, in general, colloidal particles
have a finite buoyant mass,44,45 which forces them to be inhomo-
geneously distributed inside the suspension. Meanwhile, the ions
are not affected by the gravitational field and are free to diffuse
throughout all space, including the top portion of suspension, where
there are no colloidal particles. This results in Donnan potential
along the vertical direction of colloidal suspension. In this case, the
gravitational field plays the role similar to that of a membrane, sep-
arating the region in which colloidal particles can be found. The
important point that is often lost when performing constant pH sim-
ulations is that the systems (simulation cell) are always at a different
electrostatic potential from the reservoir. Meanwhile, the electro-
chemical potentials and, consequently, the pH inside the system and
the reservoir are the same.

Recall that pH of a solution is defined in terms of activity
of hydronium ions, pH = −log10[a+/c

⊖
], where c⊖ = 1M is the

standard concentration. On the one hand, inside the reservoir,
the activity of hydronium ions is a+ = cH+ exp (βμr

ex), where cH+ is
the concentration of hydronium ions inside the reservoir and μex
is their excess chemical potential. On the other hand, inside the
system, a+ = ρH+ exp [βμs

ex + qβφD], where q is the proton charge,
ρH+ is the concentration of hydronium ions inside the system, and
φD is the Donnan potential difference between the reservoir and
the system. Note that the concentration of hydronium ions inside
the system is different from their concentration inside the reser-
voir. Furthermore, while inside the reservoir, μr

ex is due only to the
interaction between the ions, inside the system, μs

ex also includes
contributions coming from electrostatic and steric interactions of
hydronium ions with the colloidal particles. Nevertheless, equiva-
lence between electrochemical potentials inside the system and the
reservoir requires that pH of both be the same. (For the additional
discussion of the definition of pH in inhomogeneous systems see
the Conclusions of this Communication.) We see the important role
that the Donnan potential plays for determining pH inside a system
that is in contact with a reservoir. If one uses hydrogen and calomel
(reference) electrodes to measure pH inside a system connected to
a reservoir by a semi-permeable membrane—with calomel placed in
the reservoir—the Donnan potential will be an integral part of the
measurement. Suppose now that the system is equilibrated and then
disconnected from the reservoir—so that the number of ions of each
type remains fixed and no longer fluctuates. Clearly based on the
ensemble equivalence of statistical mechanics, the number of pro-
tonated groups in such a canonical system will remain exactly the
same as in the original semi-grand canonical system. However, the
pH of such a canonical system will no longer be the same as that
of the semi-grand canonical system connected to the reservoir. The
reason for this is that inside a canonical system, the potential drop
between system and reservoir will no longer exist and the activity of
hydronium ions will be a+ = ρH+ exp [βμs

ex]. Substituting this into
the definition of pH, we find the relation between the canonical and
grand canonical pH,

pHc = pHgc +
βφD

ln (10)
. (1)

Equation (1) opens a way for us to use the grand-canonical
Monte Carlo (GCMC) simulation to simultaneously calculate
titration curves for both canonical and grand-canonical systems.
However, to do this, the usual GCMC algorithm, which relies on
cation–anion pair insertion into the simulation cell, in order to
preserve the charge neutrality, must be modified to allow for the
charge fluctuation inside the cell, in order to calculate the Donnan
potential. Note that the Donnan potential is not accessible in the
normal GCMC since it cancels out for pair moves involving oppo-
sitely charged particles. In this Communication, we will present a
reactive GCMC-Donnan (rGCMCD) simulation method, which will
allow us to calculate the number of protonated groups and the Don-
nan potential in a single simulation. Combining this with Eq. (1), we
are able to obtain the number of protonated group for a given pH in
both canonical and grand-canonical systems. We should stress that
at this time, there is no alternative method that permits us to cal-
culate titration curves for isolated (canonical) systems. In principle,
one could use canonical reactive MC simulations and then attempt
to use the Widom insertion method to obtain the excess chemical
potential of hydronium ions inside the simulation cell. The prob-
lem, however, is that for moderate and large pH, there might not be
any hydronium ions inside the simulation cell, thus preventing us
from obtaining an accurate canonical pH.

The difficulty in performing simulations of Coulomb systems
stems from the long range electrostatic interaction between the par-
ticles that cannot be cut off at the cell boundary. Instead, one is
forced to periodically replicate the whole simulation cell so that a
given ion interacts not only with the ions inside the cell but also
with their infinite replicas. For Donnan simulations presented in this
Communication, there is an additional difficulty because the simula-
tion cell is no longer charge neutral. The total charge inside the cell,
Qt = ∑i qi, where the sum is over all the ions and the charged groups,
is not necessarily zero at a given instant of simulation. Clearly, such
an imbalance of charge in an infinitely replicated system leads to the
divergence of the electrostatic energy. To avoid this, we introduce
a uniform neutralizing background of charge density ρb = −Qt/V ,
where V is the volume of the simulation cell. The charge density
inside the system can then be written as

ρq(r) =∑
i

qiδ(r − ri) −
Qt

V
. (2)

Using the usual approach, the electrostatic potential can be split
into long and short range contribution.46–48 The long range can be
efficiently summed in the Fourier space, while the short range is
summed in the real space,49–51 resulting in the electrostatic potential
at position r inside the simulation cell,

φ(r) =
∞
∑
k=0

N

∑
j=1

4πq j

ϵwV ∣k∣2
exp [−

∣k∣2

4κ2
e
+ ik ⋅ (r − r j

)]

+
N

∑
j=1
∑

n
q j erfc(κe∣r − r j

− Ln∣)
ϵw ∣r − r j

− Ln∣

+
1
V

∞
∑
k=0

φ̃b(k) exp [ik ⋅ r], (3)

where n = (n1, n2, n3) are integers, k = ( 2π
L n1, 2π

L n2, 2π
L n3) are the

reciprocal lattice vectors, and κe is an arbitrary damping parameter.
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The last term is the electrostatic potential due to the uniform
background, of which the Fourier transform is

φ̃b(k) = −
4πQt

ϵwV
∫V e−ik.rd3r

k2 . (4)

Note that the electrostatic potential, Eq. (A1), is invariant to
the specific value of the damping parameter κe. It is usual to choose
κe sufficiently large so that simple periodic boundary conditions can
be used for the short range part of the electrostatic potential.

The limit k → 0 in the Fourier sum of Eq. (A1) is singular and
must be performed with great care. The limiting procedure is shown
in Appendix A, where we obtain

φ(r) =
∞
∑
k≠0

N

∑
j=1

4πq j

ϵwV ∣k∣2
exp [−

∣k∣2

4κ2
e
+ ik ⋅ (r − r j

)]

+
N

∑
j=1
∑

n
q j erfc(κe∣r − r j

− Ln∣)
ϵw ∣r − r j

− Ln∣

−
πQt

ϵwVκ2
e
+

4π
3ϵwV

r ⋅M + ϕB, (5)

where M = ∑i qiri is the electric dipole moment inside the cell and
ϕB is the modified Bethe potential of the cell with a neutralizing
background,

ϕB = −
2π

3ϵwV∑i
qiri

2
+

πQt

6ϵwL
. (6)

We recognize the M dependent term in Eq. (A13) as arising
from the uniform polarization of the macroscopic crystal composed
of spherically replicated simulation cells. From continuum electro-
statics, such uniform polarization is equivalent to the surface charge
density M ⋅ n/V , where n is the unit normal to the boundary of the
macroscopic spherical crystal, resulting in an electrostatic potential

4π
3ϵwV r ⋅M in the interior of the crystal; see Fig. 1.

The nature of ϕB is more subtle. In general, a simulation cell
containing colloidal particles or polyelectrolytes will have a non-zero
trace of the second moment charge density tensor. Spherical replica-
tion of such cells will lead to a crystal with a dipole surface layer,52

across which there will be a potential drop precisely given by Eq. (6).
In Appendix B, we also provide an alternative real space derivation
of Eq. (6).

Since ions can diffuse across the membrane, while colloidal
particles are confined within the system, a Donnan potential exists
between the reservoir and the system. While the Bethe potential can
be thought of as the average of the local electrostatic potential inside
the periodically replicated crystal, the Donnan potential is inherently
an interfacial effect that arises from ionic diffusion between the sys-
tem and the reservoir. The total electrostatic potential drop between
the system and the reservoir is shown in Fig. 2.

The electrostatic energy can be calculated using

E =
1
2 ∫

ρq(r)φ(r)d3r

=
1
2∑i

qi lim
r→ri
[φ(r) −

qi

ϵw ∣r − ri∣
]

−
Qt

2V
lim
k→0

φ̃(k). (7)

FIG. 1. Replicas of the simulation cell. The large sphere is a colloidal particle
and the small spheres are ions; the arrows show the instantaneous electric dipole
moment M, which, in general, exists inside the cell. Furthermore, the trace of the
instantaneous second moment charge distribution tensor of a locally strongly inho-
mogeneous system of colloidal particles and ions will not be zero. A macroscopic
spherical crystal produced by a periodic replication of the simulation cell will then
have both surface charge density M ⋅ n/V and a dipolar layer, which results in a
potential drop across the crystal–reservoir interface, given by the modified Bethe
potential, ϕB.

The subtraction inside the square brackets eliminates the self-energy
contribution to the total electrostatic energy of all ions and charged
groups. The last term is due to the background charge. Noting that
the electrostatic energy is invariant with the damping parameter κe,
the limit in the last term can be calculated using κe →∞, which kills
off the real space sum in Eq. (A13). Taking the limit limk→0, the

FIG. 2. Periodically replicated system separated from the reservoir by a semi-
permeable membrane: the electrostatic potential difference between the two is
ϕB + φD.
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last term of Eq. (7) then evaluates to QtϕB/2 and the total electro-
static energy of a system with ions + sites of total charge Qt and a
neutralizing background can be written as

E =
1
2∑ij

′
∑

n

qiqj erfc(κe∣ri − rj − Ln∣)
ϵw ∣ri − rj − Ln∣

+∑
k≠0

2π exp (−k2
/4κe)

ϵwVk2 (A(k)2
+ B(k)2

)

−∑
i

q2
i κe

ϵw
√

π
−

πQ2
t

2ϵwVκ2
e
+

2π
3ϵwV

M2, (8)

where

A(k) =∑
i

qi cos (k ⋅ ri),

B(k) =∑
i

qi sin (k ⋅ ri),
(9)

and the prime on the sum indicates that i = j is excluded from
the summation when n = 0. Note that the Bethe potential canceled
out and does not contribute to the total electrostatic energy. Fur-
thermore, since the system is implicitly connected to a reservoir,
it is not possible to use the tinfoil boundary condition,53—which
would eliminate k = 0 term from the Ewald summation, isolating the
system from the reservoir.

The simulation involves individual insertion/deletion moves, as
well as protonation and deprotonation moves. For an ion of charge
qi to enter the simulation cell, it must cross the macroscopic bound-
ary of the crystal. This will result in electrostatic energy change
qi(φD + ϕB). The grand canonical acceptance probabilities for inser-
tion/deletion moves can then be written as min (1, ϕadd/rem), where
ϕadd/rem is

ϕadd =
c⊖V10−pXi

Ni + 1
e−β(ΔEele+qi[φD+ϕB]),

ϕrem =
Ni10pXi

Vc⊖
e−β(ΔEele−qi[φD+ϕB]),

(10)

where ΔEele is the change in electrostatic energy upon inser-
tion/deletion of ion of type i and pXi ≡ −log10 Xi/c⊖, in which Xi
is the activity of ion i inside the reservoir. To relate pXi to the
concentration of salt, one can perform a separate GCMC sim-
ulation for the reservoir. In practice, however, we find that for
monovalent ions, the mean spherical approximation (MSA) com-
bined with the Carnahan–Starling (CS) expression for the excluded
volume54,55 provides an excellent approximation for the relation
between pXi, pH, and the concentrations of salt and acid in the
reservoir.

The protonation/deprotonation moves involve a reaction,

HAÐÐ⇀↽ÐÐH3O+ +A−,

Ka =
aA−aH+

aHA
,

(11)

where A− is the deprotonated site. We recognize the acid dissocia-
tion constant to be the inverse of the internal partition function of
HA molecule. The free energy change due to the removal of hydro-

nium from the reservoir and its reaction with an isolated A− group
is then

βΔFp = ln(
Ka

c⊖
) − μH+ , (12)

where μH+ = ln (cH+/c
⊖
) + βμex is the total chemical potential of a

hydronium ion inside the reservoir. For the deprotonation reaction,
the free energy change is reversed so that ΔFd = −ΔFp. The accep-
tance probabilities for protonation and deprotonation moves are
then min (1, ϕp/d), where

ϕp = e−β(ΔEele+ΔFp+q[φD+ϕB])

= 10pKa−pHa e−β(ΔEele+q[φD+ϕB]),

ϕd = e−β(ΔEele+ΔFd−q[φD+ϕB])

= 10pH−pKa e−β(ΔEele−q[φD+ϕB]).

(13)

We have defined the intrinsic pKa of a titration site as
pKa = − log10[Ka/c⊖]. During the protonation/deprotonation
moves, a titration site is randomly chosen and its state is changed
with an acceptance probability given by Eq. (13).

The simulation starts with an initial guess for the value of
φD. After each MC step, the Donnan potential is automatically
updated so as to drive the system toward a charge neutral state, φnew

D

∶= φold
D + αQt , where α > 0 is an arbitrary small parameter that con-

trols convergence. The simulation stops when ⟨Qt⟩ ≈ 0, to the
desired accuracy. In practice, the system very quickly converges
to a state in which Qt has small oscillations about zero. To make
sure that the system is fully equilibrated, we monitor the energy.
When ⟨E⟩ becomes constant, we know that the system has reached
equilibrium. Usually, we use 5 × 106 particle moves for equilibra-
tion. After this, we collect samples, which include colloidal charge,
Donnan potential, and ion distribution. The samples are collected
with intervals of ∼3000 particle moves, to make sure that they are
fully uncorrelated. We use 20 000 such samples to calculate the
averages.

As an example of the algorithm developed in the present Com-
munication, we will use it to study a colloidal suspension of finite
volume fraction. The colloidal particles have radius 60 Å and con-
tain Z = 600 active surface groups of intrinsic pKa = 5.4 uniformly
distributed over the surface. All ions have radius 2 Å, and the
solvent is modeled as a dielectric continuum of Bjerrum length,
λB = q2

/ϵkBT = 7.2 Å. The reservoir contains acid of an arbitrary pH
and 1:1 salt of concentration 1 mM. The electrostatic energy is calcu-
lated using Eq. (A11), with the damping parameter set to κe = 5/L,
where L is the size of the cubic simulation box. Such a value of κe
is sufficiently large that simple periodic boundary conditions can be
used to evaluate the short range (sum over erfc) contribution to the
electrostatic energy in Eq. (A11).

For simplicity, in the present Communication, we will use only
one colloidal particle inside a cubic simulation box of L = 200 Å.
There is, however, no conceptual difficulty in using an arbitrary
number of colloidal particles inside a simulation box, except for
the CPU time constraint. Finally, to test the new rGCMCD algo-
rithm, we perform a “standard” cpH in which a protonation
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move is combined with a grand canonical insertion of anion
and a deprotonation move with a grand canonical deletion of an
anion.28,30,56 The acceptance probabilities for these pair moves are,
respectively,

Pp = min [1,
c⊖V10pKa−pH−pCl

NCl + 1
e−βΔE

],

Pd = min [1,
NCl10pH−pKa+pCl

c⊖V
e−βΔE

].
(14)

Since both Bethe and Donnan potentials cancel out in the pair
moves, cpH simulation does not permit us to calculate the canon-
ical titration curve. Meanwhile, the grand-canonical curve obtained
using the “standard” cpH must agree precisely with the one obtained
using our new rGCMCD simulation method. This is exactly what is
found, validating the rGCMCD method.

In Fig. 3, we present the titration curves obtained using our
rGCMCD simulations for both canonical (isolated) and semi-grand
canonical suspensions.

As can be seen from the figure, there is a very significant dif-
ference between titration curves of an isolated colloidal suspension
and those of suspension connected to a salt and acid reservoir.
For example, at pH = 7.5, 28% of surface groups of semi-grand
canonical system are deprotonated, while for an isolated canonical
system, this jumps to 57%. When the concentration of salt increases,
the difference between canonical and semi-grand canonical systems

FIG. 3. Titration curves for an isolated (canonical, solid curve) and semi-grand
canonical system (dashed curve) in contact with a salt and acid reservoir, calcu-
lated using rGCMCD simulations. In the semi-grand canonical case, the reservoir
contains 1 mM of salt; for the canonical case, the concentration in reservoir is fine-
tuned so that there is 1 mM of salt inside the system for all pH. This, however, has
an imperceptible effect on the canonical titration curve for low salt concentrations.
The dots are the results of the “standard” cpH with pair insertions, which agree
perfectly with the new rGCMCD method. The colloidal suspension has a volume
fraction of 11.3%. The saturated colloidal charge is −212 mCm−2. The pKa of
acidic groups is 5.4.

FIG. 4. Titration curves for an isolated (canonical, solid curve) and semi-grand
canonical system (dashed curve) in contact with a salt and acid reservoir, calcu-
lated using rGCMCD simulations. In the semi-grand canonical case, the reservoir
contains 10 mM of salt; for the canonical case, the concentration in reservoir is
fine-tuned so that there is 10 mM of salt inside the system for all pH. The dots are
the results of cpH pair insertion simulation. The colloidal suspension has a volume
fraction of 11.3%. The saturated colloidal surface charge is −212 mCm−2. The
pKa of acidic groups is 5.4.

diminishes; see Fig. 4. This justifies the use of cpH methods to study
biologically relevant systems that contain physiological concentra-
tions of salt of cs ≈ 150 mM, which are usually isolated from any
external reservoir.

We have presented a new simulation method that enables us
to simultaneously obtain titration curves for both isolated systems
(canonical ensemble) and systems connected to an external reser-
voir by a semi-permeable membrane. Counterintuitively, we find
that at low ionic strength, the number of deprotonated groups can
be 100% larger in an isolated system, compared to a system con-
nected to a reservoir by a semi-permeable membrane—both systems
at exactly the same pH! The difference can be even greater for
more concentrated (large colloidal volume fraction) suspensions in
deionized solutions. As the concentration of salt increases, the dif-
ference between the ensembles becomes less important, justifying
the use of cpH methods for studying biologically relevant systems
that are usually closed and contain large concentrations of salt. It
is important to stress that at the moment there is no alternative
method available to study canonical systems at moderate and high
pH. The usual canonical reactive simulations fail under such condi-
tions since the simulation cell contains none or very few hydronium
ions, preventing one from accurately calculating the pH inside the
system.

In our definition of pH for heterogeneous systems, we have
followed the Gibbs–Guggenheim principle,57 which prohibits the
separation of the electrochemical potential into chemical and
electrostatic potential contributions for the definition of measur-
able quantities. Meanwhile, in the electrochemistry literature, the
Gibbs–Guggenheim principle is often disregarded and pH is defined
in terms of only the chemical part of the total electrochemical poten-
tial. From the practical point of view, pH is determined by measuring
the electromotive force (EMF) between a glass or hydrogen electrode
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and a saturated calomel (reference) electrode. In our definition of
pH, the reference electrode is always kept inside the reservoir, while
the hydrogen electrode is moved between the reservoir and the sys-
tem. With this setup, we will obtain the same EMF independent of
the position of the hydrogen electrode, indicating the same pH inside
the system and in the reservoir.58 Meanwhile, if both electrodes are
moved together—changing the reference value of the electrostatic
potential—we will obtain different pH values inside the system and
in the reservoir. With such a definition, the system’s pH will be dif-
ferent from that of the reservoir but will be the same as that of an
isolated canonical system. Whichever definition of pH is chosen,
one needs to know the Donnan potential in order to calculate the
titration isotherms of isolated (canonical) systems using semi-grand
canonical simulations. The “standard” cpH simulation methods do
not allow us to calculate titration isotherms for isolated systems.
One must either use canonical reactive MC—with Widom particle
insertion, which is very inaccurate even for intermediate to high
values—or the approach presented in this Communication, which
is accurate for any pH.
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APPENDIX A: DETAILS FOR THE LIMITING
PROCEDURE FOR SINGULAR TERM
OF ELECTROSTATIC POTENTIAL

The electrostatic potential inside the simulation cell is

ϕ(r) =
∞
∑
k=0

N

∑
j=1

4πqj

ϵwV ∣k∣2
exp [−

∣k∣2

4κ2
e
+ ik ⋅ (r − rj)]

+
N

∑
j=1
∑

n
qj

erfc(κe∣r − rj − Ln∣)
ϵw ∣r − rj − Ln∣

+
1
V

∞
∑
k=0

ϕ̃b(k) exp [ik ⋅ r], (A1)

where V = L3 is the volume of the cubic simulation cell, Qt = ∑i qi,
and

ϕ̃b(k) = −
4πQt

ϵwV
∫V e−ik.rd3r

k2 (A2)

is the Fourier transform of the background potential. Note that
the integral in Eq. (A2) vanishes for all k, except for k = 0, so that
we can define the singular part of the background potential ϕb,s as
ϕ̃b(k) ≡ ϕ̃b,sδk0, where we have defined the Kronecker delta for the
zero mode, δk0. As k → 0, we can expand the singular part around
k = 0,

ϕ̃b,s = −
4πQt

ϵwV
∫V(1 − ik ⋅ r − 1

2(k ⋅ r)
2
+ ⋅ ⋅ ⋅ )d3r

k2 . (A3)

The leading order terms in k are

ϕ̃b,s = −
4πQt

ϵwk2 +
4πQt

ϵwk2V ∫V
ik.rd3r +

2πQt

ϵwVk2∫V
(k.r)2d3r, (A4)

with the higher order terms vanishing in the limit k → 0. We note
that the limit k → 0 corresponds to a large distance behavior of the
electrostatic potential. To clearly see how the divergence scales with
the size of the macroscopic crystal, Lcr , produced by the periodic
replication of simulation cell [see Fig. (1)], we introduce a “crystal”
delta function as follows:

δcr(k) =
1
(2π)3

3

∏
i=1
∫

Lcr/2

−Lcr/2
eikipi dpi

=
1

π3

3

∏
i=1

sin (kiLcr/2)
ki

. (A5)

In the limit Lcr →∞, δcr(k) becomes the Dirac delta function. The
crystal δcr(k) regularizes the divergence and allows us to study the
k → 0 limit.50 In particular,

lim
k→0

kikj

k2 = ∫ δcr(k)
kikj

k2 d3k =
1
3

δij , (A6)

where δij is the Kronecker delta. The last equality follows from the
direct use of the representation of δcr(k), Eq. (A5), followed by
the Lcr →∞ limit,50 or simply from the observation of symmetry.
Similarly,

lim
k→0

ki

k2 = ∫ δcr(k)
ki

k2 d3k = 0, (A7)

since δcr(k) is an even function of all ki. Using Eq. (A7), we see that
the second term of Eq. (A4) vanishes and the last term becomes

2πQ
3ϵwV ∫V

(x2
+ y2
+ z2
)dxdydz =

πQL2

6ϵw
(A8)

so that

ϕ̃b,s = −
4πQt

ϵwk2 +
πQtL2

6ϵw
. (A9)
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We now expand the first term of Eq. (A1) around k = 0. The
singular terms are

4π
Vϵwk2∑

j=1
qj −

π
ϵwVκ2

e
∑
j=1

qj +
4π

Vϵw
∑
j=1

qj
ik ⋅ (r − rj)

∣k∣2

−
2π

Vϵw
∑
j=1

q j [k ⋅ (r − rj)]
2

∣k∣2
, (A10)

which, using Eqs. (A7) and (A6), simplify to

4πQt

ϵwk2V
−

πQt

ϵwVκ2
e
−

2π
3Vϵw

∑
j=1

q j
(r − rj)

2. (A11)

Meanwhile, the expansion of the last term of Eq. (A1) around k = 0,
with the help of Eq. (A9), results in

−
4πQt

ϵwk2V
+

πQt

6ϵwL
+

2πQtr2

3Vϵw
. (A12)

Combining everything, we see that the diverging 1/k2 terms
cancel out and we obtain the electrostatic potential inside the
simulation cell,

φ(r) =
∞
∑
k≠0

N

∑
j=1

4πqj

ϵwV ∣k∣2
exp [−

∣k∣2

4κ2
e
+ ik ⋅ (r − rj)]

+
N

∑
j=1
∑

n
qj

erfc(κe∣r − rj − Ln∣)
ϵw ∣r − rj − Ln∣

−
πQt

ϵwVκ2
e
+

4π
3ϵwV

r ⋅M −
2π

3ϵwV∑i
qir

2
i +

πQt

6ϵwL
. (A13)

APPENDIX B: REAL SPACE DERIVATION
OF THE BETHE POTENTIAL INSIDE A CELL
WITH A NEUTRALIZING BACKGROUND

The electrostatic potential, Eq. (A13), is invariant with respect
to κe. In the limit κe →∞, the sum over erfc vanishes, and the elec-
trostatic potential inside the cell can be written in terms of only the
Fourier components. It is clear then that

1
V ∫V

φ(r)d3r = ϕB. (B1)

Following Bethe, we can also calculate this as the mean potential over
the whole spherical crystal of radius Vcr = 4πR3

/3,

ϕB =
1

ϵwVcr
∫

Vcr
∫

Vcr

ρq(r′)
∣r′ − r∣

d3r′d3r. (B2)

Interchanging the orders of integration, the integral over r is the
potential at position r′ inside a uniformly charged sphere of unit
charge density, which can be easily obtained from the solution of
Poisson equation,

∫
Vcr

1
∣r′ − r∣

d3r =
2π
3
(3R2

− r′2). (B3)

The average potential inside the simulation cell is then

ϕB =
2π
3V ∫V

(3R2
− r′2)ρq(r′)d3r′ = −

2π
3V ∫V

r′2ρq(r′)d3r′, (B4)

where in the last equality, we have used the total ions + sites
+ background charge neutrality inside the cell. Finally, substituting
ρq(r) = ∑i qiδ(r − ri) −

Qt
V into the above-mentioned equation, we

obtain

ϕB = −
2π

3ϵwV∑i
qir

2
i +

πQt

6ϵwL
. (B5)
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