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Abstract

We investigate the thermodynamic and dynamic properties of a three dimensional Associating

Lattice Gas (ALG) model through Monte Carlo simulations. The ALG model combines a soft

core potential and orientational degrees of freedom. The competition of directional attractive

forces and the soft core potential results in two coexisting liquid phases which are also connected

through order-disorder critical transitions. The model presents structural order, density and dif-

fusion anomalies. Our study suggests that the dynamic fragile-to-strong transitions are associated

to changes in structural order.

PACS numbers:
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I. INTRODUCTION

Water is the most important solvent in nature1,2 presenting many unusual properties

that are now well understood. However, an open question concerns the presence of a second

critical point separating two liquid phases. It has been proposed some time ago that the

anomalous behavior of water might be associated with a critical point at the terminus of a

liquid-liquid coexistence line, localized in the unstable supercooled liquid region3, at high

pressures. In spite of the limit of 235K below which water cannot be found in the liquid phase

without crystallization, two amorphous phases were observed at much lower temperatures4.

There are evidences, although yet under test, that these two amorphous phases are related

to fluid water5,6.

More recently, experimental studies have shown that water presents anomalies also for

dynamic properties. Results in nanoscale hydrophilic pores show a line of dynamic crossover

in water diffusivity in the pressure-temperature phase diagram7–10. At constant pressure,

as the temperature is lowered, a fragile-to-strong crossover is observed in the diffusivity7–10.

This line coincides with the line of peaks in the specific heat suggesting that it is a Widom

line (WL). This line is defined as the analytic continuation of the coexistence line between

two phases ending in a critical point. Along a WL the specific heat does not diverge but has

a peak that becomes larger as the critical point is approached. Consequently the dynamic

transitions observed in the experiments were interpreted in terms of the liquid-liquid phase

transition predicted in water9. The authors propose that the presence of fragile-to-strong

transition in a region that does exhibit density anomaly indicates the presence of a liquid-

liquid transition.

Water-like anomalous properties are also present in the behavior of other substances.

The dynamic transition has also been associated with the first-order liquid-liquid transition

in silicon11 instead of being at the WL as suggested for water9. In addition, the fragile-to-

strong crossover has also been observed in silica and related to the polyamorphic behavior

of amorphous silica and to the presence of two liquid phases. No thermodynamic transition

is observed in this case12.

The discovery of anomalous dynamic properties has posed new questions in relation to

polymorphism. Is there a relation between the fragile-to-strong crossover and the presence

of liquid-liquid transitions? What is the nature of the liquid-liquid transitions? What is
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the role of structural order in relation to thermodynamic or dynamic anomalies13? Here

we address these questions by studying the associating lattice gas model that exhibits two

liquid phases and different ordered phases. This water-like model has density and diffusion

anomalies14,15 and its phase diagram has been investigated previously through Monte Carlo

simulations14 and cluster expansions16.

In the numerical study of the model by Girardi and collaborators14,15 two coexisting liquid

phases, as well as density and diffusion anomalies were found. Buzano et al.16 explored the

same model by an analytical method. Their calculations yielded an additional critical line

connecting the two coexistence lines, as well as a second critical line between the liquid phase

and the high temperature fluid phase, not foreseen in the numerical study. This last line,

according to their analysis, ends at the liquid-gas coexistence phase boundary at a critical

end point.

Here we explore the model phase diagram through Monte Carlo simulations in order to

check for the effect of fluctuations not included in the approach by Buzano et al.16. We then

address the question on the behavior of the diffusivity in the vicinity of the critical regions.

The remaining of the paper goes as follows. In chapter II the model is introduced and the

employed Monte Carlo simulations are described. In sec. III the chemical potential versus

temperature phase diagram obtained by Monte Carlo simulations is presented. In sec. IV

the behavior of the diffusion coefficient across the critical lines and the first-order liquid-gas

coexistence line are analyzed. Final comments are presented in sec. V.

II. THE MODEL

We consider the three dimensional Associating Lattice Gas model of V = L3 sites on

a body centered cubic (BCC) lattice, as introduced by Girardi and coworkers14. Some

aspects of the phase diagram were previouslly described by Monte Carlo14 and by analytical

methods16. Particles are represented by an occupational variable σi, with σi = 0 if the site

is empty or σi = 1 if the site is occupied by a molecule. In addition, each particle has eight

arm variables τi that represent the possibility of forming a bond with a neighbor site. Four

arms are the usual ice bonding arms with τi = 1, the other four are inert with τi = 0. The

bonding and non bonding arms are distributed in a tetrahedral arrangement imposed by the

lattice geometry. The two possible arm configurations, A and B, are illustrated in Fig. (1).
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The system is described by the Hamiltonian

H =
∑

〈i,j〉

σiσj (ǫ + γ τiτj) ; (1)

where σi = 0, 1 is the occupational variable, ǫ is the van der Waals energy, γ is the bond

energy and τi = 0, 1 is the arm variable that represents the possibility of a bond between

two neighboring sites. A bond is formed when two neighboring sites have bonding arms

variables equal to 1, τiτj = 1. The parameters are chosen to be ǫ > 0 and γ < 0, which

implies in an energetic penalty to the neighbors that do not form a bond.

A

B

FIG. 1: Particles in the BCC lattice can assume arms configuration A or B.

The ground state properties of the model were obtained by inspecting Eq. (1) with an

external chemical potential term. The grand potential per site, at zero temperature, is given

by φ = e − µρ, where φ = Φ/V , e = H/V , N is the number of occupied sites and ρ = N/V

is the density of the system. For chemical potentials lower then µ < 2(ǫ + γ) the system is

in the Gas phase, where the lattice is empty (ρ = 0). At chemical potential µc = 2(ǫ + γ)

the gas phase coexists with the low density liquid (LDL) phase with ρ = 0.5. This phase

is present in the chemical potential range 2(ǫ + γ) < µ < 6ǫ + 2γ. In the LDL phase each

particle has four occupied neighboring sites with which bonds are formed as illustrated in

Fig. (2). At the chemical potential µc = 6ǫ+2γ the LDL phase coexists with a high density

liquid (HDL) phase, with ρ = 1. This phase is present for chemical potentials higher then

µ > 6ǫ + 2γ. In this phase all sites are occupied and each molecule forms four bonds, as

can be seen in Fig. (3). Here, molecules have first neighboring sites with no bond formed.

The chemical potential is so high that it compensates the penalty imposed by occupation of

sites with no bond.
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FIG. 2: In the ordered low density liquid phase half of the lattice is occupied by particles.

FIG. 3: In the ordered high density liquid phase the lattice is fully occupied by particles.

The non-zero temperature properties of the model were obtained by Monte Carlo simu-

lations in the Grand Canonical Ensemble with the Metropolis Algorithm, for lattices with

linear size L = 30 and interaction parameter γ/ǫ = −2. Reduced parameters were defined

as

T =
kB T

ǫ
,

µ =
µ

ǫ
. (2)

The stability of the solutions were tested from comparison of results for lattices of linear

sizes L = 20, 30, 40, 50, as shown in the next section. Since no qualitative changes occured

in the model properties, we chose lattice size L = 30 for an extensive study.

III. THE PHASE DIAGRAM

The complete chemical potential vs. temperature phase diagram in reduced units, ob-

tained by Monte Carlo simulations, is illustrated in Fig. (4). We observed that the Gas phase
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coexists with the LDL phase in a first order transition line (solid line and circles) that ends

at the point (T c1 = 1.39, µc1
= 0.09). The LDL phase coexists with the HDL phase in a first

order transition line (solid line and squares) that ends at the point (T c2 = 0.95, µc2
= 1.93).

This system exhibits a region of anomalous density as observed by Monte Carlo simulations

by Girardi et al.14 and by cluster variational methods by Buzano et al.16. The line of tem-

perature of maximum density (TMD) is located between the two coexistence lines and is

represented by a grey solid line and triangles in Fig. (4). Both the LDL and the HDL are

fluid phases because the diffusion coefficient is nonzero in both cases.

From the point Tc1 two lines appear, the λ-line (solid line) and the τ -line (dashed line).

The λ-line starts at the point Tc1, joins the Gas-LDL and LDL-HDL coexistence lines, ending

at the Tc2 point. This line has a reentrant format similar to the phase-boundaries observed

in liquid-solid transitions in models with two length scales17 The τ -line starts at the point

Tc1 and extends itself in the high temperature and chemical potential region of the phase

diagram. Differently from the mean-field like results of Buzano et al.16 the τ line does

not end at a critical end point on the liquid-gas coexistence curve. In our investigation of

the model through numerical simulations, the LDL-Gas coexistence line ends at a bicritical

point. This change is certainly due to the fluctuations missed in their approach.

In order to define the character of these two lines, the specific heat at constant volume,

defined by the equation18

cV =
1

kBT 2V

(

〈δφ2〉µV T −
〈δφδρ〉2µV T

〈δρ2〉µV T

)

(3)

was computed. Here δZ = Z − 〈Z〉 with Z = φ, ρ.

The behavior of cV with reduced temperature is shown in Fig. (5) for reduced chemical

potential µ = 1 and different lattice sizes. For this chemical potential, the specific heat

presents two different peaks, suggesting the presence of a double criticality. For a lattice

size L = 30, the first peak is located at T ≃ 1.44, the location of the λ-line, and the second

one at T ≃ 1.58, the location of the τ -line. By varying the chemical potential, the two peaks

in the specific heat are present in the interval µTc1
< µ < µTc2

and the λ and the τ lines can

be located for different chemical potentials.

The criticality of both λ and τ lines was confirmed by computing the fourth-order cumu-

lant of energy, given by

VL = 1 −
〈(H− 〈H〉)4〉

3〈(H− 〈H〉)2〉2
. (4)
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FIG. 4: Chemical potential vs. temperature phase diagram in reduced units. Solid line and

circles are the coexistence line between Gas-LDL, while solid line and squares is the coexistence

line between LDL-HDL. Tc1 point is a bicritical point from where the critical λ-line and τ -line

emanate. Tc2 point is a tricritical point where the λ-line joins to the LDL-HDL coexistence line.
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FIG. 5: Specific heat at constant volume, cV , vs. reduced temperature for reduced chemical

potential µ = 1 and lattice sizes L = 20, 30 and 50.

The result is shown in Fig. (6) for reduced chemical potential µ = 1 and lattice sizes

L = 20, 30 and 50. The behavior of VL with temperature and lattice size tell us that both
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FIG. 6: Cumulant of energy vs. reduced temperature for reduced chemical potential µ = 1 and

lattice sizes L = 20, 30 and 50.

lines are critical and of second order.19

In order to check the nature of the criticality of the λ and τ lines, the order of both

particle orientation and lattice occupation was inspected.

Particle arm configurations allow for two particle orientational states (see Fig. (1), which

we designed as A and B, and describe through variables Si = 1 and Si = −1. Inspection of

particle orientation both in the ordered LDL as well as in the ordered HDL phase suggests

(see Figs. (2) and (3)) the division of the lattice into two sublattices, illustrated in Fig.(7).

Then a possible orientational bonding order parameter may be defined as

θbondX
=

| < Si > |X
NX

(5)

were X = 1, 2 is the sublattice index and NX is the number of particles in sublattice X.

θbond 6= 0 if there is predominance of a particular molecular orientation on sublattice X.

Behavior of θbond is illustrated in Fig. (8) for reduced chemical potential µ = 1 and lattice

size L = 30. It can be seen that when the critical τ -line is crossed the system starts to order

itself by increasing abruptly the number of particles in the same arm configuration. Particles

that belongs to sublattice 1 are predominantly in arm configuration A, while particles that

belong to sublattice 2 are mostly in arm configuration B.

A fully tetrahedral network develops on crossing the second critical λ-line, at which the
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system releases unbounded particles on half of the lattice. This can be better visualized by

dividing the lattice into eight sublattices, as illustrated in Fig. (9), and measuring density

of particles ρi and density of bonds ρbi
, with i = 1, . . . , 8. ρi is the density of the sublattice i

while ρbi
is the number of bonds divided by the number of sites in the sublattice i. At the λ-

line four sublattices become empty while other four become full, as illustrated in Fig. (10(a))

by the behavior of ρi with temperature. A translational order parameter may be defined as

θtr = ρ1 − ρ2, where ρ1 is the density of particles of the one of the sublattices, 1,4,6,7, and

ρ2 the density of particles of sublattice 2,3,5,8 as illustrated in Fig. 9.

Translational order is accompanied by establishment of a bonding network, as illustrated

in Fig.(10(b)) by the behavior of ρbi
with temperature. Thus, the abrupt increase in orien-

tational order at the τ -line is not complete (see Fig. (8)) and bonding is relatively low in

the HDL phase (see Fig. (10(a))).

In summary as the temperature lowers at constant chemical potential, the system first

orders orientationally, at the τ -line, at which predominance of one of the orientational states

in each sublattice arises (θbond 6= 0) and then orders positionally, with the lattice becoming

half empty at the λ-line. Simultaneous orientational and positional order is accompanied by

the development of a fully developed bond network.

The Fig. (4 shows two critical lines not present in the previous analysis shown in refs.14,15.

FIG. 7: The lattice is divided in two sublattices: full circles define sublattice 1 while empty circles

define sublattice 2.
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FIG. 8: Order parameter and specific heat vs. temperature for chemical potential µ = 1 and lattice

size L = 30. As can be seen, both sublattices orders itself in one arm configuration when cross the

τ -line.
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FIG. 9: The 8 sublattices division. Sublattices 1,4,6,7 become occupied, while the other sublattices

become empty. Particles on sublattice 1 and 4 orient mostly in the A state, while particles on

sublattice 6 and 7 orient into the B state.

IV. DYNAMIC TRANSITIONS

The behavior of the diffusion coefficient was analyzed as a function of the temperature

for chemical potential µ = 0, crossing the first-order Gas-LDL coexistence line, and µ = 1,

crossing the critical λ and τ lines.

To compute diffusion coefficient the system is equilibrated at fixed chemical potential
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(a)Density of particles for the eight sublattices

and specific heat vs. reduced temperature for

µ = 1. At the λ-line four sublattices become

empty while the other four become full. The

specific heat is also shown for illustrating the

location of the λ-line.
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all the empty sites with bonds while the other

four have no bonds. The specific heat is also

shown for illustrating the location of the λ-line.

FIG. 10: Order Parameters versus reduced temperature

and temperature. In equilibrium this system has n particles. Starting from this equilibrium

configuration at a time t = 0, each one of the n particles is allowed to move to an empty

randomly chosen neighbor site. The movement is accepted if the total energy of the system

is reduced, otherwise it is accepted with a probability exp(∆E/kBT ) where ∆E is the

difference between the energy of the system after and before the movement. After repeating

this procedure nt times, the mean square displacement per particle at a time t is given by

〈(∆r(t))2〉 = 〈(r(t) − r(0))2〉 , (6)

where r(t) = r(t)/a is the particle’s position measured in units of lattice parameter a, r(0)

is particle’s position at the initial time and r(t) is the particle’s position at a time t. In

Eq. (6), the average is taken over all particles and over different initial configurations. The

dimensionless diffusion coefficient is then obtained from Einstein’s relation

D = lim
t→∞

〈(∆r(t))2〉

6t
(7)

with time measured in units of Monte Carlo steps.
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First, let us examine the behavior of diffusivity when the system crosses the Gas-LDL

first-order coexistence line. Fig. (11) shows the logarithm of diffusion coefficient vs. the

inverse of temperature for chemical potential µ = 0. At high temperatures diffusivity follows

a non-Arrhenius trend namely

D = A0 + A1T + A2T
2
+ A3T

3
, (8)

indicating that the low density disordered fluid phase is a fragile liquid. At low temperatures,

below the Gas-LDL transition temperature, diffusivity displays an Arrhenius behavior, given

by

D = B0 exp

(

B1

T

)

, (9)

characterizing the LDL phase as a strong liquid. In both equations Ai and Bi are the fitting

parameters. In conclusion, the system undergoes a fragile-to-strong transition when crossing

the Gas-LDL coexistence line at constant chemical potential. This result indicates that the

more ordered structure (LDL) exhibits a strong liquid behavior.

Next, we describe what happens with diffusivity behavior when the system crosses each

one of the two critical lines. Fig. (12) shows the logarithm of diffusion coefficient as a function

of the inverse of temperature for chemical potential µ = 1.0. At very high temperatures, for

T > 1.58, or 1/T < 0.63, diffusivity displays a non-Arrhenius behavior, given by Eq.(8).

Lowering the temperature, when the system crosses critical τ -line, in the temperature

range 0.64 < 1/T < 0.69 between the two critical lines, the liquid also exhibits a fragile

behavior, were diffusion coefficient follows a non-Arrhenius trend given by Eq. (8) with a

different set of fitting parameters than the previous case.

For even low temperatures the system crosses the λ-line, and for 1/T > 0.70 diffusivity

follows an Arrhenius law given by Eq. (9) characterizing the liquid as strong.

The results show that the system undergoes a fragile-strong crossover when crosses

the first-order Gas-LDL coexistence line (coming from high temperatures), a fragile-fragile

crossover when crosses the critical-τ line (coming from high temperatures) and a fragile-

strong crossover when crosses the critical-λ line (also coming from high temperatures).
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FIG. 11: Diffusion coefficient in an Arrhenius plot for µ = 0. At high temperatures, diffusivity

follows a non-Arrhenius law, while at low temperatures diffusivity follows an Arrhenius law. The

dynamic crossover takes place when the system crosses the coexistence line between the Gas-LDL

phases.

V. FINAL COMMENTS

In this paper we have analyzed the thermodynamic and dynamical properties of a three

dimensional Associating Lattice Gas model.

The system presents two liquid phases which coexist through first order lines at low

temperatures. At low density and temperature, the system presents an open four-bonded

orientational structure. As chemical potential is raised, the system undergoes a transition

to a high density liquid, as the lattice is filled up, loosing translational order. At very low

chemical potential, the low density liquid coexists with a gas phase. At higher temperatures,

the two coexistence lines are linked by a critical line which we have called the λ-line. Thus

the coexistence line between the HDL and the LDL phases ends at a tricritica point from

which the λ-line emerges. A second critical line, the τ -line, emerges from the LDL-Gas

coexistence line which ends at a bicritical point. The criticality of both lines is identified

from the specific heat study as well as from the cumulant of energy. Our model has some

resemblance with other lattice models in two20–23 and three dimensions16,24,25 that exhibit

two liquid phases.
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FIG. 12: Diffusion coefficient as a function of temperature in an Arrhenius plot for µ = 1.0. For

temperatures T > Tτ diffusivity follows a non-Arrhenius law, characterizing the liquid as fragile.

At temperatures Tλ < T < Tτ , the liquid is also characterized as fragile since diffusivity follows a

non-Arrhenius law. For temperatures T < Tλ diffusivity follows an Arrhenius law, and the liquid

is characterized as strong.

We propose the characterization of the different liquid phases in terms of structural order

through positional and orientational order parameters. In the LDL phase, a tetrahedral

bond network is present: the system presents both translational an orientational order. As

temperature is lowered from the fluid phase, at intermediate chemical potentials, the system

undergoes two phase transitions. At the first one, at which the HDL phase is reached,

orientational order of particles on different sublattices rises abruptly. The second transition

leads to the LDL phase, at which the system orders also translationally, with some of the

sublattices becoming empty, while others fill up. Thus the two liquid phases coexist at

low temperatures, with different densities, while at higher temperatures they are separated

by order-disorder transitions. The line of maximum densities (TMD) is located inside the

structurally ordered phase.

The thermodynamic phase transitions are accompanied by dynamic transitions, baring

no relation to a Widom line. Our results point to a connection between strong-to-fragile

transitions and order-disorder transitions, as suggested by Angell26. At lower chemical po-

tentials the system exhibits a fragile-to-strong transition at the gas-LDL coexistence line.
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The fragile-to-strong transition occurs simultaneously with an ordering transition to the

tetrahedrally bonded LDL phase. At higher chemical potentials, the system undergoes two

dynamic transitions connected to the two critical order-disorder transitions. As tempera-

ture is lowered and the orientational order-disorder τ -line is reached, the system exhibits

a a fragile-to-fragile transition. As temperature is further decreases, a fragile-to-strong

transition accompanies the translational order-disorder λ-line transition which yields the

tetrahedrally bonded network of the LDL phase.

The presence of the fragile-to-strong transition at the order-disorder critical line was

also observed in the two dimensional version of this model27 and in Ref.22, confirming the

assumption that the change in the structure is fundamental to determine the non-Arrhenius

to Arrhenius behavior.
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