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Abstract

The one-component plasma (OCP) represents the simplest statistical mechanical model of a
Coulomb system. For this reason, it has been extensively studied over the last 40 years. The
advent of the integral equations has resulted in a dramatic improvement in our ability to carry
out numerical calculations, but came at the expense of a physical insight gained in a simpler
analytic theory. In this paper we present an extension of the Debye–H�uckel (DH) theory to the
OCP. The theory allows for analytic calculations of all the thermodynamic functions, as well as
the structure factor. The theory explicitly satis�es the Stillinger–Lovett and, for small couplings,
the compressibility sum rules, implying its internal self consistency. c© 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The classical one-component plasma (OCP) is an idealized system of N identical
point-particles of charge q, in a uniform neutralizing background of dielectric constant
D [1–3]. For concreteness we shall suppose that the particles are positively charged,
while the background is negative. Each ion, inside the volume V , is assumed to in-
teract with the others exclusively through the Coulomb potential. The OCP has been
extensively studied because it serves as the simplest possible model for a variety of
important physical systems, ranging from electrolytes and charge-stabilized colloids [4
–7] to the dense stellar matter [8,9]. With the advent of powerful computers and new
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developments in the liquid-state theory our ability to perform thermodynamic calcula-
tions on this model has seen a dramatic improvement characterized, in particular, by
the quantitative agreement between the integral-equations-based theories of the OCP
and the Monte Carlo (MC) simulations [10,11]. Unfortunately, the intrinsic complexity
of the integral equations, instead of clarifying the underlying physics, tends often to
obscure it. This should be contrasted with the simplicity and the transparency of the
Debye–H�uckel (DH) theory [12,13], which allows for a very clear physical picture of
an ionic solution.
Let us recall the early history of electrolyte solutions. The �rst modern ideas about

electrolytes can be traced to the pionering work of the swedish physicist Svante Ar-
rhenius [14] at the end of the last century. In particular, it was Arrhenius who realized
that when salts and acids are dissolved in a polar solvent, the molecules become disso-
ciated, producing cations and anions. Arguing from what can now be called mean-�eld
point of view, Arrhenius concluded that, since the electrolyte solution is charge neutral
and the ions are uniformly distributed, the average force acting on each particle is null.
All the nontrivial characteristics of the electrolytes Arrhenius attributed to the incom-
plete dissociation of the molecules. In this simple picture an electrolyte is treated as
an ideal gas composed of three species, cations, anions, and neutral molecules, whose
densities are controlled by the law of mass action. All the electrostatic interactions are
neglected except in as far as treating the cations and the anions as distinct entities.
This simple theory has proven to work quite well for what are now known as weak
electrolytes, such as BrHnsted acids and bases. In the case of strong electrolytes, such
as NaCl or HCl, the theory proved seriously 
awed. It took almost 40 years before a
satisfactory solution could be found. It appeared in the form of the now famous DH
theory of strong electrolytes [12,13]. The great insight of Debye and H�uckel was to
realize that although the ions are on average uniformly distributed inside the solution,
due to the long-range Coulomb force there exist strong correlations in the positions
of the positively and the negatively charged particles; evidently in the vicinity of a
positive ion there will be an excess of negative particles and vice versa.
To make this idea concrete and to see how it applies to the OCP, let us �x one mobile

ion at the origin and ask what is the induced electrostatic potential in its surrounding.
Clearly, this must satisfy the Poisson equation

∇2�(r) =−4�
D

%(r) : (1)

To �nd the closure to this equation, we shall follow DH and suppose that the rest of
the mobile ions arrange themselves in accordance with the Boltzmann distribution,

%(r) = q ��+exp [−�q�(r)]− q ��− ; (2)

where ��+ = N=V is the average density of the mobile ions, ��− is the density of the
uniform neutralizing background, and �=1=kBT . The next step of the DH theory is to
linearize the exponential factor, leading to

%(r) =−D�2D
4� �(r) ; (3)
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where �D =
√
4��B ��+ and �B = �q2=D are the inverse Debye screening and the

Bjerrum lengths, respectively. Clearly, the linearization can only be justi�ed in the
high-temperature (weak-coupling) limit. The resulting Helmholtz equation, ∇2�(r) =
�2D�(r), can be easily integrated to produce a potential of the Yukawa form. The funda-
mental lesson of DH is that the ions arrange themselves in such a way as to screen the
long-range Coulomb interaction. It is this renormalization of the interaction potential
that is responsible for the existence of the thermodynamic limit for Coulomb systems.
However, not everything is rosy with this simple theory. It is su�cient to look at the
charge–density distribution

%(r) =−q�2D
4�r e

−�Dr ; (4)

to notice that something went seriously wrong.
Clearly, the physical restriction that %(r)¿− q ��− is strongly violated in the region

near the �xed ion. The problem can be traced back to the linearization of the Boltzmann
factor, which is unjusti�ed at short distances, since there the electrostatic potential is
not small even for high temperatures. Fortunately, not all is lost. A simple solution
to overcome this di�culty was suggested by Nordholm [15,16], who proposed an
augmentation of the DH theory to include an e�ective spherical cavity around the
�xed ion, inside which no other ions can penetrate. The presence of such a cavity is
quite reasonable, since the electrostatic repulsion between the like-charged ions should
prevent them from coming into close contact. Furthermore, we can estimate the size
of the hole, h, by comparing the repulsive Coulomb energy with the kinetic thermal
energy, q2=Dh ∼ kBT , or h ∼ q2=DkBT . Evidently, the higher the temperature, the
smaller the size of the exclusion region. This, of course, is intuitive, since at higher
temperatures the ions will have more kinetic energy to overcome the mutual repulsion.
A more consistent way of de�ning the hole size h is to require an overall charge
neutrality [15,16], or, equivalently, the continuity of the potential and of the electric
�eld across the hole boundary. Performing a simple calculation, we �nd

h= d [!(�)− 1] =
√
3� ; (5)

!(�) =
[
1 + (3�)3=2

]1=3
; (6)

where we have de�ned the usual coupling constant for the OCP, � = �q2=Dd, and
d is the characteristic length scale, d =

(
4� ��3+=3

)−1
. In the low-coupling limit this

reduces to the energetically determined expression for the size of the cavity, h = �B.
Nordholm was able to demonstrate that this Debye–H�uckel plus hole (DHH) theory
produces an equation of state for the OCP which is in good agreement with the MC
simulations. The question, however, still remains to what extent the hole is a physical
object or just a convenient mathematical trick to correct for the linearization of the
Poisson–Boltzmann (PB) equation. Clearly, if the cavity postulated by the DHH theory
is real, the best way to study it is by considering the structure factor. In particular, if
everything is all right with the DHH theory, the structure factor obtained on its basis
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should be in good agreement with the MC simulations. Unfortunately, it is well known
that the traditional ways of obtaining the correlation functions out of the DH theory
lead to expressions which are seriously 
awed [17,18]. In the case of the restricted
primitive model (RPM), the correlation functions violate the well-known Stillinger–
Lovett sum rules [19,20] and do not reproduce the charge–density oscillations known
to exist at high densities [21].
Recently, Lee and Fisher [17,18] have proposed an extension of the DH theory of

strong electrolytes to nonuniform densities. The generalized DH theory (GDH) allows
the calculation of the density–density and of the charge–charge correlation functions in
a most natural way, through a functional di�erentiation of the free-energy functional.
Furthermore, since the theory is constructed at the level of free energy, it is internally
self-consistent, as can be judged by the various sum rules that it satis�es. This, of
course, is a great advantage over the traditional integral-equations-based theories, which
are constructed at the level of the correlation functions and depend on the route taken to
thermodynamics 1 , i.e. virial, compressibility, etc. The comparison of the GDH theory
with experiments or simulations, however, is made di�cult by the same 
aw (or virtue,
depending on how one looks at it) that the original DH theory su�ers, its linearity. The
linearity of the DH theory for electrolytes is both a blessing and a curse. It ensures
the internal self-consistency of the theory, but is also responsible for undercounting
the con�gurations in which the oppositely charged ions come into a close contact,
forming dipolar pairs. It was shown recently how this di�culty can be overcome in
the context of the Debye–H�uckel–Bjerrum (DHBj) theory [24–26], by allowing for the
existence of a chemical equilibrium between the monopoles and dipoles. Unfortunately,
this stratagem is di�cult to implement in the case of the GDH theory. The goal of
this paper, then, is twofold: test the physical nature of the cavity in the DHH theory
and, by apply the GDH theory to the OCP – which is free from the cluster formations
that plague RPM – test the extent of its validity.

2. The generalized Debye–H�uckel theory for the one-component plasma

The DHH theory for the OCP is extended to allow for a nonuniform, slowly varying
ionic density,

�+(r) = ��+ (1 + � cosk · r) : (7)

The negative background, as in the original OCP theory, is maintained uniform,

�−(r) = ��−; ∀r : (8)

To preserve the electroneutrality on long-length scales, the overall equilibrium densities
must be equal, ��+ = ��−.

1 One should mention, however, integral equations such as the generalized mean-spherical approximation
(GMSA), Ref. [22] and the self-consistent Ornstein-Zernike approximation (SCOZA), Ref. [23], which were
constructed to explicitly enforce the self-consistency.
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The Helmholtz free-energy, F , is a functional of the ionic density �+(r). The direct
correlation function, C++(r1 − r2), is de�ned in terms of the second derivative of the
excess free energy,

C++(r1 − r2)≡−�
�2 {F [�+(r)]− Fideal [�+(r)]}

��+(r1) ��+(r2)

∣∣∣∣
�+(r)= ��+

=
�(r1 − r2)

��+
− �

�2F [�+(r)]
��+(r1) ��+(r2)

∣∣∣∣
�+(r)= ��+

: (9)

Here, Fideal [�+(r)] is the usual ideal-gas Helmholtz free-energy functional,

�Fideal [�+(r)] =
∫
d3r′ �+(r′)

{
ln
[
�+(r′)�3

]− 1} ; (10)

where � is the thermal de Broglie wavelength.
The direct correlation function is connected with the total correlation function, H (r),

through the Ornstein–Zernike relation,

H (r) = C++(r) + ��+

∫
d3r′ C++(r − r′)H (r′) ; (11)

which in the Fourier space can be written as

Ĥ (k) =
Ĉ++(k)

1− ��+Ĉ++(k)
; (12)

where Ĉ++(k) and Ĥ (k) are the Fourier transforms of the direct and the total corre-
lation functions, respectively,

Ĉ++(k) =
∫
d3r C++(r)exp(ik · r) ; (13)

Ĥ (k) =
∫
d3r H (r)exp(ik · r) : (14)

The structure factor is de�ned as

S(k) ≡ 1 + ��+Ĥ (k) =
1

1− ��+Ĉ++(k)
: (15)

Evidently, the knowledge of the direct correlation function C++(r) is equivalent to the
knowledge of the structure factor S(k).
To proceed, we impose an in�nitesimal variation on the mobile-ion density, Eq. (7),

and expand the reduced Helmholtz free-energy functional density, f ≡ �F=V , in powers
of �. To second order, the variation �f can be written as (see details in Appendix B)

�f [�+(r)] ≡ f [�+(r)]− f
[
��+
]
= � �� ��+��k0 + 1

4S
−1(k) ��+�

2 (1 + �k0) ;

(16)

where � �� = @f=@ ��+ is the equilibrium chemical potential, �k0 = 1=V (2�)3�3(k) is
the Kronecker delta and �3(k) is the three-dimensional Dirac delta function. The
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free-energy density of the homogeneous reference system, f
[
��+
]
, is obtained by set-

ting � = 0 in the expression for f [�+(r)]. Clearly, if we are able to construct the
free-energy functional for a nonuniform system, the structure factor, S(k), can be read
directly from the second-order term.
We proceed in a way exactly analogous to the usual DH theory. Let us �x one

positive ion at r′ and ask what is the electrostatic potential, �(r; r′), at a point r in its
surrounding. We shall assume that, just like in the uniform case, this potential satis�es
the PB equation,

∇2
r�(r; r

′) =−4�q
D

{
�3(r − r′) + �+(r)exp

[
−�q�̃(r; r′)

]
− �−(r)

}
: (17)

A crucial point to remark [17,18] is that the potential which appears in the Boltzmann
factor of (17), �̃(r; r′), represents a local-induced potential,

�̃(r; r′) ≡ �(r; r′)− �(r) ; (18)

obtained by extracting from the total potential �(r; r′) an imposed electrostatic poten-
tial, �(r), produced by the neutralizing background and the imposed charge–density
variation (7),

∇2�(r) =−4�q
D

[
�+(r)− ��−

]
=−4�q ��+

D
� cosk · r; ∀r : (19)

With the separation of the total potential �(r; r′) into two parts, the Helmholtz free-
energy functional can be written as

F [�+(r)] = Fideal [�+(r)] + Fimposed [�+(r)] + Finduced [�+(r)] ; (20)

where the excess free energies are obtained through the Debye charging process [12,13,
17,18],

Fimposed [�+(r)] = q
∫
d3r′

[
�+(r′)− ��−

] ∫ 1

0
d��(r′; �q) ; (21)

Finduced [�+(r)] = q
∫
d3r′ �+(r′)

∫ 1

0
d�  (r′; �q) : (22)

In Eq. (22),  (r′) is the mean-induced electrostatic potential felt by the positive ion
�xed at r′,

 (r′) ≡ lim
r→r′

[
�̃(r; r′)− q

D|r − r′|
]

: (23)

Linearization of the Boltzmann factor of (17) results in the GDH equation for the
induced potential,

∇2
r �̃(r; r

′) =−4�q
D

[
�3(r − r′)− �+(r)

]
=−4�q

D

[
�3(r − r′)− ��+(1 + � cosk · r)] for |r − r′|6h ; (24)
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∇2
r �̃(r; r

′) =
4��q2�+(r)

D
�̃(r; r′)

= �2D (1 + � cosk · r) �̃(r; r′) for |r − r′|¿h : (25)

As discussed in the introduction, to prevent the unphysical artifacts of linearization of
the PB equation, we have explicitly introduced a cavity of radius h around the �xed
ion at r′, given by Eq. (5), into which no other mobile ions can penetrate.
In the following subsections we shall obtain the contributions to the variation of the

free-energy density.

2.1. The ideal-gas contribution

The ideal-gas contribution is given by (10) with the imposed mobile-ion charge
distribution (7). Expanding (10) up to order �2 and using integrals (A.3) and (A.4),
we obtain the ideal-gas contribution to the variation of the reduced free-energy density,

�fideal [�+(r)] = ln
(
��+�

3) ��+��k0 + 1
4 ��+�

2 (1 + �k0) : (26)

2.2. The imposed electrostatic potential contribution

The imposed electrostatic potential satis�es the Poisson equation (19), whose formal
solution can be written as

�(r) =
q ��+
D

�
∫
d3r′

cosk · r′
|r − r′| : (27)

The contribution to the Helmholtz free-energy functional is obtained through the Debye
charging process [12,13],

Fimposed [�+(r)] = q
∫
d3r′

[
�+(r′)− ��−

] ∫ 1

0
d��(r′; �q)

=
q2 ��2+
D

�2
∫
d3r d3r′

cosk · r cosk · r′
|r − r′|

∫ 1

0
d� � : (28)

In this case the charging merely produces a trivial factor of 1/2 and using integral
(A.7), we obtain the contribution of the imposed electrostatic potential to the variation
of the reduced free-energy density,

�fimposed [�+(r)] =
1
4

(�D
k

)2
��+�

2 (1 + �k0) : (29)

2.3. The induced electrostatic potential contribution

The induced electrostatic potential satis�es the GDH equation, given by (24) and
(25). It is convenient to rewrite them in a spherical coordinate system centered on the
positive ion �xed at r′. Introducing the di�erence vector

R= r − r′ ; (30)
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the GDH equation for the induced electrostatic potential reads

∇2
R�̃(R+ r

′; r′) =


−4�q

D

{
�3(R)− ��+

[
1 + � cosk·(R+ r′)]} for |R|6h ;

�2D
[
1 + � cosk · (R+ r′)] �̃(R+ r′; r′) for |R|¿h :

(31)

Using the Green’s function, G (R;R′), associated with (31) derived in appendix C, it
can be transformed into an integral equation

�̃(r; r′) = �̃(R+ r′; r′) =
1
D

∫
d3R′ %

(
R′)G (

R;R′) ; (32)

where the e�ective charge density, % (R), is given by

% (R) =




q�3(R)− q ��+
[
1 + � cosk · (R+ r′)] for R6h ;

− D
4��

2
D�̃

(
R+ r′; r′

)
� cosk · (R+ r′) for R¿h :

(33)

This equation can be solved perturbatively in powers of � (see Appendix D).
The mean induced electrostatic potential felt by the positive ion �xed at r′,

 (r′) = lim
R→0

[
�̃(R+ r′; r′)− q

DR

]
; (34)

can be written, to order �2, as (see derivation in Appendix D)

�q (r′)=−1
2
x(x + 2)−� cosk·r′

[
1
�2

− sin �x
�3(1 + x)

− cos �x
�2(1 + x)

+
x

1 + x
I+
0 (x; �)

]

+
1

�(1 + x)
�2

∞∑
‘=0

(2‘ + 1) cos2
(
k · r′ + ‘

�
2

) x‘+2j‘+1(�x)
g‘+1(x)

I+
‘ (x; �)

+
x

1 + x
�2

∞∑
‘=0

(−1)‘+1 (2‘ + 1) cos2
(
k · r′ + ‘

�
2

)

×
{
1
2

g‘+1(−x)
g‘+1(x)

[
I+

‘ (x; �)
]2
+I+

‘ (x; �)I
−
‘ (x; �)−I0

‘(x; �)
}

; (35)

where x = �Dh, �= k=�D, j‘(�) is the spherical Bessel function of the �rst kind,

j‘(�) =
√
�
2�

J‘+1=2(�) ; (36)

g‘(�) is the ‘th grade polynomial associated with the modi�ed spherical Bessel function
of the third kind, k‘(�),

g‘(�)≡ e��‘+1k‘(�)=
‘∑

m=0

�(‘ + m+ 1)
2mm!�(‘−m+1)

�‘−m=
‘∑

m=0

(2m)!
2mm!

(
‘ + m
2m

)
�‘−m

(37)

and {I�
‘}; �=±; 0; are the one-dimensional quadratures

I−
‘ (s; �) =

∫ s

0
d� �−‘g‘(−�)j‘(��) ; (38)
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I0
‘(x; �) =

∫ ∞

x
ds s−‘g‘(s)j‘(�s)I−

‘ (s; �)exp [2(x − s)] ; (39)

I+
‘ (x; �) =

∫ ∞

x
ds s−‘g‘(s)j‘(�s)exp [2(x − s)] : (40)

The contribution to the Helmholtz free-energy functional is obtained through the Debye
charging process [12,13,17,18],

Finduced [�+(r)] = q
∫
d3r′ �+(r′)

∫ 1

0
d�  (r′; �q)

= q ��+

∫
d3r′

(
1 + � cosk · r′) ∫ 1

0
d�  (r′; �q) ; (41)

which yields the reduced free-energy density,

finduced [�+(r)] = ��+f0 +
[
f0 + 1

2f1(�)
]
��+��k0 + 1

4 [f1(�)

+f2(�)] ��+�
2 (1 + �k0) ; (42)

from which the variation follows,

�finduced [�+(r)] =finduced [�+(r)]− finduced
[
��+
]

=
[
f0 + 1

2f1(�)
]
��+��k0 + 1

4 [f1(�) + f2(�)] ��+�
2 (1 + �k0) ;

(43)

where

f0 =−1
2

∫ 1

0

d�
�

x�(x� + 2) =−1
2

∫ !

1
d!�

!2� (!� + 1)
!2� + !� + 1

=
1
4

[
1− !2 +

2�
3
√
3
+ ln

(
!2 + !+ 1

3

)
− 2√

3
tan−1

(
2!+ 1√

3

)]
; (44)

f1(�) =− 1
�2
+
2
�3

∫ 1

0
d�

�2

!�
sin(�x�=�) +

2
�2

∫ 1

0
d�

�
!�
cos(�x�=�)

−2
∫ 1

0

d�
�

!� − 1
!�

I+
0 (x�; �=�) ; (45)

f2(�) =
∞∑
‘=0

(2‘ + 1)
[
1 + (−1)‘�k0
1 + �k0

]{
2
�

∫ 1

0
d�

x‘+2� j‘+1(�x�=�)
!� g‘+1(x�)

I+
‘ (x�; �=�)

+ (−1)‘+1
∫ 1

0

d�
�

!� − 1
!�

[
g‘+1(−x�)
g‘+1(x�)

[
I+

‘ (x�; �=�)
]2

+2I+
‘ (x�; �=�)I

−
‘ (x�; �=�)− 2I0

‘(x�; �=�)
] }

; (46)

x� = !� − 1 ; (47)
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!� =
[
1 + �3 (3�)3=2

]1=3
; (48)

!= !�=1 =
[
1 + (3�)3=2

]1=3
: (49)

We note that the reduced induced free-energy density for the reference system,

finduced
[
��+
]
= ��+f0

=
1
4
��+

[
1−!2+

2�
3
√
3
+ ln

(
!2 + !+ 1

3

)
− 2√

3
tan−1

(
2!+ 1√

3

)]
(50)

is the same as the one previously obtained by Nordholm [15,16].

3. Analytical results and the sum rules

Collecting all the contributions to the variation of the reduced free-energy density,

�f [�+(r)] = �fideal [�+(r)] + �fimposed [�+(r)] + �finduced [�+(r)] (51)

and comparing with the expansion given by (16), we obtain the equilibrium chemical
potential,

� ��= ln
(
��+�

3)+ f0 + 1
2 lim�→0

f1(�)

= ln
(
��+�

3)+ f0 + 1
12

(
1− !2

)
; (52)

which corresponds to the usual OCP chemical potential [15,16], and the structure factor,

S−1(k) = 1 +
2
�3

∫ 1

0
d�

�2

!�
sin(�x�=�) +

2
�2

∫ 1

0
d�

�
!�
cos(�x�=�)

−2
∫ 1

0

d�
�

!� − 1
!�

I+
0 (x�; �=�)

+
∞∑
‘=0

(2‘ + 1)

{
2
�

∫ 1

0
d�

x‘+2� j‘+1(�x�=�)
!� g‘+1(x�)

I+
‘ (x�; �=�)

+ (−1)‘+1
∫ 1

0

d�
�

!� − 1
!�

[
g‘+1(−x�)
g‘+1(x�)

[
I+

‘ (x�; �=�)
]2

+2I+
‘ (x�; �=�)I

−
‘ (x�; �=�)− 2I0

‘(x�; �=�)
] }

: (53)

This is the central result of this paper, the explicit expression for the structure factor
of the OCP, given in terms of an in�nite series. To check the internal consistency of
the theory, we explore how well it satis�es various known sum rules. All these can be
conveniently summarized in the exact, small k expansion of the structure factor [3],

S−1
exact(k) =

(�D
k

)2
+

�
��+�

+ O(k2) ; (54)



34 M.N. Tamashiro et al. / Physica A 268 (1999) 24–49

where � is the compressibility of the OCP. The �rst term is the result of the charge
neutrality and of the Stillinger–Lovett second-moment condition [19,20], while the sec-
ond term corresponds to the fourth-moment or the “compressibility” sum rule [3]. The
inverse compressibility is de�ned thermodynamically in terms of the variation of the
pressure,

P =
��+
�

(
1 + ��+

@f0
@ ��+

)
(55)

with respect to the density,

�
��+�P

≡ �
@P
@ ��+

= 1 + 2 ��+
@f0
@ ��+

+ ��2+
@2f0
@ ��2+

=
1 + 39!− 4!3

36!
: (56)

For small couplings this can be expanded to yield

�
��+�P

= 1−
√
3
4

�3=2 +
1
2
�3 − 5

2
√
3
�9=2 +

21
4
�6 + O(�13=2) : (57)

To see if our expression for S(k) is consistent with the sum rules, we expand (53)
around � = 0, using the asymptotic form of the spherical Bessel function of the �rst
kind,

lim
�→0

j‘(�x) =
(�x)‘

(2‘ + 1)
=

(�x)‘

1:3:5 : : : (2‘ + 1)
: (58)

It is evident that, up to order O(k0), only the isotropic (‘=0) terms of (53) contribute
to the structure factor. We �nd

S−1(k) =
(�D

k

)2
+

�
��+�S

+ O(k2) ; (59)

�
��+�S

= 1− 1
12

∫ !

1
d!�

(2!� + 1)(2!2� − !� + 2)
!2� + !� + 1

= 1− 1
6

[
1− 2!+ !2 − �

√
3
2

+
3
4
ln
(
!2 + !+ 1

3

)

+
3
√
3
2
tan−1

(
2!+ 1√

3

)]
: (60)

In the low-density limit the inverse compressibility derived from the structure factor
can be expanded to yield

�
��+�S

= 1−
√
3
4

�3=2 +
1
2
�3 − 5

2
√
3
�9=2 +

81
16

�6 + O(�13=2) : (61)

We see that the structure factor satis�es exactly the charge-neutrality and the second-
moment conditions, while the compressibility sum rule is satis�ed only to order �9=2.
This results from the fact that, in order to simplify the calculations, we have ne-
glected the dependence of the cavity size and shape on the imposed density variation
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Fig. 1. Comparison between the inverse compressibilities derived from the pressure, Eq. (56), solid line
(�= ��+�P), and from the structure factor, Eq. (60), long-dashed line (�= ��+�S). The dashed line (�= ��+�MC)
represents the �t of the MC data over the interval 16�6160 [27].

Fig. 2. Structure factor S(k̂) for � = 2. The solid line is our expression (53) calculated up to ‘ = 6, while
the circles represent the MC data [28].

(�). Clearly, if this was taken into account, the theory would be completely inter-
nally self-consistent. Nevertheless, even at this level of approximation, the lack of
self-consistency is quite small over the full range of relevant coupling constants, as
can be measured by the inverse compressibilities derived from the thermodynamic (�P)
and the structure factor (�S) routes, Eqs. (56) and (60), respectively; see Fig. 1. The
�t of the MC data [27] leads to an inverse compressibility (�MC) which is between the
two previous ones.
De�ning k̂ ≡ kd = �

√
3�, we have explicitly carried out the summation for the

�rst six terms of the in�nite series in Eq. (53). The results for the structure factor for
various values of �, obtained without any �tting parameters, are plotted in Figs. 2–5.
The agreement with the MC simulations [28] is quite encouraging. We should note,
however, that for higher couplings, in the vicinity of the �rst peak, the series is slowly
convergent. This is the reason why we did not attempt to carry the calculations for
�¿ 40.
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Fig. 3. Structure factor S(k̂) for � = 6. The solid line is our expression (53) calculated up to ‘ = 6, while
the circles represent the MC data [28].

Fig. 4. Structure factor S(k̂) for �= 10. The solid line is our expression (53) calculated up to ‘= 6, while
the circles represent the MC data [28].

Fig. 5. Structure factor S(k̂) for �=40. The solid lines are our expression (53) with the ‘=0; 1; 2; : : : up to
the ‘=6 terms included in the sum (from top to bottom). The circles represent the MC data [28]. We note
that for higher values of �, more and more terms will need to be included in order to achieve convergence
in the vicinity of the �rst peak.
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4. Conclusions

We have presented the generalized Debye–H�uckel theory of the one-component
plasma. The linearity of the theory allows for explicit calculations of all the ther-
modynamic functions, as well as the structure factor, which is expressed as an in�nite
series. The linearity also insures the internal consistency of the theory. The agree-
ment with the Monte Carlo simulations, obtained without any �tting parameters, is
quite good, suggesting that the existence of an e�ective cavity surrounding each ion is
theoretically justi�ed.
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Appendix A. Some useful integrals

In this appendix we present some integrals which appear along the text. We introduce
the Kronecker delta,

�k0 =
1
V
(2�)3�3(k) ; (A.1)

where V = (2�)3�3(0) is the volume of the system and �3(k) is the three-dimensional
Dirac delta function,

�3(k) ≡
(
1
2�

)3 ∫
d3r′ exp

(
ik · r′) : (A.2)

From the de�nition (A.2) of the three-dimensional Dirac delta function, it follows
directly∫

d3r′ cosk · r′ = 1
2

∫
d3r′

[
exp

(
ik · r′)+ exp(−ik · r′)]

=
1
2
(2�)3

[
�3(k) + �3(−k)]= (2�)3�3(k) = V�k0 ; (A.3)

∫
d3r′ cos2 k · r′ = 1

2

∫
d3r′

(
1 + cos 2k · r′)= 1

2

[
V + (2�)3�3(2k)

]

=
V
2
(1 + �k0) : (A.4)

A simple generalization of (A.4) leads to∫
d3r′ cos2

(
k · r′ + ‘

�
2

)
=

V
2

[
1 + (−1)‘�k0

]
; (A.5)

where ‘ is an integer.
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Expressing 1=r as the inverse Fourier transform

1
r
=

1
2�2

∫
d3k

1
k2
exp(−ik · r) ; (A.6)

we have∫
d3r d3r′

cosk · r cosk · r′
|r − r′| =

1
4�2

∫
d3r d3r′ d3q

1
q2
exp

[−iq · (r − r′)]
× [
cosk · (r + r′)+ cosk · (r − r′)]

=
1
8�2

∫
d3r d3r′ d3q

1
q2

∑
�1=±

exp [i(�1k − q) · r]

×
∑
�2=±

exp
[
i(�2k + q) · r′

]

=
1
2
(2�)4

∫
d3q

1
q2

∑
�1 ;�2=±

�3 (�1k − q) �3 (�2k + q)

=
(2�)4
k2

[
�3(0) +

1
2
�3(2k) +

1
2
�3(−2k)

]

=
2�V
k2

(1 + �k0) : (A.7)

Appendix B. Variation of the free-energy density

In this appendix we obtain the variation of the reduced free-energy density, �f =
��F=V , up to quadratic order in the perturbation parameter �.
The Helmholtz free energy F is written as a functional of the mobile-ion density

�+(r). The variation �F is obtained using the functional Taylor series,

� �F [�+(r)] = �F [�+(r)]− �F
[
��+
]

=
∫
d3r′

� �F
��+(r′)

∣∣∣∣
�+(r)= ��+

��+(r′)

+
1
2

∫
d3r′ d3r′′

��2F
��+(r′) ��+(r′′)

∣∣∣∣
�+(r)= ��+

��+(r′) ��+(r′′) :

(B.1)

The linear term can be written as

� �F (1) [�+(r)] =
∫
d3r′

��F
��+(r′)

∣∣∣∣
�+(r)= ��+

��+(r′) =
∫
d3r′ ��(r′) ��+(r′) ;

(B.2)
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where �(r) is the chemical potential at the position r,

�(r) ≡ �F
��+(r)

∣∣∣∣
�+(r)= ��+

: (B.3)

However, at the thermodynamical equilibrium, the chemical potential of the system is
constant and is independent of position,

�(r) = ��; ∀r : (B.4)

Using the imposed variation (7) of the mobile-ion density,

��+(r) = ��+� cosk · r = 1
2 ��+� [exp(ik · r) + exp(−ik · r)] ; (B.5)

the linear term can be expressed as

� �F (1) [�+(r)] = � �� ��+�
∫
d3r′ cosk · r′ = � �� ��+V��k0 : (B.6)

The quadratic term,

� �F (2) [�+(r)] =
1
2

∫
d3r′ d3r′′

��2F
��+(r′) ��+(r′′)

∣∣∣∣
�+(r)= ��+

��+(r′) ��+(r′′)

=
1
2

∫
d3r′ d3r′′

[
� (r′ − r′′)

��+
− C++

(
r′ − r′′)] ��+(r′) ��+(r′′)

(B.7)

can be split into two parts, the ideal-gas contribution,

� �F (2)ideal [�+(r)] =
1
2 ��+

∫
d3r′ d3r′′ �(r′ − r′′) ��+(r′) ��+(r′′) (B.8)

and the electrostatic contribution,

��F (2)elect [�+(r)] =−1
2

∫
d3r′ d3r′′ C++

(
r′ − r′′) ��+(r′) ��+(r′′) ; (B.9)

where C++ (r′ − r′′) is the direct correlation function.
Using (A.4) and (B.5), the ideal-gas contribution can be straightforwardly obtained,

� �F (2)ideal [�+(r)] =
1
2 ��+

∫
d3r′

[
��+(r′)

]2
=
1
2
��+�

2
∫
d3r′ cos2 k · r′

=
V
4
��+�

2 (1 + �k0) : (B.10)

To evaluate the electrostatic contribution we use (B.5), and express C++ (r′ − r′′) as
the inverse Fourier transform

C++(r) =
(
1
2�

)3 ∫
d3k Ĉ++(k)exp(−ik · r) ; (B.11)
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leading to

� �F (2)elect [�+(r)] =−1
8
��2+�

2
(
1
2�

)3 ∫
d3r′ d3r′′ d3q Ĉ++(q)

×
∑
�1=±

exp
[
i(�1k − q) · r′

] ∑
�2=±

exp
[
i(�2k + q) · r′′

]

=−1
8
��2+�

2 (2�)3
∫
d3q Ĉ++(q)

∑
�1 ;�2=±

�3 (�1k − q) �3 (�2k + q)

=−1
8
��2+�

2 (2�)3
{
Ĉ++(k)

[
�3 (0) + �3 (2k)

]
+Ĉ++(−k)

[
�3 (0) + �3 (−2k)]}

=−V
4
Ĉ++(k) ��2+�

2 (1 + �k0) ; (B.12)

where we have used the symmetry of the direct correlation function, Ĉ++(k)=Ĉ++(−k).
Combining all the pieces, the variation of the reduced free-energy density can be writ-
ten as

�f [�+(r)] =
�
V
�F (1) [�+(r)] +

�
V
�F (2)ideal [�+(r)] +

�
V
�F (2)elect [�+(r)]

= � �� ��+��k0 +
1
4

[
1− ��+Ĉ++(k)

]
��+�

2 (1 + �k0)

= � �� ��+��k0 +
1
4
S−1(k) ��+�

2 (1 + �k0) ; (B.13)

where S(k) is the structure factor. Note that the linear contribution to the variation has
a Kronecker delta (�k0) factor, which expresses the translational invariance (B.3) of
the equilibrium chemical potential �� of the system.

Appendix C. Green’s function associated with the induced potential

In this appendix we obtain the Green’s function associated with the di�erential equa-
tion satis�ed by the induced potential �̃(r; r′).
The Green’s function G (R;R′) associated with (31), where R= r − r′, satis�es the

homogeneous equation [17,18][∇2
R − �2D� (|R| − h)

]
G
(
R;R′)=−4��3(R− R′)

=−4�
R2

�(R− R′) �(cos �− cos �′) �(’− ’′)

(C.1)

with �(�) the Heaviside step function.
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The general solution of (C.1) can be written as [9]

G
(
R;R′)= �D

∞∑
‘=0

G‘
(
�DR; �DR′)P‘

(
R · R′

RR′

)
; (C.2)

where P‘(�) denotes a Legendre polynomial.
Replacing (C.2) into (C.1), multiplying both sides by P‘′ (R · R′=RR′) and integrating

over the angular coordinates � and ’, we obtain the equation satis�ed by the radial
functions G‘ (s; s′),[

d2

ds2
+
2
s
d
ds

−� (s− x)− ‘(‘ + 1)
s2

]
G‘

(
s; s′

)
=− 1

s2
(2‘ + 1) �(s− s′) ;

(C.3)

where we have introduced the adimensional variables s= �DR, s′ = �DR′ and x= �Dh.
To obtain (C.3) we have used the property of the Dirac delta function,

�(�DR− �DR′) =
1
�D

�(R− R′) ; (C.4)

the addition theorem for the Legendre polynomials,

P‘

(
R · R′

RR′

)
= P‘

[
cos � cos �′ + sin � sin �′ cos(’− ’′)

]

= P‘(cos �)P‘(cos �′) + 2
‘∑

m=1

(‘ − m)!
(‘ + m)!

×Pm
‘ (cos �)P

m
‘

(
cos �′

)
cosm(’− ’′) (C.5)

and their orthogonality,∫ 1

−1
d(cos �)P‘(cos �)P‘′(cos �) =

2
2‘ + 1

�‘‘′ : (C.6)

The solutions of (C.3) that are �nite for s → 0 and vanish as s → ∞ can be written
as

G‘
(
s; s′

)
=




A11s‘ for 0¡s¡s′ ¡x;
A12s‘ + A13s−(‘+1) for 0¡s′ ¡s¡x;
A21s‘ for 0¡s¡x¡s′;
A22k‘(s) for 0¡s′ ¡x¡s;
A31k‘(s) for 0¡x¡s′ ¡s;
A32i‘(s) + A33k‘(s) for 0¡x¡s¡s′ ;

(C.7)

where the coe�cients {Amn} are functions of x and s′ to be determined by the boundary
conditions; i‘(s) and k‘(s) are the modi�ed spherical Bessel functions of the �rst and
the third kinds [16], respectively,

i‘(s) =

√
�
2s

I‘+1=2(s) ; (C.8)

k‘(s) =

√
2
�s K‘+1=2(s) : (C.9)
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Using the symmetry property of the Green’s function [31], we can rewrite Eqs. (C.7)
as

G(1)‘ (s; s
′) = A1s‘s′‘ + B1

s‘¡
s‘+1¿

for 0¡s; s′ ¡x ; (C.10)

G(2)‘

(
s; s′

)
= A2s‘¡k‘(s¿) for 0¡s¡ ¡x¡s¿ ; (C.11)

G(3)‘

(
s; s′

)
= A3k‘(s)k‘(s′) + B3i‘(s¡)k‘(s¿) for 0¡x¡s; s′ ; (C.12)

where s¡ =min(s; s′), s¿ =max(s; s′), and the coe�cients {An; Bn} depend now only
on the size of the exclusion hole x.
The coe�cients {Bn}; n = 1; 3, are obtained by imposing the discontinuity of the

derivative of G‘(s; s′) associated with the Dirac delta function,

d
ds

[
sG(n)‘

(
s; s′

)]
s=s′+�

− d
ds

[
sG(n)‘

(
s; s′

)]
s=s′−�

=−2‘ + 1
s′

; (C.13)

where � is a positive in�nitesimal. Using the Wronskian of the modi�ed spherical
Bessel functions [29,30],

W [k‘(s); i‘(s)] = k‘(s)i′‘(s)− i‘(s)k ′‘(s) =
1
s2

; (C.14)

this leads to

B1 = 1 ; (C.15)

B3 = 2‘ + 1 : (C.16)

The coe�cients {An}; n = 1; 2; 3, are obtained by imposing the continuity of G‘(s; s′)
and of its derivative across the spherical surface at s= s′ = x,

G(1)‘

(
s; s′

)∣∣∣
s=s′=x

= G(2)‘

(
s; s′

)∣∣∣
s=s′=x

= G(3)‘

(
s; s′

)∣∣∣
s=s′=x

; (C.17)

d
ds

G(1)‘

(
s; s′

)∣∣∣∣
s=s′+�=x

=
d
ds

G(2)‘

(
s; s′

)∣∣∣∣
s=s′+�=x

; (C.18)

and using the following relations of the modi�ed spherical Bessel functions [29,30] to
express i‘(x), k‘(x) and k ′‘(x) in terms of i‘±1(x) and k‘±1(x):

1
x2
= i‘+1(x)k‘(x) + k‘+1(x)i‘(x) ; (C.19)

(2‘ + 1) k‘(x) = xk‘+1(x)− xk‘−1(x) ; (C.20)

− (2‘ + 1) k ′‘(x) = ‘k‘−1(x) + (‘ + 1) k‘+1(x) ; (C.21)

which yield

A1 =− k‘−1(x)
x2‘+1k‘+1(x)

; (C.22)
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A2 =
2‘ + 1

x‘+2k‘+1(x)
; (C.23)

A3 = (2‘ + 1)
i‘+1(x)
k‘+1(x)

: (C.24)

Therefore, the Green’s function G (R;R′) is given by expansion (C.2), with the radial
functions G‘ (s; s′) de�ned by [17,18]

G(1)‘

(
s; s′

)
=

s‘¡
s‘+1¿

− s‘s′‘k‘−1(x)
x2‘+1k‘+1(x)

for 0¡s; s′ ¡x ; (C.25)

G(2)‘

(
s; s′

)
= (2‘ + 1)

s‘¡k‘(s¿)
x‘+2k‘+1(x)

for 0¡s¡ ¡x¡s¿ ; (C.26)

G(3)‘

(
s; s′

)
= (2‘ + 1)

[
i‘+1(x)
k‘+1(x)

k‘(s)k‘(s′) + i‘(s¡)k‘(s¿)
]

for 0¡x¡s; s′ :

(C.27)

Appendix D. The perturbative solution of the induced potential

In this appendix we obtain the induced potential �̃(r; r′) recursively, up to order �2,
at the center of the exclusion hole, |r − r′|= 0.
Let us obtain the induced potential outside the exclusion hole, |r− r′|¿h, which we

will denote by �̃¿(r; r
′). Clearly, this potential is produced by the charge distribution

inside and outside the cavity. Let us �rst calculate the contribution to the potential

arising from the charge inside the hole, �̃
(¡)
¿ (r; r′). Since our �nal goal is to calculate

the potential at the center of the cavity to order �2, it is su�cient to calculate the
induced potential outside the hole to order �, see Eq. (33). Using the Green’s function
G (R;R′) derived in appendix C, where R= r − r′, we �nd to �rst order in �,

�̃
(¡)
¿ (r; r′) = �̃

(¡)
¿ (R+ r′; r′) =

1
D

∫
|R′|6h

d3R′ %
(
R′)G (

R;R′)

=
q�D
D

∫
|R′|6h

d3R′ {�3(R′)− ��+
[
1 + �cosk · (R′ + r′)

]}

×
∞∑
‘=0

P‘

(
R · R′

RR′

)

=
1
�q

(
�B�D− 13x

3
)
k0(�DR)
x2k1(x)

− q ��+�D
D

�Re

[
exp

(
ik · r′) ∞∑

‘=0

(2‘+1)

× k‘(�DR)
x‘+2k‘+1(x)

∫
|R′|6h

d3R′ (�DR′)‘ exp(ik · R′)P‘

(
R · R′

RR′

)]
;

(D.1)
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recalling that x = �Dh. The �rst term of (D.1) can be simpli�ed using the identities

k1(x) = (1 + x)
e−x

x2
; (D.2)

�B�D = 1
3

[
(1 + x)3 − 1

]
= x (1 + x) + 1

3x
3 : (D.3)

Relation (D.3) is the de�ning equation for the cavity size, x, Eq. (5). It is important to
remember that it does not take into account the imposed variation in the ionic density,
and as result will be responsible for the violation of the compressibility sum rule.
To simplify the second term of (D.1), we note �rst that, without loss of generality,

we can choose the z-axis along the k direction,

cos �=
k · R
kR

; cos �′ =
k · R′

kR′ ; (D.4)

tan’=
R · ŷ
R · x̂ ; tan’′ =

R′ · ŷ
R′ · x̂ ; (D.5)

so that the addition theorem for the Legendre polynomials can be written as

P‘

(
R · R′

RR′

)
= P‘

[
cos � cos �′ + sin � sin �′ cos(’− ’′)

]

= P‘(cos �)P‘(cos �′) + 2
‘∑

m=1

(‘ − m)!
(‘ + m)!

×Pm
‘ (cos �)P

m
‘ (cos �

′)cosm(’− ’′) : (D.6)

Performing the integrations over the azimuthal angle ’′, only the m=0 terms survive,

�̃
(¡)
¿ (r; r′) =

1
�q

xexk0(�DR)− �3D
�q

�Re

[
exp

(
ik · r′) ∞∑

‘=0

(2‘ + 1)
k‘(�DR)

x‘+2k‘+1(x)

×P‘(cos �)
∫ h

0
dR′ R′2 (�DR′)‘

×
∫ 1

−1
d(cos �′)exp

(
ikR′cos �′

)
P‘(cos �′)

]
: (D.7)

To proceed, we use the plane-wave expansion,

exp
(
ikR′ cos �′

)
=

∞∑
‘=0

(2‘ + 1) i‘j‘(kR′)P‘(cos �′) ; (D.8)

where j‘(�) is the spherical Bessel function of the �rst kind,

j‘(�) =
√
�
2�

J‘+1=2(�) : (D.9)

The integrations over the polar angle �′ and over the radial coordinate R′ can be
performed using the orthogonality of the Legendre polynomials,∫ 1

−1
d(cos �′)P‘(cos �′)P‘′(cos �′) =

2
2‘ + 1

�‘‘′ (D.10)
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and the recursion relation for the spherical Bessel function of the �rst kind,
d
d�

[
�‘+2j‘+1(�)

]
= �‘+2j‘(�) ; (D.11)

which yields

�̃
(¡)
¿ (r; r′) = �̃

(¡)
¿ (R+ r′; r′) =

1
�q

xexk0(�DR)

− 1
��q

�
∞∑
‘=0

(2‘ + 1) cos
(
k · r′ + ‘

�
2

)

× j‘+1(�x)
k‘+1(x)

k‘(�DR)P‘(cos �) ; (D.12)

where �= k=�D.

Substituting �̃
(¡)
¿ (r; r′) into the expression for the charge density outside the exclu-

sion hole, Eq. (33), we can now calculate the contribution to the potential outside the

exclusion hole arising from the external charge, �̃
(¿)
¿ (r; r′). To order � we �nd

�̃
(¿)
¿ (r; r′) = �̃

(¿)
¿ (R+ r′; r′) =

1
D

∫
|R′|¿h

d3R′ %
(
R′)G (

R;R′)

=−�3D
4��

∫
|R′|¿h

d3R′ �̃
(¡)
¿ (R′ + r′; r′)cosk · (R′ + r′

)

×
∞∑
‘=0

G(3)‘ (�DR; �DR
′)P‘

(
R · R′

RR′

)

=− 1
�q

xex�
∞∑
‘=0

(2‘ + 1) cos
(
k · r′ + ‘

�
2

)
�‘(�DR; �)P‘(cos �) ;

(D.13)

where the function �‘(s; �) is de�ned by

�‘(s; �) =
∫ ∞

x
ds′ s′2 k0(s′)

G(3)‘ (s; s
′)

2‘ + 1
j‘(�s′)

=
i‘+1(x)
k‘+1(x)

k‘(s)
∫ ∞

x
d� �2k0(�)k‘(�)j‘(��) + k‘(s)

×
∫ s

x
d� �2k0(�)i‘(�)j‘(��) + i‘(s)

∫ ∞

s
d� �2k0(�)k‘(�)j‘(��) :

(D.14)

We are now able to �nd the induced potential inside the exclusion hole, |r − r′|6h,
up to order �2,

�̃¡(r; r
′) = �̃¡(R+ r

′; r′) =
1
D

∫
d3R′ %

(
R′)G (

R;R′)
=

q�D
D

∫
|R′|6h

d3R′ {�3(R′)− ��+
[
1 + � cosk · (R′ + r′)

]}
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×
∞∑
‘=0

G(1)‘ (�DR; �DR
′)P‘

(
R · R′

RR′

)
− �3D
4��

∫
|R′|¿h

d3R′ �̃¿(R
′ + r′; r′)

×cosk · (R′ + r′
) ∞∑

‘=0

G(2)‘ (�DR; �DR
′)P‘

(
R · R′

RR′

)
; (D.15)

where the induced potential outside the exclusion hole, up to order �, is given by

�̃¿(r; r
′) = �̃

(¡)
¿ (r; r′) + �̃

(¿)
¿ (r; r′) : (D.16)

Since we need just the mean induced electrostatic potential  (r′) felt by the positive
ion �xed at r′, that is, at the center of the exclusion hole, R = 0, and recalling that
G‘(�DR= 0; �DR′) = 0;∀‘¿ 0, only the isotropic (‘ = 0) terms of (D.15) contribute,

 (r′) = lim
R→0

[
�̃¡(R+ r

′; r′)− q
DR

]

= lim
R→0

[
q�D
D

∫
|R′|6h

d3R′ G(1)0 (�DR; �DR
′) �3(R′)− q

DR

]

−q ��+�D
D

∫
|R′|6h

d3R′ G(1)0 (0; �DR
′)

[
1 + �cosk · (R′ + r′)

]

−�3D
4��

∫
|R′|¿h

d3R′ G(2)0 (0; �DR
′) �̃¿(R

′ + r′; r′)cosk · (R′ + r′
)

= lim
R→0

[q�D
D

G(1)0 (�DR; 0)−
q
DR

]
− �3D

�q

∫ h

0
dR′ R′2G(1)0 (0; �DR

′)

−�3D
�q

�cosk · r′
∫ h

0
dR′ R′2G(1)0 (0; �DR

′)j0(kR′)

−�3D
4�

1
x2k1(x)

�
∫
|R′|¿h

d3R′ k0(�DR′) �̃¿(R
′ + r′; r′)cosk · (R′ + r′

)
:

(D.17)

Using the explicit form of G(1)0 (s; s
′) and �̃¿(r; r

′), and performing the angular inte-
grations, we obtain

�q (r′) =−�B�D
k−1(x)
xk1(x)

−
∫ x

0
ds s2

[
1
s
− k−1(x)

xk1(x)

]

−�cosk · r′
{∫ x

0
ds s2

[
1
s
− k−1(x)

xk1(x)

]
j0(�s)

+
xe2x

1 + x

∫ ∞

x
ds s2k20 (s)j0(�s)

}
+

ex

� (1 + x)
�2

×
∞∑
‘=0

(2‘ + 1) cos2
(
k · r′ + ‘

�
2

) j‘+1(�x)
k‘+1(x)
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×
∫ ∞

x
ds s2k0(s)k‘(s)j‘(�s)+

xe2x

1 + x
�2

∞∑
‘=0

(2‘+1) cos2
(
k · r′+‘

�
2

)

×
∫ ∞

x
ds s2k0(s)�‘(s; �)j‘(�s) : (D.18)

The �rst terms of (D.18) can be simpli�ed using (D.2) and (D.3), supplemented by
the identities

k0(x) =
e−x

x
; (D.19)

k−1(x)
k1(x)

=
k1(x)− k0(x)=x

k1(x)
=

x
1 + x

; (D.20)

j0(�) =
sin �
�

: (D.21)

Furthermore, expressing i‘(�) in terms of k‘(�) using the relation [29,30]

i‘(�) =− 1
2

[
k‘(−�) + (−1)‘k‘(�)

]
; (D.22)

and de�ning the ‘th grade polynomial g‘(�) associated with the modi�ed spherical
Bessel function of the third kind k‘(�) by the identity [29,30]

g‘(�)≡e��‘+1k‘(�)=
‘∑

m=0

�(‘ + m+ 1)
2mm!�(‘ − m+ 1)

�‘−m=
‘∑

m=0

(2m)!
2mm!

(
‘ + m
2m

)
�‘−m ;

(D.23)

where �(m) = (m− 1)! is the Euler gamma function, it is possible to express the last
integral of (D.18), which is two-dimensional, in terms of one-dimensional quadratures,∫ ∞

x
ds s2k0(s)�‘(s; �)j‘(�s) = e−2x(−1)‘+1

{
1
2
g‘+1(−x)
g‘+1(x)

[
I+

‘ (x; �)
]2

+I+
‘ (x; �)I

−
‘ (x; �)−I0

‘(x; �)
}

; (D.24)

where {I�
‘}; �=±; 0; are the one-dimensional integrals

I−
‘ (s; �) =

∫ s

0
d� �−‘g‘(−�)j‘(��) ; (D.25)

I0
‘(x; �) =

∫ ∞

x
ds s−‘g‘(s)j‘(�s)I−

‘ (s; �)exp [2(x − s)] ; (D.26)

I+
‘ (x; �) =

∫ ∞

x
ds s−‘g‘(s)j‘(�s)exp [2(x − s)] : (D.27)

We stress that the functions {I0
‘(x; �)} represent one-dimensional quadratures, since

the integrals {I−
‘ (s; �)} can be expressed in explicit form, for all values of ‘, in terms

of trigonometric functions and of the sine integral,

Si (t) =
∫ t

0
d�
sin�
�

: (D.28)
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To illustrate, we give the three �rst integrals:

I−
0 (s; �) =

Si (�s)
�

; (D.29)

I−
1 (s; �) =−1

�
+
cos �s
2�s

+
(
1
�2s

− 1
2�2s2

)
sin �s+

1
2
Si (�s) ; (D.30)

I−
2 (s; �) =−1 +

(
3
2�2s

− 3
�2s2

+
9

4�2s3
+
3
8s

)
cos �s

+
(
− 3
2�3s2

+
3

�3s3
− 9
4�3s4

+
3
8�s2

)
sin �s+

(
1
2�
+
3�
8

)
Si (�s) :

(D.31)

Therefore, the �nal form for the mean induced electrostatic potential at the center of
the exclusion hole (in unities of �q) reads

�q (r′)=−1
2
x(x+2)−� cosk·r′

[
1
�2

− sin �x
�3(1 + x)

− cos �x
�2(1 + x)

+
x

1 + x
I+
0 (x; �)

]

+
1

�(1 + x)
�2

∞∑
‘=0

(2‘ + 1) cos2
(
k · r′ + ‘

�
2

) x‘+2j‘+1(�x)
g‘+1(x)

I+
‘ (x; �)

+
x

1 + x
�2

∞∑
‘=0

(−1)‘+1 (2‘ + 1) cos2
(
k · r′ + ‘

�
2

)

×
{
1
2
g‘+1(−x)
g‘+1(x)

[
I+

‘ (x; �)
]2
+I+

‘ (x; �)I
−
‘ (x; �)−I0

‘(x; �)
}

: (D.32)
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