
PREPRINT

Dynamic Transitions in a Two Dimensional Associating Lattice

Gas Model

Marcia M. Szortyka

Instituto de F́ısica, Universidade Federal do Rio Grande do Sul,

Caixa Postal 15051, 91501-970, Porto Alegre, RS, Brazil∗

Vera B. Henriques

Instituto de F́ısica, Universidade de São Paulo,

Caixa Postal 66318, 05315970, São Paulo, SP, Brazil†

Mauricio Girardi

Universidade Federal do Pampa - Caixa Postal 07, 96400-970, Bagé, RS, Brazil‡
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Abstract

Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the

behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions

of the phase diagram. The ALG model combines a two dimensional lattice gas where particles

interact through a soft core potential and orientational degrees of freedom. The competition

between soft core potential and directional attractive forces results in a high density liquid phase,

a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density

with the temperature at constant pressure and of the diffusion coefficient with density at constant

temperature are also found. The two liquid phases are separated by a coexistence line that ends in

a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence

line that ends in tricritical point. The bicritical and tricritical points are linked by a critical λ-line.

The high density liquid phase and the fluid phases are separated by a second τ critical line. We

then investigate how the diffusion coefficient behaves on different regions of the chemical potential-

temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions:

a fragile-to-strong transition when the critical λ-line is crossed by decreasing the temperature at

a constant chemical potential; and a strong-to-strong transition when the τ -critical line is crossed

by decreasing the temperature at a constant chemical potential.

PACS numbers: 64.70.Pf, 82.70.Dd, 83.10.Rs, 61.20.Ja
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I. INTRODUCTION

The study of the properties of supercooled water is motivated by its well known anomalous

thermodynamic behavior. Besides the density anomaly, the response functions for water

appear to diverge at a singular temperature Tc = 228 K1. This apparent divergence of

the response functions led to the hypotheses of the existence of liquid polymorphism and

of a second critical point, at Tc = 228 K2. In spite of the enormous attention given to

this possible singularity, as well as to the many other anomalies, no unique explanation has

yet been established. The hypothetical singular point is hidden below the homogeneous

nucleation temperature TH = 235 K3 in an experimentally inaccessible temperature range

for bulk supercooled water. This rules out direct experimental investigation of this region

in order to confirm the existence of liquid-liquid coexistence. In order to circumvent this

difficulty, it has been proposed, recently, that a dynamic crossover of the transport properties

such as the self-diffusion constant, D, and the viscosity, η, at temperatures above Tc, would

indicate the presence of a critical point4,5. The dynamic crossover has also been associated

with liquid-liquid transitions in silicon6 and in non-tetrahedral liquids7.

The basic surmise behind the link between the dynamic crossover and the presence of a

second critical point goes as follows. The liquid-liquid coexistence line that separates two

liquid phases terminates at a critical point. Beyond this point, at which the response func-

tions diverge, one finds lines of maxima of these functions which asymptotically approach

the critical point. This extension of the first-order phase boundary into the one-phase region

is the Widom line at TL(P ). Even though this line does not exhibit any thermodynamic

transition, experiments on water show that the specific heat, shear viscosity and thermal

diffusivity8 exhibit a peak when crossing the Widom line. In particular, Maruyama et.

al9 conducted experiments in nanoporous (to avoid homogeneous nucleation) at ambient

pressure that present a peak at the constant pressure specific heat at TCp = 227 K. This

temperature coincides (within the experimental error bar) with that one temperature ob-

tained by Xu et. al10, TCp = 225 K for the location of the dynamic crossover suggesting

that this crossover occurs at the Widom line, confirming the presence of the second critical

point.

The presence of a peak in the specific heat in a certain region of the pressure-temperature

phase-diagram is not exclusivity of Widom lines. For instance, in glassformers an abrupt
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heat capacity drop is observed when ergodicity is broken. This change can happen very

sharply in the case of fragile liquids or it may take tens of degrees in the case of strong

liquids. Examples of fragile liquids are toluene and metallic systems, while covalent and

network forming systems are strong liquids11. In the last case, the increase in the specific

heat can be simply a smeared peak, located above the melting temperature,Tm, like in the

case of SiO2 and of BeF2
12–17. In the case of strong liquids, it is also possible to observe

a weak transition at a temperature between the glass transition temperature, Tg, and the

melting temperature, Tm. This peak in the specific heat curve occurs in the tail of a λ

thermodynamic transition where there is a little heat capacity to loose18. Example of such

strong liquids are the tetrahedral bonded liquids such as water, Si and Ge. This implies

that observing a fragile-to-strong crossover in a region where the specific heat grows does

not univocally imply the presence of a critical point. An interesting question, however,

would be: does the presence of criticality result in a fragile-to-strong crossover?

In order to address this point, in this paper we analyze a model that exhibits two different

critical lines and we explore what happens with the dynamics close to these line, in order to

test if a fragile-to-strong transition would be a signature for criticality. The present model is

an Associating Lattice Gas (Henriques and Barbosa) that corresponds to a lattice gas with

hydrogen bonds represented through ice variables. A competition between the filling up of

the lattice and the formation of an open four-bonded orientational structure is naturally

introduced in terms of the ice bonding variables, and no ad hoc addition of density or bond

strength variations is needed. Besides the gas phase and as a result of this competition, the

model exhibits two liquid phases that bare resemblance to the two liquid phases predicted

for water, corresponding to a low density liquid phase and a high density liquid phase.

Moreover, it has both the diffusion and the density anomalies present in water19.

Here, the model phase diagram is reviewed and analyzed for the presence of dynamic

transitions. Two new critical lines were found beyond the liquid-liquid coexistence line. We

searched for fragile to strong transitions in the proximity of these two lines. Comparison

between the behaviors of the specific heat and of the diffusion constant in these regions

may help in understanding if the type of dynamic transition observed in confined water

necessarily means the presence of criticality.

The remaining of this article goes as follows. In sec. II, the lattice model is reviewed, for

clarity. In sec. III, results for the chemical potential-temperature phase-diagram are shown
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and discussed. Our investigation of diffusion is presented in sec. IV. Sec V is a final section

of conclusions.

II. THE MODEL

We consider a two-dimensional lattice gas model of size L2 on a triangular lattice as

introduced by Henriques and Barbosa20. In this model, particles are represented by an

occupational variable, σi, which assumes the value σi = 0, if the site is empty, or σi = 1, if

the site is full, and six orientational variables, τA
i

, that represent the different orientations

that the particle might exhibit. If two neighboring sites have complementary orientations,

a hydrogen bond is formed. Four bonding variables are the ice bonding arms: two donors,

with τA
i

= 1, and two acceptors, with τA
i

= −1. The other two arms, with τA
i

= 0, do not

form bonds, and are taken always opposite to each other, as illustrated in Fig.(1). There is

no restriction for donor/acceptor arms positions, thus there are eighteen possible states for

each occupied site.

The Hamiltonian includes two contributions: an isotropic, van der Waals like interac-

tion, while the second interaction depends on the orientational degrees of freedom. Two

neighboring sites, i and k, with pointing arms A and B, form a hydrogen bond if the prod-

uct between their orientational variables is given by τA
i

τB
k

= −1, yielding an energy per site

e = E/L2 = −v. For a non-bonding pair of occupied sites, the energy per site is e = −v+2u,

for u > 0. In spite of the fact that each molecule may have six neighbors, only four hydrogen

bonds per particle are allowed. The overall energy of the system is given by

H = (−v + 2u)
∑

〈i,k〉

σiσk + u
∑

〈i,k〉

σiσk

[(

1 − τA
i

τB
k

)

τA
i

τB
k

]

, (1)

where σi = 0, 1 are occupation variables, τA
i

= 0,±1 represent the arm state variables, the

summation 〈i, k〉 is over neighboring sites.

Comparing the energies of the model at zero temperature two liquid phases, a low density

(LDL) and high density (HDL) liquid phase are found, besides the gas phase. Fig.(2) (a)

and (b) illustrates the HDL and LDL phases. For high values of the chemical potential the

lattice is fully occupied ( density ρ = 1 ) and the energy per site is e = −3v + 2u. At

lower values of the chemical potential, µ, the soft core repulsion becomes dominant, and the
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lattice becomes 3/4 filled, with density ρ = 0.75 and energy per site e = −3

2
v. Like every

other lattice gas, the model exhibits a gas phase, at very low chemical potentials.

At zero temperature, the grand potential per site, φ = Φ/L2, is given by

φ(T = 0) = 〈H − µ
∑

i

σi〉 = E − µN . (2)

By equating the grand potential of different phases, we find that the high density phase

(HDL) coexists with the low density phase (LDL) at the reduced chemical potential µ =

µ/v = −6+8u/v. The coexistence between the LDL and the gas phases occurs at µ/v = −2.

The properties of the system at finite temperatures were obtained from Monte Carlo

simulations in the grand canonical ensemble, through the Metropolis algorithm. We present

a detailed study of the model system, for L = 30. Some finite size scaling analysis was

also undertaken, when necessary. Interaction parameters were fixed at u/v = 1, which

corresponds to ”repulsive” van der Waals interaction. Reduced parameters are defined by

p =
p

v

T =
kB T

v
(3)

µ =
µ

v
.

(4)

Equilibrium transition were investigated through analysis of the specific heat, cumulant of

energy and the order parameters. First order transition points were located from hysteresis

of the system density as a function of the chemical potential. The constant volume specific

heat was calculated from simulation data obtained at constant chemical potential through

the expression

cV =
1

kBT 2V

(

〈δφ2〉µV T −
〈δφδρ〉2µV T

〈δρ2〉µV T

)

(5)

adapted from21 to the lattice. ρ is the density, V is the volume and δX = X − 〈X〉 with

X = φ, ρ.

III. THE PHASE DIAGRAM

The chemical potential-temperature phase diagram of the model was partially analyzed

in previous work20, which focused on the coexistence lines between the low and high density
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liquids. In this paper the µ−T phase-diagram is complemented by the analysis of the region

beyond the coexistence line.

The complete µ − T phase-diagram is illustrated in Fig.(3) and goes as follows. At low

reduced chemical potentials, µ, for all reduced temperatures, T only the gas phase is present.

As the reduced chemical potential increases a low density liquid phase appears. This phase

coexists with the gas phase along a first-order transition line at µ = µgas−LDL(T ). For even

higher reduced chemical potentials a high density liquid phase emerges. This phase coexists

with the low density liquid phase at the first-order line µ = µLDL−HDL(T ).

But what happens at the end of the two first-order lines? In order to answer the question,

we have examined the specific heat at constant volume, cV , as a function of temperature, for

fixed values of µ, in two regions of the µ − T phase diagram: between the two coexistence

lines and above the LDL-HDL coexistence line. The results are illustrated in Fig.(4) and

Fig.(5) for lattice sizes L=10, 20, 30, 40, 50, 80 and 100.

Between the two coexistence lines, at µ̄ = 0, cV has a peak at a reduced temperature

T = T λ ≈ 0.79 that diverges as L → ∞. Similar behavior was observed for every investigated

chemical potential between the two coexistence lines, indicating the presence of a critical

line. We called this line λ and represented it in Fig.(3) through a dotted line and square

symbols. Above the liquid-liquid coexistence line, for µ = 2.5, the specific heat, cV , displays

also a peak at T = T τ ≈ 0.71 that increases mildly with L. We have examined a range of

chemical potentials above the LDL-HDL coexistence line. A line of maxima of these peaks,

named τ was added to the µ−T phase diagram, as shown in Fig.(3) (dashed line and circles).

The criticality of λ and τ was investigated by calculating the energy cumulant given by22

VL = 1 −
〈(H− 〈H〉)4〉

3〈(H− 〈H〉)2〉2
. (6)

Fig.(6) illustrates the energy cumulant for µ = 0, showing a signature for criticality.

Fig.(7) shows the energy cumulant for µ = 2.5 that also indicates the presence of criticality.

In the attempt to understand the differences between the two transitions, it is important

to establish what is the structural difference between the LDL, HDL, the high and the low

densities fluid phases. In order to answer this question it is necessary to investigate possible

order parameters.

We first look at particle density, ρ, and the number of hydrogen bonds per particle, ρhb.

Figs.(8) and (9) shows an important difference in behavior of these properties on crossing
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the two transitions, the λ and the ρ transition. In the case of the λ line (circles), as

temperature is decreased towards the specific heat peak position, density increases abruptly

towards ρ = 0.75. As the transition is approached, the system orders itself by forming

hydrogen bonds and by releasing non bonded particles. A density maximum must occur on

the other side of the transition, at a higher temperature. On the other hand, in the case

of the τ line (squares), both density and number of bonding particles increase smoothly

as the temperature decrease towards the specific heat peak temperature. Thus, in this

case, bonding and lattice filling occur simultaneously, . No density maximum is expected

in this region of the phase diagram. In order to better characterize the structure of the

liquid in each phase, we also look at sub-lattice properties. The LDL is characterized at

low temperatures by the structure illustrated in Fig.(2). This suggests that the λ transition

might be better understood in terms of the density of the sub-lattices shown in Fig.(2)(c).

Since at zero temperature one of the sub-lattices is empty (sub-lattice 1 in the figure), the

order parameter should be related to the density of the empty sub-lattice, namely

θλ = 1 −
ρempty

ρ
, (7)

where ρempty is the density of the emptiest sub-lattice and ρ is the overall density. The result

is illustrated in Fig.(10) for reduced chemical potential µ = 0, at which the λ − line is

crossed. The transition is characterized by three sub-lattices becoming full, while the fourth

one becomes empty. Thus the LDL phase may be described as an ordered phase both with

respect to position and to orientation of the particles.

In the case of the HDL phase, all the sub-lattices are full at zero temperature, as shown

in Fig. (2). Thus, for the τ transition, θλ, given by Eq.(7), is not a good order parameter.

On the other side, in the ground state of the HDL phase, all particles display inert arms

in the same direction, as shown in Fig. (2). Therefore, the order parameter for the τ

transition should be related to the number of inert arms in the direction they order at zero

temperature, n0, namely

θτ =
3

2
(
n0

ρ
−

1

3
) , (8)

where the direction of inert arms is defined in Fig.(2)(d) and ρ is the density of the system.

The subtraction of 1/3 guarantees that at high temperatures where the three arm states

should be equivalent, θτ is zero. The order parameter behavior, θτ vs. temperature, illus-

trated in Fig.(11) which shows that the system actually tends to have particles with inert

8



arms in a specific direction, as the temperature is decreased. This allows us to interpret the

HDL phase as an ordered phase with respect to orientation of the particles.

Analysis of the order-parameters indicates that both transitions may be described as

order-disorder transitions. However, the λ − transition corresponds to ordering of position

(accompanied by bond ordering), whereas the τ − transition corresponds only to bond

ordering.

IV. DYNAMICS

In order to quantify mobility in supercooled liquids, the concept of fragility was introduced

by Angell23. Analyzing relaxation as a function of temperature, liquids are classified as

strong, when relaxation follows an Arrhenius law, or fragile, when the relaxation follows a

non-Arrhenius law. Strong liquids present structure that is preserved when temperature is

increased, whereas in fragile liquids this structure is easily broken, as temperature increases.

Within the framework of the Adam-Gibbs theory24, viscous liquids are described as being

made of clusters that rearrange cooperatively in order to pass through the free energy barrier.

Consequently, diffusion depends on this cooperative rearrangement of the clusters through

equation

D = D0 exp

(

C ∆µ

TSc

)

, (9)

for the diffusion constant D. Here D0 and C are constants, ∆µ is the free energy barrier

which the clusters have to overcome. Sc is the configurational entropy, given by

Sc(T ) =

∫ T

TK

(

∆Cp

T

)

dT , (10)

that describes how the structure of the liquid changes with temperature. In Eq.(10) TK is the

Kauzmann temperature23(for which Sc(TK) = 0) and ∆cp is the difference in specific heat

between the crystal and the liquid configurations, at temperature T . If Sc, is temperature

independent, the diffusion follows an Arrhenius law, the liquid is very structured and the

system is a strong liquid. If the configurational entropy depends on temperature, Sc =

∆Cpln T/Tk, Eq.(9) becomes a Vogel-Fulcher equation, the liquid is not structured and is

classified as a fragile liquid.

Now we investigate the dynamic properties on crossing the λ and the τ lines, at constant

chemical potential (see Fig. (3)), by analyzing behavior of model diffusivity. In order to
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compute diffusion coefficient we first equilibrate the system at fixed chemical potential and

temperature. In equilibrium this system has n particles. Starting from this equilibrium

configuration at a time t = 0, each one of these n particles is allowed to move to an empty

neighbor site randomly chosen. The movement is accepted if the total energy of the system

is reduced, otherwise it is accepted with a probability exp(∆E/kBT ) where ∆E is the

difference between the energy of the system after and before the movement. After repeating

this procedure nt times, the mean square displacement per particle at a time t is given by

〈∆r(t)2〉 = 〈(r(t) − r(0))2〉 , (11)

where r(0) is the particle position at the initial time and r(t) is the particle position at a time

t. In Eq. (13), the average is taken over all particles and over different initial configurations.

The diffusion coefficient is then obtained from Einstein’s relation

D = lim
t→∞

〈∆r(t)2〉

4t
. (12)

Since the time is measured in Monte Carlo time steps and the distance in number of lattice

distance, a dimensionless diffusion coefficient is defined as

D = lim
t→∞

〈∆r(t)2〉

4t
. (13)

where r = r/a and a is the distance between two neighbor sites and t = t/tMC is the time

in Monte Carlo steps.

Fig.(12) illustrate the behavior of the diffusion coefficient D with the inverse of the

reduced temperature 1/T , for reduced chemical potential µ = 0. At higher temperatures,

diffusivity follows a non-Arrhenius trend, namely

y = A0 + A1x + A2x
2 + A3x

3 (14)

indicating that the low density disordered fluid phase is a fragile liquid. At lower tempera-

tures, diffusivity displays Arrhenius behavior, given by

y = A0 exp

(

−
A1

x

)

(15)

thus characterizing the low density ordered liquid phase as a strong liquid. Ai are fitting

parameters in both equations.
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This change in dynamics over the critical λ line occurs because the liquid is structurally

different on both sides of the critical line. In the low density disordered fluid phase, intersti-

tial particles weaken the hydrogen bonds and disrupt the network, so particles can rearrange

fast and the process of diffusion is not energy activated. In the LDL phase, the network is

fully developed, resulting in an ordered liquid, in which particles are ”trapped”, increasing

relaxation time and characterizing this phase as a strong liquid, in which an energy acti-

vated diffusion process takes place. This is the dynamic transition observed when crossing

a Widom line in ramp-like models10,25, which suggests that the dynamic transition is not

linked with the type of line but with the structuring of the system if this happens with or

without a thermodynamic phase-transition. The system becomes more organized, as can

be seen from the drastic change in the density of the sub-lattices shown in Fig.(8) with a

smooth change in the total density.

Since the HDL is also a structured phase, in principle a fragile-strong transition in the

dynamics of diffusion could also be expected on crossing the τ line. However, this is not

the case. Fig.(13) illustrate the behavior of the diffusion constant as function of inverse

temperature, 1/T , for fixed reduced chemical potential µ = 1.85. At higher temperatures and

high chemical potentials (or equivalently high densities), the fluid phase has an Arrhenius

behavior and so it is a strong liquid. At lower temperatures, the HDL phase also displays an

Arrhenius behavior, and therefore is also a strong liquid. The HDL phase and high density

fluid phases are both strong liquids that differ in the activation energy. In resume, when

the system crosses the τ line, we have a dynamic transition, and a strong-strong crossover is

observed. In this case, the activation energy of the HDL phase is higher than the activation

energy of the high density fluid phase, indicating that the HDL phase is more ordered than

the high density fluid phase. Diffusion is lowered in the HDL phase because particles spend

more time trying to rearrange, in comparison with the high density fluid phase.

How can we explain the existence of a fragile-to-strong crossover on the critical λ-line

and a strong-to-strong transition on the τ line? The answer is given by the structure of the

liquid, described in the previous section. On crossing the λ-line, the hydrogen-bonded net

breaks down abruptly, while the τ -line is accompanied by a much smoother melting of the

h-bond network.
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V. CONCLUSIONS

In this paper we have analyzed equilibrium and dynamic properties of the Associating

Lattice Gas Model, a lattice gas with hydrogen bonds represented through ice variables.

Competition between the filling up of the lattice and the formation of an open four-bonded

orientational structure leads to the presence of two liquid phases and a gas phase. The

coexistence lines between the LDL and the gas phases, and between the LDL and HDL

phases are connected by a critical λ-line. Besides the λ-line, a second one, the τ -line, also

emerges from the LDL-HDL coexistence line. This line is also identified by a peak in the

specific heat.

The system undergoes two kinds of dynamic transitions: a fragile-to-strong transition,

on crossing the λ-line, and a strong-to-strong transition, on crossing the τ -line. Both dy-

namic transitions are related with changes in the position and orientational structure of the

system. In the fragile-to-strong case, upon crossing the λ-line towards higher temperatures,

the system undergoes a positional order-disorder transition, signalizing a density anomaly,

accompanied by an orientational transition. On crossing the τ -line, the strong-to-strong

dynamic transition is companion to an order-disorder equilibrium transition with respect to

particle orientation, which bares no relation to a density anomaly.

Our results point out in the direction that criticality does not necessarily means fragile-

strong transition. This change is in fact related to the change of structure that in the present

case appears in two very different forms.
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Captions to the figures

Fig. 1: Particles in the model: An occupied central site i and its six bond variables,

τA
i

, with A = 1, .., 6. If τA
i

= 0 no bond is formed in spite of the configuration of the arm

of the neighbor site. If τA
i

= ±1 and the neighbor’s arm is τB
k

= ∓1, a bond is formed.

Dashed lines represent a non bonding configuration, while the solid line represents a bonding

configuration.

Fig. 2: (a)In the high density phase, HDL, the lattice is full, and an energy punishment

arises, because two inert arms point to filled sites. Inert arms are in direction a . (b) In

the low density phase, LDL, the lattice is 3/4 filled and particles are distributed over the

lattice in such a way that the inert arms point only to the empty sites. There is no energy

punishment, in this case. Positional order on sub-lattices (1,2,3 and 4) is indicated. (c) Four

sublattices. (d) Directions of the inert arms

Fig. 3: Phase diagram showing reduced chemical vs. reduced temperature. The diamonds

represent the Gas-LDL coexistence line. The triangles indicate the LDL-HDL coexistence

line. Tc1 is the tricritical point Gas-LDL and Tc2 is the tricritical point LDL-HDL. The

squares and circles are lines, obtained by the maximum in specific heat, that separates fluid

phase from LDL and HDL phases, respectively. The zero temperature points, at µ = −2

and µ = 2, are exact. Fig. 4: Specific heat at constant volume for different lattice sizes

versus reduced temperature for the λ − line (µ = 0).

Fig. 5: Specific heat at constant volume for different lattice sizes versus reduced temper-

ature for the τ − line (µ = 2.5).

Fig. 6: Energy cumulant versus reduced temperature for the λ − line at µ = 0.

Fig.7: Energy cumulant versus reduced temperature for the τ − line at µ = 2.5.

Fig. 8: reduced density ρ/0.75 for the λ− line (µ = 0) (full circles) and density ρ for the

τ − line (µ = 2.5) as functions of the reduced temperature.

Fig. 9: Number of hydrogen bonds per particle as a function of the reduced temperature

for the λ and tau lines. Symbols and numbers as in previous figures.

Fig. 10: Order parameter, ρλ, versus reduced temperature for reduced chemical potential

µ = 0.

Fig. 11: Order parameter, θτ , versus reduced temperature across the τ − line (µ = 2.5).

Fig. 12: Logarithm of diffusion constant versus inverse temperature across the λ − line

15



(µ = 0). Symbols are diffusion coefficient measured in simulation, solid line is a cubic fit and

dashed line is an exponential fit. At high temperatures system behaves as a fragile liquid

following a non-Arrhenius law, while for low temperatures the system behaves like a strong

liquid following an Arrhenius law.

Fig. 13: Logarithm of diffusion constant versus inverse temperature across the τ − line

(µ = 2.5). Symbols are diffusion coefficient measured in simulation and solid and dashed

lines are two different exponential fits. In the region of τ line system behaves as a strong

liquid in both sides. The difference between the two Arrhenius behaviors is the activation

energy, that defines the slope of the curve.
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