
Surface tension of an electrolyte–air interface: a Monte Carlo study

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Phys.: Condens. Matter 24 284115

(http://iopscience.iop.org/0953-8984/24/28/284115)

Download details:

IP Address: 143.54.197.172

The article was downloaded on 28/06/2012 at 18:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/24/28
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 24 (2012) 284115 (5pp) doi:10.1088/0953-8984/24/28/284115

Surface tension of an electrolyte–air
interface: a Monte Carlo study

Alexandre Diehl1, Alexandre P dos Santos2 and Yan Levin2

1 Departamento de Fı́sica, Instituto de Fı́sica e Matemática, Universidade Federal de Pelotas,
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Abstract
We present a new method for calculating the surface tension of an electrolyte–air interface
using Monte Carlo (MC) simulations with an implicit solvent in a spherical drop geometry.
The boundary conditions for the electric field at the interface are accounted for using image
and counter-image charges. The density profiles obtained from the simulations are used to
calculate the excess surface tension of the electrolyte–air interface using the Gibbs adsorption
isotherm equation. The results are found to be in good agreement with experiments and the
earlier theoretical calculations.

(Some figures may appear in colour only in the online journal)

1. Introduction

Electrolyte solutions have been a subject of intense study
for over 100 years. While the bulk thermodynamics of
electrolytes is reasonably well understood [1, 2], this is
not the case for their surface properties. In spite of a
significant effort to account for ion–surface interactions both
theoretical [3–11] and experimental [12–14], a complete
understanding is still lacking. The electrolyte–air interface,
for instance, remains a fascinating topic of discussion since
Heydweiller’s experimental measurements of surface tensions
of salts dissolved in water [15]. Heydweiller noticed that
the surface tension of the electrolyte–air interface depends
specifically on the ions present in solution. Curiously the
effect of different electrolytes on the surface tension of water
observed by Heydweiller mimicked closely their influence on
the stability of protein solutions discovered by Hofmeister
20 years earlier [16]. The two effects seem to be intimately
connected, but the relationship between them is not very clear.

The interface between an electrolyte and a protein
or between an electrolyte and a hydrophobic surface is
of paramount importance in many biological applications.
In addition, much of the atmospheric chemistry, and in
particular the rate of ozone depletion, depends strongly on
the presence of ions at the surface of aerosol particles [17].

Recent work suggests that ions at the air–water interface
or near a hydrophobic surface can be divided into
two classes: the kosmotropes and the chaotropes [10].
Kosmotropes remain hydrated and are repelled from the
interface, while the chaotropes lose their hydration sheath
and, as a consequence of their large polarizability, become
adsorbed at the air–water interfaces or at a hydrophobic
surface [18]. These conclusions were obtained using a
modified Poisson–Boltzmann equation, which neglects the
electrostatic and hard-core correlations between the ions.
In the present work we would like to quantitatively check
the predictions of the Poisson–Boltzmann theory against the
Monte Carlo simulations.

2. Model system and Monte Carlo methodology

2.1. Model system

We study a primitive model of a monovalent electrolyte
confined to a spherical mesoscopic drop of water of radius
R, corresponding to the position of the Gibbs dividing surface
(GDS) [19]. The drop contains N pairs of cations and anions
with radii rc and ra, respectively. Water and air are treated as
uniform dielectric media of permittivities εw = 80 and εa = 1,

10953-8984/12/284115+05$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/24/28/284115
mailto:levin@if.ufrgs.br
http://stacks.iop.org/JPhysCM/24/284115


J. Phys.: Condens. Matter 24 (2012) 284115 A Diehl et al

respectively. The system is at room temperature, so that the
Bjerrum length is λB = q2/εwkBT = 7.2 Å. The dielectric
discontinuity at the air–water interface results in an induced
surface charge. For a planar geometry this is a well-known
problem, the solution of which goes back to Lord Kelvin [20].
For curved surfaces, on the other hand, it is difficult to
properly account for the boundary conditions on the electric
field imposed by the Maxwell equations, and numerical
calculations must be used [21]. For spherical geometry,
however, it is possible to satisfy the required boundary
conditions using a combination of image and counter-image
charges [22, 23]. Recently this approach was used to study
polarizable colloids and nanoparticles, which in general have
a dielectric constant much lower than that of water [24, 25]. In
that case an ion of a colloidal suspension induces an image and
a counter-image charge inside a spherical colloidal particle.
The image charge is located at the inversion point, while a
continuous distribution of counter-image line charge extends
from the center of the colloidal particle to the inversion point.
This construction allows one to precisely satisfy the boundary
conditions imposed by the Maxwell equations at the dielectric
interface [22, 23].

For the present problem, on the other hand, an ion of
charge qi is located inside the spherical water drop and
its image and counter-image charges are outside the drop.
The situation is the opposite of the colloidal suspension for
which ions were located outside the low dielectric sphere.
Nevertheless, it is still possible to construct a combination
of image and counter-image charges which will allow us
to precisely satisfy the boundary conditions at the air–water
interface [22, 23]. If the ion is located at position ri the
image charge of magnitude q′i = γ qiR/ri will be located at
r′i = (R

2/r2
i )ri, where γ = (εw − εa)/(εw + εa). However,

this is not sufficient to satisfy the boundary conditions on the
electric field. It is also necessary to place a counter-image
charge of line density

λ(u) =
qi

R

γ (1+ γ )
2

(
u

r′i

)−(1−γ )/2
, (1)

extending from the position of the image charge to infinity
along the radial direction [22, 23], see figure 1. The
electrostatic potential produced by the image charge at an
arbitrary position r inside the drop is given by

ψim(r; ri) =
q′i

εw|r− R2

r2
i

ri|
, (2)

while the electrostatic potential produced by the counter-
image line charge is

ψci(r; ri) =
R2

εwri

∫
∞

1
dη

λ
(
η R2

ri

)
|r− η R2

r2
i

ri|
. (3)

Since for the air–water interface εw � εa, the line-charge
density can be taken to be uniform, λ(u) = qi/R. The integral
in equation (3) can then be performed analytically, yielding

Figure 1. An illustrative representation of an ion of charge qi,
located at ri inside a water drop, and its image charge q′i, located at
the inversion point r′i. The counter-image charge λ(u) is distributed
from the inversion point to infinity.

the counter-image potential at an arbitrary position r:

ψci(r; ri) = −
qi

εwR

× log

R2
− r · ri +

√
R4 − 2R2r · ri + r2r2

i

2R2

 . (4)

The ion–counter-image interaction potential (for r = ri)
reduces to

ψ self
ci (ri) = −

qi

εwR
log

(
1−

r2
i

R2

)
. (5)

Using the expressions above, the electrostatic potential
produced at position r by a charge qi located at ri is given by

φ(r; ri) =
qi

εw|r− ri|
+

qiR

εwri|r− R2

r2
i

ri|
+ ψci(r; ri), (6)

where the first term is the electrostatic potential of the ion, the
second term is the potential of the image charge and the last
term is the potential produced by the counter-image charge.
The work required to bring all the ions from infinity to their
respective positions inside the drop is

U =
N−1∑
i=1

N∑
j=i+1

qjφ(rj; ri)+

N∑
i=1

q2
i R

2εw(R2 − r2
i )

+
1
2

N∑
i=1

qiψ
self
ci (ri), (7)

where the last two terms are the self-interaction energy
of the ion with its own image and counter-image charges,
respectively.

2.2. Monte Carlo simulation inside the drop

We have used canonical Monte Carlo (MC) simulations in
order to obtain the density profiles of cations and anions inside
the water drop. Two types of MC moves were used—for low
electrolyte concentration, ion transfer to a completely new
random position inside the drop, and for higher concentrations
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Figure 2. Density profiles for NaF at 0.5 M concentration. The
solid and dashed lines represent the auxiliary functions f±(r) for
Na+ and F−, respectively, used to obtain the bulk concentration, cb,
at the center of the drop. The points a and b are the limits used in
equation (9) to obtain cb. The drop radius is R = 110 Å.

a small linear displacement in order to give the standard
acceptance ratios for the Metropolis algorithm [26]. Typical
runs involved equilibration and production, each of 105 steps
per particle. After equilibration, uncorrelated states were
generated at intervals of ten steps per particle, creating a total
of 104 uncorrelated configurations. After equilibration, the
average number of cations and anions in concentric spherical
shells of equal thickness were accumulated in order to obtain
the ionic density profiles, ρ±(r), where r is the distance from
the center of the drop. In figure 2 we show typical density
profiles for NaF.

The accuracy of the ionic density profiles near the
center of the drop is affected by the geometry of the
system—since the bins close to the origin have only a few
particles, they are strongly susceptible to thermodynamic
fluctuations, see figure 2. To obtain an accurate estimate
of the bulk concentration of the electrolyte, cb = ρ+(0) =
ρ−(0), we introduce auxiliary functions, f±(r), which give us
smoothed-out density profiles in the central region of the drop:

f±(r) =
3

r3

∫ r

0
dr′ r′2ρ±(r

′). (8)

The bulk concentration of the salt is then calculated as an
average of the coarse-grained densities of cations and anions
f± between the two radial positions, a and b, in the flat region
indicated in figure 2:

cb =
1

b− a

∫ b

a
dr′

f+(r′)+ f−(r′)

2
. (9)

To calculate the excess surface tension γ we integrate
the Gibbs adsorption isotherm equation, dγ = −0+dµ+ −
0−dµ−, where µ± are the chemical potentials of cations and
anions, respectively, and 0± are the ion excess per unit area
defined as

0± =
1

4πR2

[∫
∞

0
ρ±(r)4πr2 dr −

4πR3

3
cb

]
. (10)

If the water drop contains N pairs of cations and anions,
equation (10) simplifies to 0± = N/4πR2

− cbR/3, where

cb is given by equation (9). Due to spherical symmetry and
charge neutrality, the Gibbs adsorption isotherm equation can
also be written as dγ = −0 dµ, where 0 = 0+ = 0− and
µ = µ+ + µ− is the salt chemical potential.

2.3. Grand-canonical simulation

To obtain the chemical potential for a given bulk concentration
of electrolyte cb, we use grand-canonical Monte Carlo
(GCMC) simulations. In such simulations, the system—a
cubic box of length L, with periodic boundary conditions—is
placed in contact with a salt reservoir at chemical potential
µ. We start with a trial 2N ions, half carrying a charge
+q and the other half a charge −q. The diameters of
cations and anions are σ+ = 2rc and σ− = 2ra, respectively.
The interaction potential between two non-overlapping
charges separated by a distance rij is Uij = qiqj/εwrij.
To maintain the electroneutrality of the system, we have
used unbiased ion pair additions and removals at each
time step, with a standard grand-canonical MC algorithm.
The simulations were performed using the discretization
methodology introduced by Panagiotopoulos and Kumar [27],
where the allowed positions for the ion centers are restricted
to a simple cubic grid of spacing l. Hence, the discretization
parameter is defined as ζ = σ±/l, where σ± = (σ+ + σ−)/2
is the unlike-ion collision diameter. We have used in our
simulations ζ = 10, which reproduces essentially the same
results of the continuum model [27], with a significant
economy in simulation time. The long-range Coulomb
interactions are calculated with the Ewald summation method
employing conducting boundary conditions and using 518
Fourier-space wavevectors and real-space damping parameter
κ = 5/L.

The reduced temperature and electrolyte concentrations
are defined as

T? = kBTεwσ±/q
2 and ρ? = Nσ 3

±/L
3, (11)

while the reduced salt chemical potential is µ? = µεwσ±/q2,
so that in the limit of high temperatures and low densities we
obtain

µ?→ 2T? ln ρ∗. (12)

Note that the reduced temperature and chemical potential can
also be written as T? = σ±/λB and µ? = (σ±/λB)µ/kBT ,
respectively. In figure 3 we show the reduced salt
concentration as a function of the chemical potential µ used
in GCMC simulations. Figure 3 can then be used to construct
µ(cb). Inserting this expression into the Gibbs adsorption
isotherm and integrating numerically, we obtain the excess
surface tension for the electrolyte–air interface.

3. Results and discussion

First, we study the alkali metal chloride salts. We begin
with NaCl. In our earlier work based on the modified
Poisson–Boltzmann equation, it was found that Cl− is on
the borderline between the kosmotropes (structure-making)
and chaotropes (structure-breaking ions) [9, 10]. Specifically,
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Figure 3. The chemical potential of salt µ, as a function of reduced salt concentration obtained using the GCMC simulations for (a) alkali
metal chloride salts and (b) sodium fluoride, iodate and bromate salts. The Bjerrum length is λB = 7.2 Å. Solid lines are the chemical
potentials obtained using the mean spherical approximation (MSA) [19]. The insets show the ideal gas limit (dashed line), equation (12).

it was found that Cl− remains weakly hydrated at the
air–water interface, with a hydration radius very close to its
crystallographic one, 2 Å. To fit the experimental data for all
sodium halide salts [9, 10] the radius of Na+ was adjusted to
be 2.5 Å.

We will proceed in a similar way in the present Monte
Carlo study. The hydrated radius of Na+ will be adjusted
to fit the experimental data for the surface tension of the
NaCl electrolyte–air interface. We find that a good fit of
experimental data can be obtained if aNa = 1.8 Å, see figure 4.
The change of the hydration radius of Na+ is the result
of electrostatic and hard-core correlations neglected within
the Poisson–Boltzmann theory. Curiously the new value of
the hydrated radius of Na+ is exactly the Latimer radius
of this ion. The Latimer radii are obtained by fitting the
experimental hydration free energies to the Born model of
solvation [28]. This suggest that the Latimer radii of other
cations might also be able to account for the surface tensions
of their respective alkali metal salts such as, for example,
CsCl, KCl, NaCl and LiCl. The Latimer radii for Cs+, K+

and Li+ are 2.54, 2.18 and 1.45 Å, respectively [28]. Using
these radii in our simulations, we obtain the surface tensions
of the respective alkali metal salts. The calculated surface
tensions are plotted in figure 4, where they are also compared
to the experimental data [29, 30]. As can be seen, the
agreement between theory and experiment is very reasonable.
We next calculate the surface tensions for other kosmotropic
sodium salts: fluoride, iodate and bromate, using the same
methodology. The hydrated radii of F−, IO−3 and BrO−3 are
3.52, 3.74 and 2.41 Å, respectively [9–11]. Note that, while,
F− and IO−3 remain fully hydrated at the interface, BrO−3 is
very weakly hydrated, similar to Cl− ion. The calculated
surface tensions for NaF, NaIO3 and NaBrO3 are compared
with the experimental data in figure 5, again showing a
reasonable agreement.

4. Conclusions

We have presented a Monte Carlo simulation approach
for calculating surface tensions of electrolyte solutions of

Figure 4. Surface tensions for cesium, potassium, sodium and
lithium chloride. Solid lines are our simulation results and the
symbols are the experimental data [29, 30].

kosmotropic (structure-making) ions. The underlying theory
is based on the observation that kosmotropic ions remain
hydrated near the air–water interface [9, 10]. Thus, they are
not able to approach the Gibbs dividing surface closer than
their hydration radii. The MC simulations confirm the earlier
modified Poisson–Boltzmann theory, in particular showing
that the correlational effects omitted by the PB equation can
be captured by a suitable renormalization of the cationic radii.
Within the modified Poisson–Boltzmann formalism it was
necessary to use aNa = 2.5 Å in order to account for the
experimental data, while within the MC formalism this size
was reduced to aNa = 1.8 Å. Curiously the value 1.8 Å is
precisely the Latimer radius of Na+. This suggested, that
the surface tensions of other alkali metal salts can also be
calculated using the Latimer radii of their respective cations.
This is exactly what was found when the results of simulations
were compared with the experimental data. At the moment it
is not clear why Latimer radii are relevant for the hydration
of cations near the air–water interface. The hydration of
anions, on the other hand, is completely correlated with the
Jones–Dole viscosity B coefficient [34]—anions with positive
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Figure 5. Surface tensions for (a) sodium fluoride, (b) iodate and bromate. Full circles represent the data of Matubayasi et al [31] and the
open circles are the data of Weissenborn and Pugh [32]. Squares and triangles are the data of Matubayasi [33]. The solid lines are our
simulation results.

B remain hydrated at the interface, while the ones with
negative B lose their hydration sheath [10].

For now we have only used MC simulations to
study surface tensions of salts with kosmotropic anions.
Implementation of the present formalism for simulations
of chaotropic ions is technically more challenging since it
requires accounting for the non-trivial electrostatics as these
ions cross the dielectric interface [8]. Work in this direction is
now in progress.
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