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Abstract
A review is given on the application of the coupled-channel method for the calculation of the

electronic energy loss of ions as well as ionization in matter. This first principle calculation,

based on the solution of the time-dependent Schrödinger equation, has been applied to

evaluate the impact parameter and angular dependence of the electronic and nuclear energy

losses of ions as well as the ionization due to high-power short laser pulses. The results are

compared to experimental data as well as to other current theoretical models.
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1. INTRODUCTION

The electronic energy loss has been studied for many years because of its
direct application in problems concerning material damage and ion beam
analysis. The theoretical treatment of the energy loss in atomic collisions has
been greatly improved over the last decades and relies on an accurate
treatment of target-continuum states up to high-emitted electron energies.
Calculations of the electronic energy loss have been performed by using
traditional methods known from atomic physics investigations such as the
plane wave Born approximation (PWBA) [1,2], the high-energy solution by
Bethe [3] and the semi-classical approximation (SCA) [4]. More advanced
models are the Continuum-Distorted Wave Eikonal-Initial-State (CDW-EIS)
[5], the classical trajectory Monte Carlo (CTMC) [6,7], the ACAM-CKLT
model based on Liouville and Wigner equations in phase space [8], the
Electron Nuclear dynamics (END) [9] and finally the atomic orbital coupled-
channel method (AO) [10–13] that yields reliable values for the impact-
parameter dependent electronic energy loss. These methods based on atomic
physics calculations offer reliable ways to obtain detailed information on the
energy-loss processes in gases as well as for the inner-shell electrons of
solids. Of course, other approaches have to be adopted for conduction-band
electrons of solid-state targets [14–17] in order to obtain an accurate
description of the energy loss due to the valence electrons. Other models
such as those of Refs. [18–21] have strongly enlarged our understanding of
the physical processes that govern the energy loss.

In recent years we have investigated the electronic energy loss of bare and
screened ions for light targets using the coupled-channel method. This first
principle calculation [10–12], based on an expansion of the time dependent
electronic wave function in terms of atomic orbitals, has been successfully
applied to evaluate the impact-parameter and angular dependence of the
electronic energy loss and the total stopping cross section of ions
(antiprotons, H and He) colliding with H and He atoms at energies of 1–
500 keV/amu. It has also been applied to calculate the entrance-angle
dependence of the stopping force for He ions channeling along the Si main
crystal directions [22,23] as well the shape of the surface peak for protons
backscattered from Al under channeling and blocking conditions [24].

These benchmark calculations have also been used to check simplified
models that account for the basic energy loss processes without the need of
large scale calculations [25,26] and to calculate the probability of
multiphoton ionization in the case of intense fs-laser pulses [27].

The chapter is organized as follows. The principle of the coupled-channel
method is reviewed in detail in Section 2. The results are discussed in
connection to higher order terms in Section 3. The application to multiphoton
ionization is described in Section 4. Comparisons with measurements are
provided in Section 5. A simple model for the electronic energy loss is
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presented and compared to coupled-channel calculations in Section 6 and
finally the conclusion and outlook are presented in Section 7. If not indicated
otherwise, atomic units ðe ¼ m ¼ ~ ¼ 1Þ will be used throughout the
chapter.

2. THE COUPLED-CHANNEL METHOD

Here we will focus the attention on atomic treatments of the energy-transfer
process. Thus, we will not consider solid-state effects such as intra-band
transitions, collective excitations (bulk and surface plasmons) and the
corresponding dynamic projectile screening.

Generally, ion–atom collision processes may be described either by first-
or second-order perturbative approaches or by coupled-channel calcu-
lations. Perturbation theory often yields simple and in some cases even
analytical results, but has the disadvantage of being valid only for high
incident energies and low projectile charge states. In this work we will use
the highest-order (coupled-channel) theory, which allows for an infinite
number of interactions between projectile, target, and electron. The electron
may be ionized in the first step and may be accelerated or decelerated in the
second step. It is also possible that an electron, after being ionized, is
‘thrown’ back to the initial state. Furthermore, the probability for ionizing
an electron is always less than or equal to unity. All this does not hold for
perturbation theory. In the following, the basic ingredients of our model
will be described.

2.1. Impact-parameter method

The theoretical formulation of atomic excitation and ionization processes is
conveniently discussed by introducing the quantum-mechanical Hamilton
operator. For a three-body system the Hamiltonian reads

H ¼ Tpð~rpÞ þ Ttð~rtÞ þ Teð~reÞ þ Vptð~RÞ þ Vteð~rÞ þ Vpeð~R 2 ~rÞ ð1Þ

with the kinetic and potential energies denoted by T and V ; respectively. The
subscripts ‘p’, ‘t’, and ‘e’ refer to the projectile ion, target core, and electron
as indicated in Fig. 1. In the following we will use the impact-parameter
method, i.e., it is assumed that ~rp and ~rt are given by classical paths ~rp ¼
~rpðt; bÞ; ~rt ¼ ~rtðt; bÞ (determined by the impact parameter b). This concept
was first introduced by Bang and Hansteen [28]. It is well known [29] that the
impact-parameter methods are valid as long as the Coulomb parameter

ni!f ¼
ZpZt

qi!f

<
ZpZtvpmp

DEi!f

ð2Þ

Ionization and Energy Loss Beyond Perturbation Theory 9
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is large compared to unit ðqi!f is the momentum transfer). This is always
valid if the incident ion has at least thermal energies. If, additionally, an
independent motion of the electron [30] is assumed, one may solve the time-
dependent Schrödinger equation for one active electron:

i
›

›t
2H e

� �
FeðtÞ ¼ 0 ð3Þ

with

H eðtÞ ¼ H te þ Vpeð~RðtÞ2 ~rÞ ð4Þ

and

H teðtÞ ¼ Teð~reÞ þ Vteð~re 2 ~rtðtÞÞ: ð5Þ

In the subsequent treatment the electron coordinate will be measured from
the accelerated target nucleus and is the only dynamical variable. Thus the
target system is the frame of reference [31,32]. In such a noninertial system
non-Newtonian forces arise. The corresponding Hamiltonian H te is

H te ¼ 2Vteð~rÞ þ Teð~rÞ þ Vrecoilð~r; ~rtðtÞÞ: ð6Þ

It is reasonable to neglect the last term Vrecoil: By doing this transitions are
excluded which are due to the interaction of the active electron with the
recoiling target nucleus. This so-called recoil effect leads to insignificant
contributions to total cross sections, but may be important for very close
collisions ðb , 1023 a.u.) [33]. Before the solution of equation (3) is

Fig. 1. Vector diagram for the projectile ion Aqþ: the ionic target core Bþ; and one
active electron. The impact parameter b is indicated. ~rp; ~rt and ~re are position vectors
of projectile, target, and electron in the center-of-mass system.
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explained in detail, the classical path ~RðtÞ should be defined. Given the time-
dependent electronic wave function Fe; a classical Hamiltonian for the
heavy particles may be defined:

H h ¼ Tpð~rpÞ þ Ttð~rtÞ þ Vptð~RÞ þ kFelVpeð~R 2 ~rÞlFel
þ kFelVteð~rÞlFel: ð7Þ

With this Hamiltonian the classical equations of motion are solved. The last
term in equation (7) was neglected because of its small influence on the
motion of the target core in case of a strongly target-centered wave function
Fe: It is emphasized that the concept defined by equation (7) introduces for
the first time a dynamically curved projectile trajectory in the impact-
parameter method. Thus the projectile motion is coupled to the motion of the
active electron. However, since the projectile interacts with a mean
electronic field, there is only approximate conservation of energy and
momentum. For small projectile scattering angles this deficiency can be
circumvented. In this case conservation of energy and momentum may be
forced by applying the Eikonal transformation [34].

It is noted that some calculations have been performed with hyperbolic
projectile paths. In this case only the first three terms in equation (7) are
considered. However, most of the previous calculations have been performed
for straight line paths, as given by the first two terms in equation (7). Such
calculations are equivalent to quantum-mechanical solutions of the three-
body Schrödinger equation with plane projectile waves. Typical examples
for such quantum-mechanical three-body theories are the plane-wave Born
approximation [35] and its limiting form at high incident energies, the Bethe
theory [36]. However, the main advantage of the present model compared to
previous stopping-power theories is the highest-order (coupled-channel)
description of the electronic motion.

2.2. Independent particle model

The electronic many-body Hamiltonian in equation (1) is treated in the
framework of the independent-electron frozen-core model. This means that
there is only one active electron, whereas the other electrons are passive (no
dynamic correlation is accounted for) and no relaxation occurs. In this model
the electron–electron interaction is replaced by an initial-state Hartree–
Fock–Slater potential [37]. This treatment is expected to be highly accurate
for heavy collision systems at intermediate to high incident energies. The
largest uncertainties of the independent-electron model will show up for low-
Z few-electron systems, such as H0 þ H0 and H þ He0 or for high multiple-
ionization probabilities.

The independent-electron approximation allows for a distinction of target
electrons and projectile-centered electrons which screen the projectile

Ionization and Energy Loss Beyond Perturbation Theory 11
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nuclear charge. One of the most important dynamic correlation effects
(deviations from the independent-electron approximation) is the collision of
a target electron with a projectile-centered electron [38,39]. This will
directly enhance the energy loss and reduce the projectile screening. It
follows that a separate treatment of the different projectile charge states is
important for reliable predictions of the mean energy loss for atomic targets
[4,10,11,40], insulators and at higher incident energies also for metals [41].

The time-dependent Schrödinger equation may be solved by expanding
Feð{~r}; tÞ in terms of unperturbed eigenfunctions wi of the target with
coefficients aiðtÞ ¼ kwilFeðtÞl: Thus, equation (3) is replaced by a set of
coupled first-order differential equations, the so-called coupled-channel
equations

i
d

dt
aiðtÞ ¼

X
j

ajðtÞe
iðEi2EjÞtVj!ið~RðtÞÞ ð8Þ

with the internuclear distance ~R and

Vj!ið~RðtÞÞ ¼ kwilVpeð~RðtÞ; ~rÞlwjl: ð9Þ

Ei is the orbital energy associated with the target wave function wi: Here Vpe

is an effective potential seen by the active electron, which contains the
screening effect produced by other electrons from the medium. For bare
incident ions, the active-electron projectile interaction Vpe is just the
Coulomb potential. However, in the case where the projectile carries
electrons, we use a screened potential made up of the Coulomb part due to
the projectile-nuclear charge and the static potential produced by the target
electrons that screen the projectile-nuclear charge

Vpeð~R 2 ~rÞ ¼ 2
Zp

l~R 2 ~rl
þ
XN

n

ð
d3r0

lxnð~r
0Þl2

l~R 2 ~r 2 ~r0l
; ð10Þ

where Zp is the projectile nuclear charge, xn is the projectile-electron wave
function and N is the number of projectile electrons. The wave functions xn

for each electron n of the projectile are obtained according to the Hartree–
Fock–Slater procedure [37]. Thus, we neglect dynamic screening (a time
dependence of xn due to target induced polarization, respectively, excitation/
ionization), Pauli correlation (anti-symmetrization of the projectile- and
target-centered wave functions) as well as dynamic correlation effects due to
the residual electron–electron interaction. It is pointed out, that the dynamic
electron–electron interaction is not included in the present model since there
is only one active electron.

For high projectile speeds and low projectile charge-states the transition
matrix elements Vj!i are small. This is the domain of first-order perturbation
theory (SCA, first-order Born approximation). In this case, most transitions
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are governed by the direct step from the initial state j to the final i: Thus, we
may drop the summation over j and use ajðtÞ ¼ 1 (the state j corresponds to
the ground state). Hence, the time-consuming solution of the coupled-
channel equations is reduced to a set of simple integrals over time within
perturbation theory.

2.3. Wave functions – the basis set

The starting point of the present theory is an expansion of the time-dependent
electronic wave function Fe in terms of single-center eigenfunctions wi of
the target Hamiltonian H te

Feð~r; tÞ ¼ FBð~r; tÞ þFCð~r; tÞ; ð11Þ

FBð~r; tÞ ¼
X
n;l;m

an;l;mðtÞe
2iEn;ltwn;l;mð~rÞ; ð12Þ

FCð~r; tÞ ¼
X
l;m

ð1

0
d1 bn;l;mð1; tÞe

2i1tw1;l;mð~rÞ: ð13Þ

In the above equations n; l and m are the main quantum number and the
quantum numbers associated with angular momentum and angular
momentum projection, respectively. The eigenfunction wn;l;mð~rÞ is defined
in the usual way as

wn;l;mð~rÞ ¼
1

r
un;lðrÞYl;mðVÞ ð14Þ

and

En;lun;lðrÞ ¼ 2
d2

2 dr2
þ

lðl þ 1Þ

2r2
2 VtðrÞ

 !
un;lðrÞ; ð15Þ

where En;l and the subscript n have to be replaced by 1 for continuum states.
The radial wave functions un;l and u1;l are calculated numerically using a
Runge–Kutta method with variable step width. The bound-state wave
functions un;l are integrated from large r values down to zero and free wave
functions are calculated from zero towards large r in order to suppress any
irregular component in the wave function. The numerical uncertainty of the
bound-state eigenvalues En;l is about 1026. Boundary values for small r are
obtained from a polynomial expansion of Vte and u1;l: The normalization of
continuum states is similar to the method described by Cowan [42]. Bound-
state wave functions are dimensionless whereas the continuum states are
normalized per square root of energy (in a.u.). Hence it follows from
equation (13) that the coefficients bl;m are also given per square root of
energy (in a.u.). The eigenfunctions of H te should be complete and
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orthogonal. The completeness was checked by calculating the overlap matrix
elements between an arbitrary target-centered wave function and Fe: The
sum over the corresponding squared overlap matrix elements was equal to
unity to within 1024. Orthogonality was verified by calculating overlap
matrix elements between different eigenfunctions wi which are typically in
the order of 1025. The infinite sums in equations (12) and (13) have to be
truncated in order to perform the numerical calculation of the time-
dependent wave function or the corresponding coefficients a and b: This
introduces no problems for the bound states since highly excited states are
generally less populated than the K, L or M shell. However, electrons
captured into projectile states, as well as high-energy continuum electrons,
lead to a population of high l states of target-centered wave functions. Thus
partial waves exceeding orbital angular momenta of l ¼ 8 often have to be
considered for the continuum states. Another problem arises since the
continuous energy variable of the free wave functions is not easy to handle in
a numerical calculation. Therefore, the continuum is represented by a sum
over a few (about 10 for each orbital angular momentum in the present work)
pseudodiscrete radial wave functions Cl;m :

FCð~r; tÞ ¼
X
j;l;m

1

r
Cl;mð1j 2 D1j=2; 1j þ D1j=2; r; tÞYl;mðVÞ; ð16Þ

Cl;mðE1;E2; r; tÞ ¼
ðE2

E1

d1 bl;mð1; tÞe2i1tu1;lðrÞ: ð17Þ

An exact solution for Cl;m may be given in case of a pulse-like ionization
process at t ¼ 0: The corresponding moving wave packet is known as a Weyl
packet [43,44],

Cl;mðE1;E2; r; tÞ < �bl;mð �1; tÞ
ðE2

E1

d1 e2i1tu1;lðrÞ: ð18Þ

However, the numerical treatment of such explicitly time-dependent basis
states would be time consuming compared to the treatment of bound states.
Thus we search for a further simplification of Cl;m by investigating the
asymptotic behavior of Coulomb wave functions [42]. For rD1p p the
radial wave function u1;l is nearly independent of 1 and may be considered
constant for integration. For 1t p p the exponential function in equation
(18) is nearly independent of 1: In both cases Cl;m in equation (18) may be
replaced by

Cl;mðE1;E2; r; tÞ <
�bl;mð �1; tÞ

E2 2 E1

ðE2

E1

d1 e2i1t

� � ðE2

E1

d1 u1;lðrÞ

� �
ð19Þ
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Cl;mðE1;E2; r; tÞ

¼ �bl;mð �1; tÞe
2i �1tFðE2 2 E1; tÞ

ðE2

E1

d1 u1;lðrÞ

¼
�al;mð �1; tÞffiffiffiffiffiffiffiffiffiffi
E2 2 E1

p e2i �1tFðE2 2 E1; tÞ
ðE2

E1

d1 u1;lðrÞ; ð20Þ

with

FðDE; tÞ ;
2

tDE
sin

tDE

2

� �
: ð21Þ

The dimensionless coefficients �a correspond to the coefficients �b defined
above. Except for �a and the exponential function in equation (19), all
quantities are real numbers and only the integral over the radial continuum
wave functions needs to be calculated numerically. A damping function
similar to F was introduced by Reading et al. [44] in order to improve the
asymptotic behavior of continuum wave functions. However, the wave
packets as described above are only approximate solutions for large values of
t and r: It is evident that this deficiency will affect mainly those continuum
states which have a considerable overlap with asymptotic projectile states.
Most of these states are neglected anyway because of the finite number of
target-centered partial waves ðl , 11Þ taken into account. From the structure
of Coulomb wave functions it is obvious that transition matrix elements
involving either a high Rydberg state or a low-energy continuum state are
identical when re-normalized per square root of energy [42]. Since an
explicit summation over an infinite number of bound states is impossible in a
numerical treatment, we have integrated these re-normalized Rydberg wave
functions up to the continuum threshold. The resulting Rydberg wave packet
is then added to the lowest energy continuum packet. In this way
approximate completeness of the basis set is achieved.

It is noted that other authors have either neglected the damping factor F
[29,43] or they used only approximate atomic wave functions in similar
descriptions of the electronic motion.

From symmetry properties of the wave function and from the Coulomb
matrix elements it is possible to distinguish between two classes of basis
states, namely gerade (denoted by þ ) and ungerade (denoted by 2) states.
The corresponding wave functions Fþ and F2 may be obtained by replacing
the spherical harmonics Yl;m in equation (14) by

Y^
l;lml ¼

1ffiffi
2

p ðYl;lml ^ ð21ÞmYl;2lmlÞ; ð22Þ

for m – 0 and

Yþ
l;0 ¼ Yl;0: ð23Þ
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The projectile interaction does not lead to transitions between gerade and
ungerade states. Therefore, only states with the same symmetry as the ground
state have to be considered. The coupled-channel equations are solved in the
present work for about 500 gerade states (including to up 50 bound states),
which replace about 900 eigenstates. The gerade (or ungerade) states are
chosen to yield optimum convergence for a certain regime of incident
energies.

2.4. Matrix elements

In order to integrate the coupled-channel equation (8) the time as well as the
impact-parameter dependence of the matrix elements (equation (9)) have to
be determined. For this purpose, the matrix elements Vj!ið~RðtÞÞ are expanded
in terms of the radial ðRÞ and angular ðR̂Þ parts of the internuclear vector ~R
according to

Vj!ið~RðtÞÞ ¼ 2
Xliþlj

L¼lli2ljl
W

i;j
L;MG

i;j
L ðRÞYL;MðR̂Þ; M ¼ mj 2 mi; ð24Þ

which is obtained after separating the radial and angular parts (determined by
the spherical harmonics YL;M) of the atomic target wave function wi: The
coefficients W

i;j
L;M are given by

W
i;j
L;M ¼

4pð2li þ 1Þð2lj þ 1Þ

2L þ 1

� �1=2

ð21ÞmiþM
li lj L

0 0 0

 !

	
li lj L

2mi mj 2M

 !
: ð25Þ

The symbols

· · · · · · · · ·

· · · · · · · · ·

 !

in equation (25) represent the Wigner ‘3j’ symbol as described in Ref. [45].
We consider only screened interaction potentials, which are spherically
symmetric. In this case the function G

i;j
L ðRÞ can be written as

G
i;j
L ðRÞ ¼

ð1

0
drupi ujfLðr;RÞ; ð26Þ

where ui; uj are the radial wave functions of the states i and j; respectively.
The function fLðr;RÞ is determined by the interaction potential and is given
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by

fLðr;RÞ ¼ 2Zp

r L
,

r Lþ1
.

; ð27Þ

for the Coulomb potential 2Zp=ðl~R 2 ~rlÞ and

fLðr;RÞ ¼ lð2L þ 1Þð21ÞLALðlr,ÞHLðlr.Þ: ð28Þ

for the Bohr-like screened potential

expð2ll~R 2 ~rlÞ
l~R 2 ~rl

:

The functions ALðxÞ and HLðxÞ are equal to the modified spherical Bessel
functions iLjLðixÞ and iLþ1hþ

L ðixÞ; respectively [46]. The notation r,ð.Þ means
the smaller (larger) of the values of r and R:

The projectile-electron potential (equation (10)) is represented here by

Vpeð~R 2 ~rÞ ¼ 2
Zp 2 np

l~R 2 ~rl

þ np

Xnmax

n¼1

ðAn þ Bnl~R 2 ~rlÞ
expð2lnl~R 2 ~rlÞ

l~R 2 ~rl
; ð29Þ

where np is the number of bound electrons and the coefficients An; Bn and ln

are obtained by fitting to the numerically determined potential from equation
(10). The number of Bohr-like screened potential terms, nmax; corresponds to
the number of electronic shells of each target atom. In this way, the function
fLðr;RÞ used in equation (26) is obtained straightforwardly.

With the matrix elements from equation (24) the coupled-channel
equations are solved numerically in order to obtain the coefficients ai after
the collision ðt !1Þ: For instance, the probability of ionizing the target from
the ground state to a continuum state of energy 1; angular momentum l and
projection m in a collision with impact parameter b is given by

dPl;m

d1
ðbÞ ¼ lim

t!1
la1;l;mðb; tÞl

2
ð30Þ

and to a empty bound state n

Pn;l;mðbÞ ¼ lim
t!1

lan;l;mðb; tÞl
2: ð31Þ

The accuracy of the present computer code when restricted to perturbation
theory (SCA mode) was checked against PWBA [1,47] and SCA [29,33]
results for ionization and excitation. From the comparison a relative
uncertainty of less than 0.1% for probabilities and about 2% for cross
sections was inferred for different final states. It is noted that the uncertainty
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in the cross section calculations is mainly due to the small number of impact
parameter steps and continuum energies considered in this work. The
numerical transition matrix elements agree to within 1024 or better with
analytical solutions for transitions between the lowest bound states. Finally,
the accuracy of the coupled-channel code was checked against results of the
well-established two-center code (AO þ ) by Fritsch [48,49]. When
restricted to the same 20 target-centered bound states the results of both
codes agree to within two to three digits for excitation probabilities ranging
from 1026 to 0.15. With the present code unitarity can be preserved to within
about 1027 if the damping factor F in equation (21) is set to unity.

The results coming from the coupled-channel method results agree with
the predictions of the first-order perturbation theory (SCA) in the case of a
small perturbation. Small perturbations correspond to either fast projectiles,
large impact parameters or small projectile charges. Thus, the advantages of
coupled channel calculations compared to first-order theories should show
up especially at intermediate incident energies and for small impact
parameters. In contrast to other coupled-channel calculations we do not use
pseudostates to represent the electron continuum wave functions. Instead we
use a large number of continuum wave-packets that are composed of a
superposition of exact continuum eigenstates (up to 500 gerade states with
partial waves up to l ¼ 10), since the computation of the stopping power
demands high accuracy of the emitted electron energy spectrum.

2.5. Ionization/stopping/straggling cross sections

2.5.1. Electronic

Each excited or continuum state corresponds to a well-defined energy
transfer DEi ð¼ Ei 2 E0Þ: Then the cross section for such an energy-transfer
process will read

si ¼ 2p
ð1

0
b dbPiðbÞ ð32Þ

and average electronic energy loss �QðbÞ is given by

�QðbÞ ¼
X

i

PiðbÞDEi ð33Þ

with the ionization and excitation probabilities Pi from equations (30) and
(31). The electronic stopping cross section Se and energy straggling W per
atom can be computed directly from:

Se ¼
X

i

siDEi ¼ 2p
ð1

0
b db �QðbÞ ð34Þ
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and

W ¼
X

i

siDE2
i : ð35Þ

It is noted that the above sums have to be replaced by integrals in the case of
continuum states.

Figure 2 shows the comparison of the present coupled-channel results
(solid curve) with other calculations for the total ionization cross section as
well as for the electronic stopping power Se of antiprotons on H. The dashed
curve also represents coupled-channel calculations [50] using a large number
of pseudostates. Both coupled-channel calculations provide similar results
and are in rather good agreement with recent measurements [51] (symbols).
Also displayed are results of first-order Born (PWBA) and the CDW-EIS
model. As it can be seen from this figure, higher order effects become very
important at low projectile energies. The PWBA calculations yield too large
values of the electronic energy loss, since for antiprotons the polarization
effect leads to a reduced electronic density along the ion path. In the CDW-
EIS model [5] (dotted line) the initial and final states partially include the
effect of the projectile potential (approximate two-center initial and final

Fig. 2. Total ionization cross section and stopping power for antiprotons on
hydrogen atoms.
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states) and as a consequence the results at intermediate to high energies are
significantly improved. However, a breakdown of this model is observed for
energies below 70 keV. This is attributed to the incomplete treatment of the
two-center effects and to the neglect of higher order residual projectile–
target interactions in the CDW-EIS model. Furthermore, at low energies it is
not able to describe the Fermi–Teller effect responsible for the slow decrease
of the stopping power as a function of the projectile energy. The curve
denoted by AI provides a simple model for this adiabatic ionization [52]. In
this model the adiabatic potential curves for the electronic states in the field
of the quasidipole formed by p and �p are taken into account and a good
agreement with AO results is observed for low energies.

2.5.2. Nuclear

The nuclear energy loss and the corresponding stopping cross section can
also be calculated from the solution of classical equations for the projectile
path. In equation (7) the interaction of the electron cloud with the residual
target core was neglected. Thus, the projectile scattering angle u is a more
accurate quantity than the recoil energy in this model. Consequently, we
search for a connection between the Q value, the projectile scattering angle,
and the projectile energy loss. Considering conservation of energy and
momentum, the kinetic energy transfer to the target atom is given by

T½Q� ¼
4mpmt

ðmp þ mtÞ
2

E f sin2ðucm=2Þ þ
1

4
ð1 2 f Þ2

� �
ð36Þ

with f ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 Q=Eðmp þ mtÞ=mt

q
; E the ion initial energy, and ucm the

projectile scattering angle in the center-of-mass system

tan u ¼
sin ucm

cos ucm þ mp=mt

 !
:

The nuclear stopping power per atom Sn may be computed directly from the
impact-parameter integration of the nuclear energy loss.

At low incident energies the nuclear stopping process determines the
slowing down of ions in the matter. Calculation with parameterized time-
independent potentials have yielded stopping powers and ranges in good
agreement with experimental data [53] except for some special systems [54].
These potentials correspond to static (frozen) electronic charge distributions.
However, investigations of highly charged ions or negative particles
require the treatment of collisional excitation processes and of the resulting
dynamic target polarization. Any polarization during the collision will
influence the projectile/target interaction potential. Hence, the nuclear
stopping power is changed. It should be emphasized that the nuclear stopping
may also be influenced by the electronic energy loss in a different fashion for
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many-electron systems due to the formation of quasi-molecular orbitals that
influence the excited potential [54].

We have used our atomic-orbital coupled-channel code to calculate
dynamic curved projectile trajectories for protons and antiprotons in the field
of polarized hydrogen atoms. According to Section 2.1, the electronic motion
is treated quantum mechanically resulting in a time-dependent electronic
density. The nuclear motion is determined simultaneously by Newtow’s
classical equation of motion and the nuclear energy transfer may directly be
extracted. Figure 3 shows scaled nuclear energy loss cross sections for
different incident light particles on atomic hydrogen. For fast projectiles the
nuclear energy loss cross section Sn behaves roughly as lnðEpÞ=Ep and
a maximum of Sn is found at about 50 eV. Thus, SnEp=lnðEp=10 eVÞ is nearly
constant when Ep is varied from 1 to 300 keV. The lowest curve in Fig. 3 is the
well-known ZBL stopping-power prediction [53]. It relies on an approximate

Fig. 3. Scaled nuclear stopping power as a function of the projectile energy for
protons (short-dashed and thick solid line), antiprotons (long-dashed and dash-
dotted lines) and neutral hydrogen incident on hydrogen atoms. Thin solid line: ZBL
prediction [53] for neutral projectiles. For two of the curves (short and long-dashed)
dynamic target polarization has been accounted for in the calculation.
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treatment of the static interaction between a projectile and the target atom.
Since both collision partners are screened in this case the results are lower than
the static results for incident protons and antiprotons. For antiprotons at low
velocities the static results are slightly larger than for protons because the
distance of closest approach r0 is smaller for antiprotons.

Especially at low energies, the results of dynamic calculations show a
significant deviation from the static ones. At 2 keV the antiproton results
with polarization lie about 20% above the static results. Furthermore, Sn

clearly shows a different energy dependence for antiprotons and protons. The
reason for this deviation is depicted in Fig. 4. At large impact parameters
negative projectiles repel the target electron cloud and positively charged
particles attract the electrons. Hence, in both cases the projectile is deflected
towards to the target atom and the deflection is larger than in the static case.
The situation is different for the positive ions at small impact parameters; at
larger internuclear distances the projectile is attracted by the electron cloud,
but at small distances the Coulomb force between the nuclei leads to a
sudden projectile deflection away from the target nucleus. At low energies,
this repulsion is even enhanced due to a reduction of r0: At intermediate
impact parameters, the attraction and the repulsion are of the same strength

Fig. 4. Scheme showing typical projectile trajectories of protons and antiprotons in
the field of polarized target atoms.
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and the trajectory is nearly a straight-line. Thus, the nuclear energy transfer is
strongly reduced and at a certain impact parameter it is even zero.

Finally, at low incident energies, larger impact parameters gain
importance and the dynamic results exceed the static ones. On the contrary,
for fast positively charged projectiles the zero-crossing of the projectile
scattering angle (at impact parameters of about 2 a.u. in the case of H) leads
to slightly reduced dynamic nuclear stopping cross sections.

2.6. Two-center calculations

The procedure outlined in the previous sections to solve the time-dependent
Schrödinger equation should be highly accurate as long as electron capture is
of minor importance. An exact description of an even single projectile-
centered state would require an infinite number of target-centered states in
the basis set. The use of huge basis sets of target-centered states can in fact
describe, in same cases [12], the energy loss due to the capture process but in
general full two-center calculations have to be performed.

The present coupled-channel calculations also allow for the inclusion of
projectile-centered states according to following expansion

CeðtÞ ¼
X

n

anðtÞfnð~r; tÞ; ð37Þ

where the wave functions fnð~r; tÞ are either time-dependent target-centered
states (bound or wave packet continuum states) or projectile-centered states.
The coupled-channel equations are obtained from the more general matrix
elements for transitions between two moving reference frames

fmð~r; tÞh jH e 2 i
›

›t
CeðtÞj i ð38Þ

and they read

X
n

kfmð~r; tÞlfnð~r; tÞli
dan

dt
¼
X

n

anðtÞ fmð~r; tÞh jH e 2 i
›

›t
fnð~r; tÞj i: ð39Þ

The matrix elements can be calculated as

fmð~r; tÞh jH e 2 i
›

›t
fP

nð~r; tÞ
			 E

¼ fmð~r; tÞh jVt þH p 2 i
›

›t
fp

nð~r; tÞj i

¼ kfmð~r; tÞlVtlfp
nð~r; tÞl ð40Þ
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and

fmð~r; tÞh jH e 2 i
›

›t
ft

nð~r; tÞ
		 �

¼ fmð~r; tÞh jVp þH t 2 i
›

›t
ft

nð~r; tÞ
		 �

¼ kfmð~r; tÞlVplft
nð~r; tÞl;

for exact time-dependent target-centered states ft
nð~r; tÞ or projectile-centered

f
p
nð~r; tÞ states.
Since the wavepackets ft

nð~r; tÞ ¼ e2i �EtðDEÞ21=2
Ð
wE
ð~r; tÞ dE are not exact

solutions of the time-dependent Schrödinger equation for the target atom,
there is an extra term

fmð~r; tÞh jH e 2 i
›

›t
ft

nð~r; tÞ
		 �

¼ kfmð~r; tÞlVplft
nð~r; tÞlþ fmð~r; tÞh j

2i �1tðDEÞ21=2
ð
ð12 �1Þ w1ð~r; tÞj id1;

which is not zero in the case of capture matrix element (kprojectilel· · ·ltar-
getl). It is noted that this term does not appear in the case of target–target
matrix elements. All matrix elements are calculated numerically for
hydrogen-like projectile wave-functions.

The capture probabilities are then obtained from the coefficients an from
the expansion (37). For the capture energy-loss, the translation factor energy
v2=2 has to be added to the transition energy between the target and projectile
states. In conclusion, the treatment of electron capture requires to account for
phase factors of the moving reference systems, for non-orthogonal states at
both centers and to consider the time dependence of wave packets. Such
calculations are, therefore, much more time consuming than target-centered
computations.

3. HIGHER ORDER EFFECTS

The coupled-channel calculations allow for accurate calculations of higher
order effects. At high energies the electronic energy loss may be expanded in
terms of the projectile charge Zp according to

QðbÞ ¼ q1Z2
p þ q2Z3

p þ q3Z4
p þ · · · ð41Þ

The quadratic term is the leading one at high energies. It is well described
by first-order Born theory and involves only direct ionization and excitation
of the target atom. With decreasing ion energy higher order effects become
important. They either depend on the sign of the projectile charge Zp
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(polarization and binding effects) or only on the absolute value of Zp

(Magnus [55] and Bloch [19] corrections). All higher order effects
(deviations from the Z2

p proportionality) can be related to multiple successive
interactions of the active electron with the projectile and the (screened) target
within a single collision. The number of these interactions increases for high
projectile charges, small impact parameters and low projectile velocities. We
can distinguish different higher order contributions as a function of the
strength of the perturbation.

For small perturbations of outer-shell electrons the polarization of the
electronic density appears first. Positively charged particles attract and
negatively charged projectiles repel the electron cloud during an early stage of
the collision, which leads to a change in the density around the projectile path
and correspondingly to a change in the stopping power. This is a second-order
effect (proportional to Z3

p ).
By decreasing the ion energy the influence of the projectile is no longer a

small perturbation and effects such as saturation and binding-energy
modifications will appear. In standard first-order treatments, the sum over
all probabilities exceeds one since no reduction of the initial-state population
is accounted for. This leads to an artificial creation of electrons (overestimated
stopping power proportional to Z4

p ). The corresponding experimentally
observed saturation (stopping power reduction compared to Z2

p for heavy ions)
may roughly be described within the unitary first-order Magnus approxi-
mation [55]. A different treatment by Bloch [19] also takes into account this
effect and the term proportional to Z4

p agrees quite well with the one from
coupled-channel calculations.

For inner-shell electrons the so-called binding effect gains importance.
The resulting change of the stopping power is proportional to Z3

p but its sign
is opposite to the change induced by the polarization effect. The binding
effect can be viewed as an increased binding energy of the bound electron in
the vicinity of positively charged projectiles, which reduces the stopping
power. It is a second-order effect (proportional to Z3

p ) that may be included
in a perturbative treatment by consistently accounting for the diagonal
matrix elements of the projectile/electron interaction or by including the
mean binding effect in a perturbed stationary-state model [56].

Finally, at low energies the projectile represents a strong perturbation and
effects such as electron capture for positive projectiles and adiabatic
ionization (Fermi–Teller effect [52]) for negatively charged projectiles turn
out to be very important. The electron capture may be viewed as a very
strong polarization effect (target electrons are attracted by and finally travel
with the projectile). If the electronic motion is described in a target-centered
basis all orders of the perturbation are necessary to yield the time-dependent
electron-density. In other words, the interaction between electron and
projectile never stops. In the Fermi–Teller effect, collisions with negative
heavy projectiles are involved. For the case of antiprotons on H, the electrons
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move in the field of a transient ‘quasidipole’ formed by the heavy particles.
The electronic states of the quasidipole experience a rapid loss of binding
energy when the distance between the heavy particles decreases, and become
even unbound at a certain non-zero ‘critical’ distance.

Besides these effects we also observe for increasing perturbations (high Zp

at low energies) a diffusion like effect in the energy spectrum of emitted
electrons [7]. The first excitation step gives rise to an excitation spectrum
with a maximum at low energy transfers. Successive interactions
(continuum–continuum couplings) yield a broadening of the excitation
spectrum. Hence, low electron energies are suppressed due to this diffusion-
like process and the mean stopping power as well as the straggling are
enhanced. This energy-diffusion effect may be viewed as the onset of the
Fermi-shuttle effect, where multiple head-on collisions between projectile
and electron in the field of target lead to extremely high electron energies.

Figure 5 shows a contour plot of the time-dependent electron density for a
hydrogen atom disturbed by a positively (displayed on left) and negatively
(displayed on right) charged particle at 10 keV with an impact parameter of
1 a.u. These electronic densities correspond to a cut in the collision plane and
were obtained directly from the calculated transition amplitudes aiðtÞ
according to

rð~r; tÞ ¼
X
i;j

aia
p
j e2iðEi2EjÞtwið~rÞw

p
j ð~rÞ ð42Þ

using about 200 gerade states. An inspection of this figure shows several
interesting features. First, the positively charged particle (proton) attracts the
electron on the incoming path; the so-called polarization process. One may
see that the electron density moves towards the projectile. The opposite
effect takes place for the negatively charged particle (antiproton).

Second, for protons at the distance of closest approach, the maximum of the
electron-density points to the backward direction at an angle of about 1208
with respect to the beam axis. It is clearly visible that the electron density lies
behind the projectile, although the proton is attracting the electron. The reason
for this behavior is a delayed response of the electron cloud (the inertia
due to the electron mass). Third, the proton enables electron-capture in the
outgoing path of the collision and large fraction of the electron density is
finally bound to and moving with the projectile. Since an antiproton repels the
target-electron, the electron density near the projectile on the outgoing path
of the collision is almost zero.

For collisions of antiprotons with atomic hydrogen, a quasidipole is
formed during the collisions. The dipolar antiproton–proton system does not
support bound states for inter-particle distances below 0.64 a.u. [52]. For
finite velocities and larger impact parameters b (in the figure, b ¼ 1) there is
still a significant ionization contribution. As can be observed in the figure at
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the distance of closest approach there is a high transition probability
(blowing up of the density).

The electronic energy loss for proton, antiproton, helium and antihelium
on H at 500 keV normalized to first-order Born (SCA) results is shown in
Fig. 6 as a function of the impact parameter. Results for particles are
represented by solid lines and for antiparticles by dashed lines. Deviations
from the horizontal line (ratio equal to one) correspond to higher order
effects. A fictitious projectile charge Zp ¼ ^0:5 is also displayed in order to
observe the tendency of the energy loss as a function of the projectile charge.
For large impact parameters the difference between the energy loss for
particles and antiparticles is due to the polarization effect. The energy loss

Fig. 5. Contour plot of the time-dependent electronic density of a hydrogen atom
disturbed by a 10 keV proton (on left) and antiproton (on right) at b ¼ 1: The plot
corresponds to a cut of the density across the collision plane.
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for positively charged particles is larger than for negatively charged particles
and the difference is nearly symmetrical for low Zp:

For small impact parameters one may see an overall reduction of the
energy loss as a function of lZpl: This corresponds to Z4

p effects
overshadowing the Z3

p ones (polarization and binding effects). The binding
effect can enhance or reduce the probability to excite or ionize the target
atom. It always leads to a significant reduction of the polarization effect at
small impact parameters. It should be noted that although the overall
numerical uncertainties are about 2%, they can be much larger for impact
parameters smaller than 2 a.u. For central collisions ðb ! 0Þ; we can,
however, strongly increase the size of the basis set by using only states with
angular momentum projection m equal to zero due to the azimuthal
symmetry of the time-dependent electronic wave function. Calculations
performed with almost 150 of these states show that the Barkas effect, the
difference between the energy loss for positively and negatively charged
particles, is nearly zero (to within the numerical uncertainties) for
unscreened projectiles. This result seems to be independent of the target
potential since it is also observed for a harmonic-oscillator target [57].

Fig. 6. The electronic energy loss normalized to first-order Born results for bare
projectiles with Zp ¼ ^0:5;^1 and ^2 at 500 keV/u on hydrogen. Results for
positively charged particles are represented by solid lines and for negatively charged
ones by dashed-lines. The squares at b ¼ 0 represent a calculation with improved
accuracy. The dotted lines show the transition between the two AO calculations.
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4. PHOTON VS. CHARGED-PARTICLE IONIZATION

Here we apply the coupled-channel method to calculate photo ionization of
atomic hydrogen by short (femtosecond) laser pulses at high power densities
(up to 5 £ 1014 W/cm2). A classical electro-dynamical field approximates the
laser/atom interaction, according to (in the Coulomb gauge)

VlaserðtÞ ¼ 2~r·~EðtÞ ð43Þ

with

EðtÞ ¼ E0 exp 2
t24 ln 2

Dt2

 !
cosðvtÞ: ð44Þ

The time dependent shape of this field is given by a cos-function with
amplitude E0 enveloped by a Gaussian centered at the time t ¼ 0 with full
width at half maximum (FWHM) Dt representing the laser pulse length.

The transition matrix elements are non-vanishing if the dipole selection
rules are fulfilled. The dipole approximation is valid, since the wavelength of
the laser is large in comparison to the atomic radius. For a linear polarized
laser beam, with the electrical field in the z-direction, this means Dl ¼ ^1
and Dm ¼ 0: The coupled-channel method is used to determine the
coefficients of the wave function by solving the system of coupled-channel
equation (3) for 764 eigenstates of the target. These consist of 45 bound
states up to n ¼ 9 and wave packets up to continuum energies of 18 eV and
l ¼ 9; all coupled by the corresponding dipole matrix elements for linearly
polarized light. Although we have performed large-scale computations, there
will be an upper limit for the laser-pulse width Dtp; since the corresponding
energy broadening DEp should exceed the energy difference of neighboring
continuum states. Furthermore, there will be a maximum possible power
density I related to the upper limit of electron energies and partial waves l in
the calculation. These two computational limits have been explored here.

As a result of the calculations we obtain the differential probability dP of
ionizing an atom in an energy interval d1 depending on the electron energy.
Figure 7 represents such an ionization probability calculated for hydrogen
atoms excited with a wavelength of 260 nm and a pulse duration of 10 fs.
The probability is enhanced at integer multiples of the photon energy (nhn
where the minimum number n is given by the multiple at which the
ionization limit is exceeded (in case of hydrogen n ¼ 3). Sometimes a small
shift of the harmonics is observed which is caused by second-order terms in
the perturbation theory like Stark effect and ponderomotive force [58]. The
differential probability is increased with a high power of the laser intensity.
This is seen in the broadening and increase of the ionization peak structures
with increasing laser intensity in Fig. 7. The broadening results from
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a reduced effective interaction time, since the ground state may be
depopulated on a sub-femto second time scale for high laser intensities.

Resonant and also non-resonant multiphoton transitions are well
reproduced with the program. This was tested by changing the wavelength
from 200 to 260 nm.

Figure 8 displays the corresponding 3-photon ionization cross sections
sð3Þ=I2 in comparison with literature values [59]. The corresponding N-photon
cross sections in units of cm2N/WN21 are defined as

sðNÞ=IN21 ¼ P=F=IN21=teffðNÞ; ð45Þ

where P is the ionization probability, F is the flux in photons/cm2/s and I is the
power density in W/cm2. The effective interaction time teffðNÞ is equal to the
width of the light-pulse Dtp divided by 1:33N 0:5 for a long Gauss packet.

Fig. 7. Differential ionization probability of hydrogen at 260 nm calculated for four
laser intensities.
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For light with linear polarization 3 overlapping Fano-peak profiles are
visible in Fig. 8. These peaks correspond to resonance ionization with the
intermediate bound states 2s (at 243 nm), 3s/3d (at 205 nm) and 4s/4d (at
195 nm). It is seen that our coupled-channel results (symbols) are in good
agreement with the results of third-order perturbation theory [59]. We
predict a broadening of the 2s-resonance maximum due to the short pulse
durations of only 10 and 30 fs. For the 30 fs-pulses there is a clear indication
for non-perturbative effects as the cross section for I ¼ 5 £ 1012 W/cm2 is
suppressed (due to induced photon emission) in comparison with the one for
5 £ 1011 W/cm2 at the center of the peak. For a wavelength of 253 nm at the
lower power density we find a significant deviation between our results and
the reference curve. This deviation is most likely due to the finite numerical
energy steps of 0.25 eV that exceed the photo-ionization peak-width of
0.17 eV for this case.

Fig. 8. Scaled 3-photon ionization cross sections sð3Þ=I2 as a function of the
wavelength l for two power densities I and two-pulse lengths Dtp: Standard results
for asymptotically long times and asymptotically low power densities are taken from
Ref. [59] and shown as dashed (linear polarization) and solid (circular polarization)
curves.
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Figure 9 displays the integrated ionization probability of H after pulsed
optical excitation as a function of the maximum cycle-averaged laser-power
density. Calculations have been performed for wavelengths between 80 and
590 nm and for pulse lengths between 10 and 30 fs (Fig. 8). All results
(symbols and fitted thin curves) show a monotonous increase as a function of
the power density I and nearly 100% ionization is reached for
I ¼ 5 £ 1014 W/cm2. At low power densities the curves are proportional to
IN ; in agreement with perturbation theory.

The following restrictions have been found to the application of coupled-
channel calculations for the computation of pulsed-laser ionization. The
dipole approximation restricts the photon energy to ,1 keV in the current
treatment. This, however, does not pose a strict condition since a partial-
wave expansion of the laser field may be used, similar to as in the case of
screened Coulomb potentials. In comparison to ion/atom collisions, typical
photon/atom interaction times are extremely long. An upper limit of the
pulse width Dtp ¼ 100 fs at intermediate laser-power densities follows from
the numerically restricted density of continuum states.

Fig. 9. Total ionization probability of H as function of the power density I for
different non-resonant laser wave lengths and pulse widths.
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High power densities ðq1014 W=cm2Þ and small laser frequencies
(l . 600 nm) are related to extremely high orders of perturbation theory.
This requires basis sets extending to high values of ðl q 15Þ and high ejected-
electron energies (1q 20 eV). With the help pf P/Q space methods [60] the
range of validity of coupled-channel calculations may be extended in this case.

5. COMPARISON WITH MEASUREMENTS

The first coupled-channel calculations for total and differential energy losses
were performed for very simple systems such as H on H, He [11,12,61].
Later theses calculations have been extended to more complex systems such
as the inner-shells of Al and Si [22,24]. Good agreement with experimental
data has been found and the remaining discrepancies have been attributed to
multielectron processes.

5.1. Gas targets

5.1.1. Angular dependence

A direct measurement of the electronic energy loss as a function of the
impact parameter is a hard task to be performed from the experimental point
of view and only a few experiments have been performed for fast light ions.
Experiments in gas targets under single collision condition provide a more
direct and precise comparison of the theoretical results with the experimental
data. Here we compare the results of the coupled-channel method for
collisions of protons with He as a function of the projectile scattering angle.

Winter and Auth [61,62] have directly measured the energy loss of protons
impinging on gas targets as a function of the final projectile scattering angle.
For helium targets they have observed a peak structure (with a width of about
0.6 mrad) in the mean energy loss at scattering angles around 0.5 mrad. The
angular dependence of the energy loss for 200 keV is shown in Fig. 10. The
peak can be related to the so-called binary process: if the projectile interacts
with a free electron initially at rest, each final electron energy corresponds to
a well-defined impact parameter and projectile scattering angle. Small but
non-zero impact-parameter collisions between proton and electron give rise
to a maximum projectile-scattering angle of 0.5 mrad for this case. The angle
is given by the mass ratio of an electron and the projectile.

The scattering of a proton with a He atom is at least a three-body problem
involving the projectile–active-electron and the projectile–target-core
interaction (the four-body problem is reduced to a three-body problem by
application of the independent-electron frozen-core model). Therefore, the
conversion from impact parameter to projectile-scattering angle should be
done carefully. For incident energies above a few hundred eV/amu and for
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small projectile scattering angles, this transformation can be performed
employing the Eikonal method [34]. Basically, the transition amplitude as a
function of projectile scattering angle is obtained from the impact parameter
dependent amplitudes aiðbÞ by a Hankel transformation. The two-electron
amplitude can then be obtained from the product of two single-electron
amplitudes. The differential scattering amplitude for a small projectile
scattering-angle Q; in the Eikonal approximation [34], reads

fn1;l1;m1;n2;l2;m2
ðQÞ¼ im1þm2K

ð1

0
bdbJlm1þm2lðKQbÞ

£ an1;l1;m1
ð1;bÞan2;l2;m2

ð1;bÞexp 2i
ð

dt
ZpZt

R

� �
2d1;2;GS

� �

for a bare projectile with charge Zp and for a target nuclear-charge Zt: The
principal quantum number is denoted ni and li; mi are quantum numbers
associated with the angular momentum and angular momentum projection of

Fig. 10. Mean electronic energy loss for Hþ incident on He at 200 keV as a function
of the projectile scattering angle. Closed squares with error bars : experimental
results from Ref. [61]. Solid line: (three-body) Eikonal-AO results; dashed-line:
(two-body) AO results for mean-field projectile trajectories.
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the ith electron. d1;2;GS is equal to one only when both electrons are in the
ground state, otherwise it is zero and JmðzÞ are Bessel functions of integer
order. K is the momentum of the projectile in the laboratory frame. The above
transformation accounts for the combined influence of the target nuclear
potential and individual electronic transitions on the projectile motion. Then,
the mean electronic energy-transfer can be directly computed from

QðQÞ¼

P
ilfiðQÞl2DEiP

ilfiðQÞl2
ð46Þ

since each two-electron state i (specified by n1; l1; m1; n2; l2; m2) corresponds
to a well-defined energy transfer DEi¼Ei2E0 (E0 is the initial state energy).

Figure 10 displays the results of our mean energy loss calculations for
protons incident on helium at 200 keV as a function of the projectile
scattering angle by using the Eikonal transformation (solid line) in
comparison with the experimental data of Winter and Auth (closed squares).
The dashed lines represent results that are also based on AO calculations but
the conversion to projectile-scattering angle was performed by solving the
classical Hamilton equations for an averaged heavy-particle Hamiltonian
(see equation (7)) that is computed from the time-dependent electron density.
This mean-field trajectory treatment goes beyond models that use
predetermined straight-line or hyperbolic trajectories. In fact, the averaged
potential used in the definition of the average trajectory is unable to account
for the kinematics of a violently ionizing collision in contrast with the
eikonal method. These violent collisions enhance the mean energy transfer
by a factor of about two for this case. Deviations between mean-field and
Eikonal-AO results extend up to Q < 3 mrad and point to the importance of
three-body effects. Further details may be found in Ref. [61].

5.1.2. Stopping cross section

Figure 11 shows our coupled-channel (atomic orbital) results for the
electronic stopping cross sections corresponding to hydrogen beams
penetrating He gas. In order to calculate the equilibrium mean stopping
power we must consider the charge state distribution of the projectile and the
fact that we are restricted to only one active electron. Then, we have to
calculate the energy loss in three reaction classes:

(1) Hþ þ He0 ! Hþ þ Hep or (electron capture)
(2) H0 þ He0 ! H0 þ Hep

(3) He0 þ H0 ! He0 þ Hp

where p includes excitation and ionization as well. For case 1 we have
evaluated the electronic energy loss due to the electron capture process.
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Ionization and excitation of the target electrons have been computed for 1
and 2. Case 3 provides the energy dissipation by projectile electron loss
and projectile excitation. The energy loss involving neutral collision-
partners (H0 þ He and He þ H0) is basically due to target or projectile

ionization. Excitation of the target or the projectile is of minor
importance. The same holds true for collisions between H

þ and He at
high energies (E . 100 keV). However, the main contribution at low
projectile energies stems from the capture of target electrons into the
projectile 1s state. From Fig. 11 we can see that the partial electronic
stopping power for bare hydrogen is dominant at high energies whereas
excitation and ionization of the projectile yield the highest partial cross
section at low velocities. Nevertheless, the projectile ionization leads to an
enhancement of the Hþ charge-state fraction at low velocities and
consequently the contribution of H0 to the stopping processes is reduced.
The experimental equilibrium fraction [63] for hydrogen beams in He gas

Fig. 11. (a) Coupled-channel results for electronic stopping cross section for Hþ

and H0 beams incident on He vs. incident energy (solid and dashed lines). Ionization
and excitation of projectile, in the case of the H0 charge-state fraction, is accounted
for by considering the collision system He þ H0 (dot-dashed line). (b) Experimental
equilibrium fractions for hydrogen beams in helium gas, from Ref. [63].
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are shown in Fig. 11. The Hþ fraction increases for high and low energies
as well. The neutral fraction is only significant for intermediate ion
velocities. This means that the Hþ þ He collisions dominate the low
energy part of the stopping power. For energies around 30 keV/u, all
reaction classes are equally important.

In Fig. 12 the equilibrium mean total stopping cross section per atom for
H þ He collisions is presented in comparison with experimental data of
different groups [64–69]. The solid curve represents the values of Fig. 11
weighted with the corresponding charge-state fractions (also displayed in
Fig. 11, the contribution due to H2 can be neglected [63]). Special attention
should be drawn to the low energy stopping power data which was recently
measured by Golser and Semrad [69]. At energies below 10 keV
experimental and theoretical results agree within 5% or better.

At 30 keV/u we find the largest deviation between the measured stopping
power and our calculated values of about 12%. This may be attributed to an
overestimation of cross sections for multielectron processes because of the
use of the independent particle model. We emphasize that the present
calculation does not properly take into account events in which more than
one electron is actively involved, e.g., double target ionization or excitation
and simultaneous projectile and target ionization.

Fig. 12. Equilibrium mean stopping cross section per atom for hydrogen beams
penetrating He gas. Present atomic orbital (AO) calculation (solid line).
Experimental values: open triangles [64,65], closed squares [66], closed triangles
[67], closed circles [68], open squares [69].
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5.2. Solid targets

Here, we briefly describe a comparison with experimental channeling energy
loss data for He ions in Si [22,23]. Coupled-channel calculations were
performed for Heþ and He2þ on the Si inner shells. The energy-loss term
associated with the Si-valence electrons was obtained from the experimental
stopping cross section of Ref. [70] by subtracting the calculated
contributions involving Si inner-shell and He electrons. The He charge-
state distribution was taken from experimental results under channeling
conditions from Ref. [71] (see insert in Fig 13) and the sum of the energy loss
for each Si atom located across the channel was averaged according to the
ion flux distribution [22]. Further details of the solid-state energy-loss
treatment maybe found in Ref. [22].

Figure 13 shows the stopping power of He ions moving through the Si
crystalin the k100l channeling direction. The symbols correspond to recent
experimental data [22,72] for the channeled energy-loss and the solid line
represents accurate experimental stopping values for a random direction
[70]. Experiments at 800 keV with Heþ and He2þ ions show that charge
equilibrium is reached at a depth of about 50 �A: We expect this distance to
increase by an order of magnitude for 5 MeV He ions. Since the mean charge
state of fast ions is close to two and the measurements above 1000 keV were
performed with He2þ ions there should be no significant deviation from the
assumed equilibrium charge-distribution.

The results of the AO calculations (dashed-line) for the projectile-
energy dependence of the electronic stopping power under channeling
conditions agree with the data to within the experimental uncertainty. For
ion energies above 1.2 MeV (see insert in Fig. 13 for the He charge-state
fractions), the He2þ fraction is dominant and the main physical process
responsible for the reduction of the energy loss under channeling
conditions compared to random directions is the suppressed inner-shell
ionization (L-shell) of Si atoms.

The energy region from 1.2 up to 5 MeV is close to the maximum of the
stopping cross section due to Si L-shell electrons and only non-perturbative
calculations (including many higher order terms) are reliable in this energy
region. By comparing the AO results with first-order ones at 2 MeV we
obtain a difference of about 40% for b ¼ 1:3 �A (middle of k100l channel).
For energies below 1.2 MeV, the influence of charge-changing processes
begins to be significant. The present energy-loss results as a function of the
projectile energy are most sensitive to the computation of the inner-shell
contribution at random directions, since under channeling conditions they
are determined by the contribution of the valence excitations. The inner-shell
contribution under channeling condition is suppressed by 75% at 5 MeV).
Thus, a comparison with the angle dependent energy-loss data provides more
information about the impact-parameter dependence of the energy loss [22].
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6. SIMPLE MODELS FOR THE ENERGY LOSS

The coupled-channel calculations are used as benchmark results to check
simple models of the impact parameter dependence of the electronic
energy loss. A detailed description of such models (convolution
approximation) may be found elsewhere [25,26]. Here we present only
a short outline of the method. The electronic energy loss involves a sum
over all final target states for each impact parameter. Usually this
demands a computational effort that precludes its direct calculation in

Fig. 13. Electronic stopping power as a function of the 4He energy for the k100l Si
direction.
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a computer simulation code. Therefore, we search for an approximate
solution without the necessity of performing a large-scale calculation.

In recent works [25] we have proposed a simple formula for QðbÞ (called
PCA) that virtually reproduces SCA results for all impact parameters for bare
and also for screened projectiles.

The following simple formula

QðbÞ ¼
ð

d2rTKð~b 2 ~rTÞ
ð

dzrð~rT; zÞ ð47Þ

with

KðbÞ ¼
2Z2

v2b2
hð2vb=hÞ

X
i

fig
vib

v

� �
ð48Þ

joins smoothly all regions of impact parameters b for which two-body ion-
electron (small b) and dipole (large b) approximations are valid. The function
hð2vbÞ [25] approaches zero for b p 1=v (relative impact parameter smaller
than the electron de Broglie wavelength in the projectile frame) and it
reaches 1 for large values of b: The first two terms in equation (48) resemble
the classical energy transfer to a statistical distribution of electrons at rest
and describe violent binary collisions. The last term, involving the g function
[25] and the oscillator strengths fi; accounts for the long ranged dipole
transitions. The first integral

Ð
d2rT· · · in equation (47) describes a

convolution with the initial electron density also outside the projectile
path and yields nonlocal contributions to the energy loss. It is noted that these
nonlocal contributions are neglected in most previous simple energy loss
models. With the parameter h equal to one, this formula mimics the first-
order Born approximation very well [25]and it is denoted PCA (perturbative
convolution approximation). For increasing projectile-charge first-order
calculations (on which PCA is based) break down. They do not take in
account, for instance, that each electronic transition gives rise to an increased
final-state population and a corresponding reduction of the initial state
population. It is clear that the ionization probability cannot increase
indefinitely with the strength of the perturbation (the so-called saturation
effect). Since these ionization processes come mostly from small impact
parameters, we have introduced in Ref. [26], a scaling parameter h in the
function h that enforces unitarity in accordance with the Bloch model [19].

Figure 14 displays calculated scaled energy losses ðQ=Z2
p Þ as a function

of the projectile charge Zp for a small impact parameter (b ¼ 0:2 a.u.)
compared to the He 1s-shell radius (r0 ¼ 0:6 a.u.). The SCA results show
up as a horizontal dashed line, since they scale with Z2

p : The AO results for
positively (open circles) and negatively charged projectiles (solid squares)
are shown separately in this plot. The error bars of the AO results for
positive bare ions are estimated from the numerical convergency and
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integration properties and are mainly related to the accuracy of the capture
matrix elements. The uncertainties for the antiparticle energy losses are
only 3%, since a large basis set of target-centered states is sufficient for
accurate AO calculations. AO calculations for positive ions at 500 keV/u
were performed with an explicit consideration of 10 bound projectile states,
for an improved treatment of electron capture, in addition to 210 target
states. It is clearly evident from this figure that the deviations between
results for heavy particles and antiparticles is much smaller than the
deviation from the SCA.

Thus, the even orders of an Zp expansion, as included in the unitary
convolution approximation (UCA), dominate the non-perturbative effects.
The present UCA results are plotted as a solid curve. This curve lies close
to the average of the AO results for particles and antiparticles. Hence,
although the present UCA does not include sign-of-charge effects it perfectly
describes the majority of the energy transfer processes (dominated by
ionization) of fast heavy particles at small impact parameters.

Fig. 14. Non-perturbative results for the energy loss at a small impact parameter in
500 keV/u XZpþ þ He collisions, compared to the values from first-order
perturbation theory (SCA, dashed line). Atomic orbital (AO) coupled-channel
results for positively charged particles (open circles) and for anti-nuclei (closed
squares). Results using the UCA model: solid curve.
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7. WHAT HAVE WE LEARNED FROM COUPLED-CHANNEL
CALCULATIONS

Virtually all non-trivial collision theories are based on the impact-parameter
method and on the independent-electron model, where one active electron
moves under the influence of the combined field of the nuclei and the
remaining electrons frozen in their initial state. Most theories additionally
rely on much more serious assumptions as, e.g., adiabatic or sudden
electronic transitions, perturbative or even classical projectile/electron
interactions. All these assumptions are circumvented in this work by solving
the time-dependent Schrödinger equation numerically exact using the
atomic-orbital coupled-channel (AO) method. This non-perturbative method
provides full information of the basic single-electron mechanisms such as
target excitation and ionization, electron capture and projectile excitation
and ionization. Since the complex populations amplitudes are available for
all important states as a function of time at any given impact parameter,
practically all experimentally observable quantities may be computed.

Huge-basis set calculations have been performed with hundreds of states,
including bound atomic orbitals of the target and target-centered continuum
wave-packets. If necessary bound projectile states are included as well.
These calculations involve solutions of the Schrödinger equation for each
impact parameter and for all important projectile charge-states weighted
with the corresponding charge-state fraction. Thus, not only the screened
target potential (in most cases a self-consistent Hartree–Fock–Slater
potential) but also screened projectile potentials have to be considered.

In recent years, the model was applied to the light atomic targets H and He
and a few selected solids (C, Al and Si) for projectile nuclear charges
between 210 and þ10. Total cross section, mean energy transfers, energy-
loss and straggling cross sections, electron energy and angular distributions,
and projectile-angle dependent energy-loss spectra have been computed with
the AO model and compared to experimental results. As shown in this work,
also a treatment of multiphoton ionization beyond perturbation theory is
possible with the same model. Here we have found numerical limitations
concerning the laser power-density, pulse-width and frequency.

So far we found no serious limitations for the treatment of collision
processes concerning the projectile nuclear charge (comparable to the case of
high laser power-densities). At low projectile velocities, however, the
calculations require the use of basis sets with extremely dense energy grids.
High orders of the perturbation series often dominate the ionization
probabilities for this case and high computation times are thus needed.
This situation is similar to the case of long laser pulses with low frequencies
and intermediate to high power densities.

We have applied our code to kinetic projectile energies of up to a few
hundred keV per nucleon. In most cases good agreement with experimental
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data was found. The remaining cases could be traced back to a breakdown of
the independent electron model. For light targets, di-electronic transitions
and for heavy targets collective dynamic screening effects modify the mean
electronic motion and lead to uncertainties of up to about 20% for the
electronic energy loss. Especially for slow heavy particles in the molecular-
orbital regime, electron-exchange and dynamic mean-field effects are
important and have to be incorporated in the treatment. A small impact
parameters a simple united-atom treatment is usually sufficient, but a more
general solution would be a time-dependent Hartree–Fock (TDHF)
treatment as it is often applied to nuclear collision processes.

Another problematic point appears in the treatment of electron loss due to
heavy (neutral) targets. In this case, unrealistic capture processes come into
play where the projectile electron is transferred into populated bound target
states. In principle, this problem may be circumvented by using the
multielectron anti-symmetrization method, where the Pauli exclusion principle
is enforced for the transitions amplitudes. Thus, an explicit and time-
consuming treatment of these occupied bound states would then be necessary.

In most cases, however, for atoms, insulators or inner shells of conductors
accurate stopping cross sections may be computed (including excitation,
ionization and electron capture) using the AO coupled-channel method. This
is a time-consuming task, since it has to be done for each subshell, each
impact parameter and each projectile charge-state separately. On the other
hand, it provides full information about all single-electron transitions. In
general, at low projectile energies target excitation or electron capture give
rise to the largest transition probabilities and cross sections. Since, quasi-
molecular effects are important, the impact-parameter dependence may even
show an oscillating behavior. At high projectile velocities (compared to the
mean electron-orbital velocity) ionization dominates the electronic energy
loss and the energy transfer is typically a smoothly decaying function of the
impact parameter.

The AO results may also be used for benchmark tests of simpler models.
In this context we have also checked a simple non-perturbative model, the
UCA. This model includes the main features of fast heavy-ion stopping, as is
shown by comparison with large-scale AO results for the impact-parameter
dependent electronic energy transfer. The computation of the energy loss
within the UCA is much simpler and by many orders of magnitude faster
than the full numerical solution of the time-dependent Schrödinger equation.
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