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a b s t r a c t

It has been known for over 150 years that a shear flow can become unstable due to
microscopic perturbations. The instability manifests itself in waves on water surface, in
clouds, in sun’s corona, and in the famous Jupiter’s Red Spot. The traditional approach
to study the linear stability of a flow is through the analysis of Euler’s equations of fluid
motion. In this paper we present an alternative approach which relies on the mapping
of Euler’s equations on an infinite system of interacting vortices. Using this approach
we are able to predict the limits of stability of a shear layer of finite width confined to
a cylindrical surface. We also predict the wavelength of the most unstable mode and
compare it with the results of molecular dynamics simulations.

© 2020 Elsevier B.V. All rights reserved.

Kelvin–Helmholtz (KH) instability [1,2] is often the initial step that leads to a large scale vortex formation in 2d fluids
undergoing a shear flow [3]. This process is believed to be responsible for the observed Jupiter’s Great Red Spot, the origin
of which is supposed to be the KH instability of the Jovian jets.

The KH linear instability is usually studied using a perturbative solution of 2d Euler equations [4,5]. Here we will
present an alternative vortex formulation of the problem. The formalism is particularly useful for the exploration of the
asymptotic structure of periodic flows using methods of non-equilibrium statistical mechanics of systems with long-range
interactions [6,7]. This will be the subject of the future work.

In the planetary context the jets behave as a 2d Euler fluid confined to the surface of a sphere. To simplify the
calculations, we will replace the spherical planetary geometry by an infinitely long cylinder of radius R. This is a reasonable
pproximation since the width of the equatorial jet streams is much smaller than the Jupiter’s radius R. The cylindrical
eometry is sufficiently simple that it will allow us to derive simple analytical expression for KH instability in a periodic
low. We note, however, that there are numerical studies of instabilities of vortex patches on a sphere, see for example
ef. [8].
The position on the surface of the cylinder can be written in terms of the angular and longitudinal variables, θ and z,

s r = R cos θ x̂ + R sin θ ŷ + zẑ. Consider a shear zone of width 2w such that the fluid velocity for z > w is −u0 and for
< −w is u0, with the velocity field varying linearly within the shear zone,

u0(r) = −θ̂θθ

[ zu0

w
Θ(w2

− z2) + u0 sign(z)Θ(z2 − w2)
]
, (1)

where Θ(x) is the Heaviside step function, see Fig. 1. The solution to the incompressible 2d Euler equation can be written
in terms of a pseudo scalar vorticity Γ (r, t) = [∇ × u(r, t)] · ρ̂ρρ, where u(r, t) is the velocity of fluid at position r, and ρ̂ρρ
is the unit vector normal to the surface of the cylinder. It can be shown that the vorticity field is advected by the flow,
dΓ (r, t)/dt = 0. The incompressibility condition for the Euler equation allows one to introduce a stream function ψ(r, t)
such that u(r, t) = ∇ × ψ(r, t)ρ̂ρρ which satisfies the Poisson equation

∇
2ψ(r, t) = −Γ (r, t), (2)
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Fig. 1. Representation of shear flow given by Eq. (1).

he solution to which can be written in terms of an appropriate Green function,

ψ(r, t) =

∫
G(r, r′)Γ (r′, t)dr′. (3)

If we suppose that vorticity is composed of point vortices, Γ (r) =
∑

i Γiδ(r− ri(t)), their velocity must be the same as
hat of the fluid, ṙi = ∇i ×

∑
j̸=i ΓjG(ri, rj)ρ̂ρρ and we see that the vortex dynamics has a Hamilton-like structure [9]

Γiθ̇i =
1
R
∂H
∂zi

; Γiżi = −
1
R
∂H
∂θi

, (4)

here the Kirchhoff function [10] is defined as H =
∑

i<j ΓiΓjG(ri, rj). The θ and z coordinates of a vortex are, therefore,
conjugate variables.

The velocity field Eq. (1) is produced by the stream function

ψ0(r) = −
(w2

+ z2)u0Θ(w2
− z2) + 2w|z|u0Θ(z2 − w2)

2w
, (5)

the source for which can be shown to be a water bag vorticity distribution,

Γ0(r) = γ0Θ[w2
− z2], (6)

where γ0 = u0/w, see Eq. (2). The total vortex strength of the shear flow is
∫
Γ0(r)d2r = 4πRu0. The strength of a point

vortex is then Γv = 4πRu0/N . The limit in which the vortex description of the fluid dynamics becomes exact is Γv → 0,
N → ∞, with NΓv held fixed at 4πRu0.

The periodic Green function for Poisson equation (2) can be easily calculated [11,12] and is found to be

G(r, r′) = −
|z − z ′

|

4πR
+

∞∑
n=1

e
−n|z−z′ |

R

2πn
cos[n(θ − θ ′)] , (7)

which can be explicitly summed to

G(r, r′) = −
1
4π

log
[
2 cosh

(
|z − z ′

|

R

)
− 2 cos(θ − θ ′)

]
. (8)

To verify the conditions for the KH instability of a shear zone of width 2w, we consider that the boundaries of the
initial water bag vorticity distribution are perturbed

Γ (r, t) = γ0Θ
[
zu(θ, t) − z

]
Θ

[
z l(θ, t) + z

]
, (9)

where zu(θ, t) = w + Fu(θ, t) and z l(θ, t) = w + F l(θ, t) are the upper and the lower boundaries of the perturbed
distribution and

F j(θ, t) =

∞∑
n=1

ajn(t) cos(nθ ) + bjn(t) sin(nθ ), (10)

ith j = {u, l}, and ajn(t) and bjn(t) being small amplitudes. Note that the form of the perturbation in Eq. (10) guarantees
that the total volume occupied by the vorticity distribution is conserved, in agreement with the incompressibility of the
2
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Fig. 2. Snapshots of molecular dynamics simulations with N = 105 vortices. The initial, panels (a), (c), and (e); and intermediate — after linear
instability has taken place, panels (b), (d) and (f) — stages of the vortex evolution. After the linear instability takes place, the point vortices organize
into macroscopic vortex structures, panels (b), (d) and (f). The initial water bag distribution in panel (a) has w/R = 0.4, for which the theory predicts
the most unstable mode to be n = 1, resulting in one macroscopic vortex, panel (b). For panel (c), w/R = 0.2 and the most unstable mode is n = 2,
esulting in the formation of two macroscopic vortices, panel (d). For panel (e) w/R = 0.08 and the most unstable mode is n = 5, resulting in the
ormation of five macroscopic vortices, panel (f). The longitudinal coordinate z is measured in units of R.

ortex dynamics. Expanding the vorticity distribution function of Eq. (9) up to linear terms in the perturbation amplitudes
e obtain Γ (r, t) = Γ0(r) + Γ1(r, t), where

Γ1(r, t) = γ0[δ(w − z)Θ(w + z)Fu(θ, t) +

Θ(w − z)δ(w + z)F l(θ, t)], (11)

nd δ(x) is the Dirac delta function. Substituting the perturbed distribution in Eq. (3) we find ψ(r, t) = ψ0(r) + ψ1(r, t)
or the stream function, where

ψ1(r, t) =

∞∑
n=1

{
e−

n|w+z|
R [aln(t) cos(nθ ) + bln(t) sin(nθ )]

8πnw
+

e−
n|w−z|

R [aun(t) cos(nθ ) + bun(t) sin(nθ )]
8πnw

}
. (12)

f we now impose that the vertical motion of the boundaries is consistent with the generated stream function (up to linear
rder in the amplitudes), i.e., dz j/dt = −(1/R)∂ψ/∂θ | , we obtain a closed set of linear equations for the perturbation
z=zj

3
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mplitudes. These equations can be written as dCn/dt = Mn · Cn, where Cn = (aln bln aun bun)
T and

Mn =
η0

2

⎛⎜⎝ 0 αn 0 βn
−αn 0 −βn 0
0 −βn 0 −αn
βn 0 αn 0

⎞⎟⎠ , (13)

ith αn = 1 − 2nw/R, βn = e−2nw/R. To write these expressions use has been made of dθ/dt|zj= ±u0/R, to zeroth
rder in the perturbing amplitudes for the lower and the upper boundaries, respectively. The eigenvalues of Mn are
iven by γn = ±η0

√
β2
n − α2

n/2, and correspond to the exponential growth rate of the perturbations. Therefore, whenever
2
n > α2

n , a mode n is unstable, growing exponentially as the time evolves. In particular, for large w/R, all modes are stable.
owever when this ratio decreases below w/R ≈ 0.64, the first mode n = 1 becomes unstable. Decreasing w/R even
urther destabilizes an increasing number of modes. The mode with the largest growth rate γn is expected to dominate
he instability. More specifically, maximizing γn with respect to nw/R, we see that the fastest growing mode satisfies
≈ 0.40/(w/R).
To explore the accuracy of the theory we have performed extensive molecular dynamics simulations using Vortex-in-

ell (VIC) algorithm [13–16]. In this approach the dynamics of N = 105 point vortices is solved using a Runge–Kutta (RK)
algorithm with an adaptive time step, and the Poisson equation (2) is solved on a 500 × 500 mesh using a Successive
Over-Relaxation (SOR) method [17]. We have checked that the results do not change with a further increase in the grid
resolution and with the number of particles, showing that we have achieved the thermodynamic limit. We note that there
are alternative methods which use contour dynamics to study instability of vortex patches and sheets [18–20], however
our VIC simulations already provide us with enough resolution to explore the instability of a periodic shear flow. In
Fig. 2 we show the snapshots of the evolution of a vortex distribution starting from an initial water bag distribution
with different values of w/R. As predicted by the theory, the water bag distributions with w/R > 0.64 remain stable.
For w/R = 0.4, the initial distribution in Fig. 2a becomes unstable. For this value of w/R, the theory predicts the most
unstable mode to be n = 1. This is precisely what we find in simulations, see panel (b), which shows formation of one
macroscopic vortex. In Fig. 2c the initial water bag distribution has w/R = 0.2 for which the most unstable mode is found
to be n = 2, which again agrees perfectly with the simulations, see panel (d). Finally in Fig. 2e, we show the temporal
evolution of the initial water bag distribution with w/R = 0.08. For such initial condition the most unstable mode is
predicted to be n ≈ 0.40/0.08 = 5, which agrees with the simulation showing formation of 5 macroscopic vortex blobs,
see Fig. 2f.

We have presented an approach which allows us to obtain both the threshold of instability and to predict the
wavelength of the most unstable mode of a 2d Euler fluid subjected to a shear flow in a cylindrical geometry. We find
that the instability results in formation of n large scale vortices which after some time agglomerate into one macroscopic
vortex. In the future work we will use the recently developed methods of non-equilibrium statistical mechanics [6] to
attempt to predict the fluid velocity profile in the final stationary state, without explicitly solving Euler’s equations of
motion.
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