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Abstract

Three core-softened families of potentials are checked for the presence of density and diffusion

anomalies. These potentials exhibit a repulsive core with a softening region and at larger distances

an attractive well. We found that the region in the pressure-temperature phase diagram in which

the anomalies are present increases if the slope between the core-softened scale and the attractive

part of the potential decreases. The anomalous region also increases if the range of the core-

softened or of the attractive part of the potential decreases. We also show that the presence of the

density anomaly is consistent with the non monotonic changes of the radial distribution function at

each one of the two scales when temperature and density are varied. Then, using this anomalous

behavior of the structure we show that the pressures and the temperatures in which the radial

distribution functions of the two length scales are equal are identified with the Widom line.

PACS numbers: 64.70.Pf, 82.70.Dd, 83.10.Rs, 61.20.Ja
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I. INTRODUCTION

Core-softened (CS) potentials have been attracting attention due to their connections

with the anomalous behavior of liquid systems including water. These potentials, U(r),

exhibit a repulsive core with a softening region limited by r1 < r < r2 where d(rf)/dr > 0

with f = −dU/dr1. Despite their simplicity, these models originate from the desire of

constructing a simple two-body isotropic potential capable of describing the complicated

features of systems interacting via anisotropic potentials 2–27. This procedure generates

models that are analytically tractable and computationally less expensive than the atomistic

models. Moreover, they are lead to conclusions that are more universal and are related to

families of atomistic systems28–31.

One of the features that has been successfully described by many of these models is the

density anomaly. For water the specific volume at ambient pressure starts to increase when

cooled below T ≈ 4oC. The anomalous behavior of water was first suggested 300 years ago32

and was confirmed by a number of experiments28,29. Besides, between 0.1 MPa and 190 MPa

water also exhibits an anomalous increase of compressibility33,34 and, at atmospheric pres-

sure, an increase of isobaric heat capacity upon cooling35,36. For the case of water the density

anomaly is attributed to the presence of hydrogen bonds between neighbor molecules. As the

temperature increases the bonds break and the density increases. However, other systems

such as Te,37 Ga, Bi,38 S,39,40, Ge15Te85,
30, silica,31,41–43 silicon44 and BeF2,

31 show the same

density anomaly without presenting hydrogen bonds what suggests that the mechanism for

the presence of density anomaly might be more universal.

In compass with the presence of the density anomaly in water a few years ago it was

suggested that there are two liquid phases, a low density liquid (LDL) and a high density

liquid (HDL)45. The critical point ending this transition, found only in computer simulations

is located at the supercooled region beyond the line of homogeneous nucleation and thus

cannot be experimentally measured. Even with this limitation, this hypothesis has been

supported by indirect experimental results18,33,46. The presence of two liquid phase and of

second critical point is also observed in certain CS potentials6–18,22? –27.

Which are the conditions for a CS potential to exhibit density anomaly and two liquid

phases? A definitive answer to this question is still missing. There are, however, a few

clues. If a CS potential has discontinuous forces it presents two liquid phases but no density
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anomaly47 is observed. However, once the CS potential is modified to have continuous forces,

the anomalies appear23.

Recently it has been proposed that a CS potential exhibits density anomaly if the two

length scales identified with the softened region would be accessible22,24,48 what can be un-

derstood as follows. The radial distribution, g(r) of a CS potential has peaks at g(r1)

and g(r2) where r1 and r2 > r1 are the two length scales of the CS potential1,20. If

∂g(r)/∂ρ|r=r1∂g(r)/∂ρ|r=r2 < 1 then the system would have density anomaly.

In this paper we test if this link between the behavior of the structure (radial distribu-

tion function) and the thermodynamic anomalies holds for a number of two length scales

potentials. We study the pressure temperature phase diagram of a two Fermi model49. The

advantage of this model is that by changing few parameters is possible to vary the distance

and the difference in energy between the two length scales without introducing extra scales.

Moreover the length scales are well defined.

Hence, having identified a connection between the density anomaly and the behavior of

the structure, we also test if the radial distribution function is also related to the presence

of two liquids predicted for these CS potentials. We show that the pressures and temper-

atures in which the radial distribution function associated with one scale equals the radial

distribution function of the other scales is linked with peaks in the constant pressure specific

heat, namely the Widom line.

The remaining of this paper goes as follows. In Sec. II the model is introduced and

the simulation details are presented. In Sec. III the pressure-temperature phase diagram is

presented together with the behavior of the radial distribution function with density and

temperature. Conclusions are presented in sec. IV.

II. THE MODEL

Our system consists of N identical particles interacting through a continuous pair poten-

tial obtained by the addition of 3 different Fermi-Dirac distributions49,

U =

3
∑

i=1

εi

exp
(

r−roi
σi

)

+ αi

. (1)

The resulting expression describes a family of pair interaction potentials discriminated by

different choices of the parameters {εi, roi, σi, αi}. Appropriated choices of the parameters
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allow us to obtain potentials that go from a smooth two length scales potential to a sharp,

almost discontinuous, square potential49,50.

In the Table I nine different sets of parameters are shown, organized in three families

named, S, A, and R. As shown in Figure 1, for each family a specific characteristic of pair

interaction potential is tuned. Then it is possible to test the effect of changing the two

length scales in the pressure temperature phase diagram.

In the potentials S the slope between the two length scales is varied. Then it is possible

to check if the slope between the two length scales controls the location in the pressure-

temperature phase diagram of the density anomalous region as suggested by Yan et al.51.

In the case of the potentials A, the attractive length becomes broader. Consequently

using this potential we test if increasing the range of the attraction leads to a decrease in

the critical pressure as proposed by Skibinsky et al.8.

In the case of the potentials R, the repulsive length scale becomes broader. Therefore this

family of potentials is appropriated to observe if the enlargement of the repulsive length scale

leads to a decrease in the liquid-liquid critical pressure and to an increase in the liquid-liquid

critical temperature as suggested by Skibinsky et al.8. In addition to verify the assumptions

of Yan et al.51 and of Skibinsky et al.8 related to criticality, these three families of potentials

are the perfect scenario to check our hypothesis that the density anomaly region in the

pressure-temperature phase diagram is delimited by properties of the radial distribution

function at the two length scales.

1 1.5 2 2.5

r
*

-1

0

1

2

3

U
*

S
1

S
2

S
3

1 1.5 2 2.5

r
*

-1

0

1

2

3

U
*

A
1

A
2

A
3

1 1.5 2 2.5

r
*

-1

0

1

2

3

U
*

R
3

R
2

R
1

FIG. 1: Interaction potential.

The thermodynamic and dynamic behavior of the systems were obtained using NV T

molecular dynamics using Nose-Hoover heat-bath with coupling parameter Q = 2. The
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system is characterized by 500 particles in a cubic box with periodic boundary conditions,

interacting with the intermolecular potential described above.

Standard periodic boundary conditions together with predictor-corrector algorithm were

used to integrate the equations of motion with a time step ∆t∗ = 0.002 and potential cut off

radius r∗c = 2.5. The initial configuration is set on solid or liquid state and, in both cases, the

equilibrium state was reached after t∗eq = 1000. From this time on the physical quantities

were stored in intervals of ∆t∗R = 1 during t∗R = 1000. The system is uncorrelated after

t∗d = 10, from the velocity auto-correlation function, and 50 decorrelated samples were used

to get the average of the physical quantities. The thermodynamic stability of the system

was checked analyzing the dependence of pressure on density, by the behavior of the energy

and also by visual analysis of the final structure, searching for cavitation.

In what follows we take ε1, σ = ro1/0.950 as fundamental units for energy and distance,

respectively, and all physical quantities are expressed in reduced units, namely

T ∗ ≡
kBT

ε1
ρ∗ ≡ ρσ3

P ∗ ≡
Pσ3

ε1

D∗ ≡
D(m/ε1)

1/2

σ
(2)

where T, P and D are respectively temperature, pressure and diffusion coefficient. The

TABLE I: Parameters for potentials S, A and R in reduced units of ε and σ = ro1/0.950.

Parameter S1 S2 S3 A1 A2 A3 R1 R2 R3

ε∗1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ε∗2 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

−ε∗3 1.000 1.027 1.023 1.023 1.023 1.023 1.023 1.023 1.023

r∗o1 0.950 0.950 0.950 0.950 0.950 0.950 0.950 1.050 1.150

r∗o2 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400

r∗o3 1.950 1.950 1.950 1.755 1.8525 1.950 1.950 1.950 1.950

σ∗

1,2,3 0.025 0.040 0.055 0.025 0.025 0.025 0.055 0.055 0.055

α∗

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

α∗

2,3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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diffusion coefficient is obtained from the expression:

D = lim
t→∞

〈[~rj(t0 + t)− ~rj(t0)]
2〉t0

6t
(3)

where ~rj(t) are the coordinates of particle j at time t, and 〈· · · 〉t0 denotes an average over

all particles and over all t0.

The error associated with pressure and temperature are ∆p∗ ≈ 0.005 and ∆T ∗ ≈ 0.01.

III. RESULTS

A. Pressure-Temperature Phase Diagram

Fig. 2 presents the pressure versus temperature phase diagram obtained for the three

families: S, A and R. In all the nine cases the system exhibits at high temperatures a fluid

phase, at intermediate temperatures and very low pressures a gas phase and at intermediate

pressures a low density liquid phase (LDL) while at very high pressures a high density liquid

phase (HDL). The coexistence line between the gas and the low density liquid phases (not

shown) ends in a gas-LDL critical point illustrated as a filled circle in Fig. 2. The LDL-HDL

coexistence line (not shown) ends in a LDL-HDL critical point also shown as a filled circle.

The two critical points are located in the pressure and temperature phase diagram by the

point in which the isochores meet. The critical pressures and the critical temperatures values

are confirmed by analyzing the slope of the pressure versus density at constant temperature

phase diagram. The maximum of these curves identify the critical point. For the other

state points the slope of the pressure versus density phase diagram is also used as a check

of stability.

The Table II and the Table III and the Fig 3 summarize the values of the first (liquid-gas)

and second (liquid-liquid) critical points and their changes in the p − T phase diagram for

the three families studied.

Fig. 2 shows that in the family of potentials S the values of the pressure and temperature

of the liquid-gas and the liquid-liquid critical points are not sensitive to the change of slope

as predicted by Yan et al.51. For the A family, also illustrated in Fig. 2 indicates that the

temperature of the liquid-gas critical point increases with the increase of the range of the

attractive scale, while the temperature and the pressure of the liquid-liquid critical point

6



0.5 0.75 1 1.25 1.5

T
*

0

1

2

3

P
*

S1

0.5 0.75 1 1.25 1.5

T
*

0

1

2

3

P
*

S2

0.5 0.75 1 1.25 1.5

T
*

0

1

2

3

P
*

S3

0.5 0.75 1 1.25 1.5

T
*

0

1

2

3

P
*

A1

0.5 0.75 1 1.25 1.5

T
*

0

1

2

3

P
*

A2

0.5 0.75 1 1.25 1.5

T
*

0

1

2

3

P
*

A3

0.3 0.6 0.9 1.2 1.5

T
*

0

2

4

6

8

P
*

R3

0.3 0.6 0.9 1.2 1.5

T
*

0

2

4

6

8

P
*

R2

0.3 0.6 0.9 1.2 1.5

T
*

0

2

4

6

8

P
*

R1

FIG. 2: Pressure-temperature phase diagrams for the S, A and R families of potentials. The gray

lines are isochores, the solid lines are the temperature of maximum density (TMD), the dashed

lines are the extrema of diffusion and the dot-dashed line are the extrema of the translational order

parameter. The filled circles are the liquid-gas (at high temperatures) and the liquid-liquid (low

temperatures) critical points.

decrease. This result indicates that if the attractive scale increases the high density liquid

requires less pressure to be formed while the gas phases exist for higher temperatures as

predicted by Skibinstky et al.8,52. In the case R, shown as well in the Fig. 2, the liquid-

liquid critical pressure decreases with the increase of the range of the repulsive scale. This
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TABLE II: Liquid-gas critical point location for potentials S, A and R.

Potential T ∗

c1 p∗c1 Potential T ∗

c1 p∗c1 Potential T ∗

c1 p∗c1

S1 0.05 1.00 A1 0.04 0.68 R1 0.02 0.90

S2 0.05 0.99 A2 0.03 0.82 R2 0.04 0.88

S3 0.04 0.88 A3 0.05 0.90 R3 0.04 0.88

TABLE III: Liquid-liquid critical point location for potentials S, A and R.

Potential T ∗

c2 p∗c2 Potential T ∗

c2 p∗c2 Potential T ∗

c2 p∗c2

S1 1.31 0.54 A1 2.75 0.53 R1 1.34 0.44

S2 1.26 0.48 A2 1.98 0.50 R2 2.67 0.37

S3 1.34 0.44 A3 1.33 0.44 R3 6.01 0.26

result indicates that as the repulsive scale becomes broader, it requires less pressure for the

high density liquid to be formed while the repulsive scale has almost no effect in the low

density liquid-gas coexistence line as predicted also by Skibinstky et al.8,52. A summary of

the liquid-gas and liquid-liquid critical pressures and temperatures are shown on Fig. 3.
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FIG. 3: Location of the critical points on pressure-temperature phase diagram for cases S, A and

R.

B. Density, Diffusion and Translational Anomalies

Fig. 2 shows the temperature of maximum density (TMD) for all the nine studied cases as

a solid thick lines. For all the potentials S, A and R the TMD lines are observed. The limits

of the TMD in the pressure-temperature phase diagram are shown in the Table IV where pl
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TABLE IV: Limit values for density (ρ∗), temperature (T ∗) and pressure (p∗) of the thermo-

dynamics anomalies on pressure-temperature diagram. Here the point pl represents the density,

temperature and pressure of the point of the lowest pressure in the TMD line, pm represents the

point of the highest temperature and ph represents the point of the highest pressure of the TMD

line.

case pl pm ph case pl pm ph case pl pm ph

ρ∗ 0.34 0.35 0.38 ρ∗ 0.32 0.34 0.39 ρ∗ 0.31 0.34 0.39

S1 T ∗ 0.70 0.73 0.60 S2 T ∗ 0.68 0.80 0.60 S3 T ∗ 0.60 0.82 0.61

p∗ 0.70 0.73 1.14 p∗ 0.65 0.96 1.27 p∗ 0.61 0.92 1.29

ρ∗ 0.42 0.43 0.45 ρ∗ 0.37 0.39 0.42 ρ∗ 0.31 0.34 0.39

A1 T ∗ 0.61 0.71 0.59 A2 T ∗ 0.51 0.79 0.69 A3 T ∗ 0.60 0.82 0.61

p∗ 2.15 2.29 2.51 p∗ 1.33 1.56 1.82 p∗ 0.61 0.92 1.29

ρ∗ 0.31 0.34 0.39 ρ∗ 0.33 0.37 0.42 ρ∗ 0.34 0.39 0.47

R1 T ∗ 0.60 0.82 0.61 R2 T ∗ 0.77 0.92 0.50 R3 T ∗ 0.70 0.92 0.32

p∗ 0.61 0.92 1.29 p∗ 1.28 1.81 2.67 p∗ 2.04 3.65 5.76

represents the values of (ρ∗, T ∗, p∗) for the point of the lowest pressure in the TMD line, pm

is the point with the highest temperature and ph is the point with the highest pressure.

The three top graphs in Fig. 2 show that the effect of decreasing the slope between the two

length scales in the pair interaction potential is to move the TMD to higher temperatures.

This result explains why the TMD is not observed in the discontinuous square well (DSW)

model8. As the slope increases the TMD pressure and temperature approach the amorphous

region and the system becomes unstable. For slopes higher than S3 case no anomalous

behavior is observed.

The middle graphs in Fig. 2 show that as the attractive scale increases, the TMD moves

to higher temperatures and lower pressures as observed in potentials in which the attractive

scale becomes dominant53.

The bottom graphs in Fig. 2 show that as the repulsive scale becomes broader, the

density anomaly region in the pressure temperature phase diagram goes to lower pressures

and shrinks as observed in potentials in which the repulsive scale becomes dominant54.

In addition in all the phase diagrams it is possible to observe that the TMD maximum
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pressure never exceeds the critical pressure55. Our results indicate that the location in

the pressure temperature phase diagram of the density anomalous region depends on the

distance between the two length scales52–54.
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FIG. 4: Diffusion coefficient as a function of density. The dots are the simulation data and the

solid lines are polynomial fits. The dashed lines connect the densities of minimal and maximal

diffusivity that limit the diffusion anomalous region.

The Fig. 4 shows the graphs of the dimensionless translational diffusion coefficient as

function of density for all families, S, A and R. The solid gray lines are a polynomial fits

to the data obtained by the simulations (the dots in the Fig. 4). The diffusion coefficient
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follows the same trend of the TMD line. This result is not surprising since the hierarchy of

the anomalies suggests that the mechanism for the presence of a TMD line is related to the

mechanism for the existence of a maximum and minimum diffusion coefficient.

We also test the effects that changes in the two length scales have in the location in the

pressure-temperature phase diagram of the structural anomalous region.

The translational order parameter is defined as42,56,57

t =

∫ ξc

0

|g(ξ)− 1| dξ (4)

where ξ = rρ
1

3 is the distance r in units of the mean interparticle separation ρ−
1

3 , ξc is the

cutoff distance set to half of the simulation box times20 ρ−
1

3 , g(ξ) is the radial distribution

function which is proportional to the probability of finding a particle at a distance ξ from a

referent particle. The translational order parameter measures how structured is the system.

For an ideal gas it is g = 1 and t = 0, while for the crystal phase it is g 6= 1 over long

distances resulting in a large t. Therefore for normal fluids t increases with the increase of

the density.

The graphs in Fig. 5 illustrate the translational order parameter versus density for the

potentials studied. The dot-dashed lines show the maximum and minimum in the values of

t that limit the region of anomalous behavior. These extrema are also shown as dot-dashed

lines in Figs. 2. The values at the pressure-temperature phase diagram for the different

potentials follow the same trend as the TMD and diffusion anomalous regions.

C. Radial distribution function

The density anomaly can be related to the structure by analyzing the behavior of the

radial distribution function. For a two length scales potential the g(r) has two peaks: one

at the closest scale, r1, and another at the furthest scale, r2
20.

Recently it has been suggested that a signature of the presence of TMD line would be

given by the radial distribution function as follows. At fixed temperature as the density is

increased the radial distribution function of the closest scale, g(r1), would increase its value

while the radial distribution function of the furthest scale, g(r2), would decrease. This can

be represented by the rule22,48

Π1,2 =
∂g(r)

∂ρ

∣

∣

∣

∣

r1

×
∂g(r)

∂ρ

∣

∣

∣

∣

r2

< 0 . (5)
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FIG. 5: The translational order parameter a function of density for fixed temperatures T ∗ =

0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 (from top to bottom) for the families S (on top), A (on

middle) and R (on bottom). The dot-dashed lines locate the maximal and minimal in t∗.

The physical picture behind this condition22 is that for a fixed temperature as density

increases particles that are located at the attractive scale, r2, move to the repulsive scale, r1.

Figures 6 illustrate a typical radial distribution functions for fixed T ∗ as ρ∗ is varied. These

graphs show that the picture of particles changing length scales due to pressure increase is

valid for densities beyond a threshold density ρ∗min.

The regions identified by the radial distribution function as fulfilling the condition Eq. 5

are illustrated as opened circles in Fig. 7. The solid curve shows the TMD line. All the
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stable state points with density equal or higher the minimum density at the TMD line verify

the relation Π1,2 (ρ, T ) < 0. This result gives support to our assumption that the presence

of anomalies is related to particles moving from the furthest scale, r2, to closest length scale,

r1.

The Figs. 8 show the value of the radial distribution function at the closest, g(r1) (dashed

lines), and at the furthest scale, g(r2) (solid lines), as a function of the reduced density, ρ∗.

For the closest scale g(r1) is monotonic with density while the value for the g(r2) for a fixed

temperature increases with the density for densities below the ρ∗ < ρ∗min and decreases for

densities above this threshold. This behavior, also shown in the Fig. 6, corroborates the

condition stated in the Eq. 5 and supports the idea that particles move from one scale to

the other by compression at ρ > ρmin
22.

Besides to the move of particles from the attractive scale to the repulsive scale for ρ∗ >
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FIG. 6: Radial distribution as a function of the reduced distance for selected cases in the three

families of potentials for T ∗ = 0.8. For all the families, for ρ∗ < 0.40 the first and second peaks of

g(r) increase with the increase of density. For ρ∗ ≥ 0.40 the first peak increases while second peak

decreases with the increase of density.
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FIG. 7: Pressure-temperature phase diagram for the S, A and R families of potentials, illustrating

as opened circles the regions where the condition Eq. 5 is obeyed.

ρ∗min as the pressure (density) is increased, particles also move from one scale to the other

due to the increase of temperature54 for ρ∗ < ρ∗min. At constant density, ρ∗ < ρ∗min, the

radial distribution function of the attractive scale, g(r2), decreases with the increase of the

temperature while g(r1) increases with the increase of temperature, indicating that particles

move from one scale to the other due to thermal effects. At the density ρ∗min, the value of

g(r1) is independent of the temperature.

What is the meaning of the density ρmin in which g(r1) is independent of temperature?

As it was pointed in the previous paragraph, for ρ∗ < ρ∗min particles move from the furthest
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FIG. 8: g(r1) and g(r2) for the S, A and R families of potentials as a function of the reduced

density. The temperatures are T ∗ = 0.4 → 1.5 (from top to bottom ρ∗ > 0.6). The solid line

connects the points, for different temperatures, where g(r1) = g(r2).

scale, r2, to the closest scale, r1, using thermal energy as the temperature is increased. In

this case g(r1) increases with temperature. For ρ∗ > ρ∗min particles move from r2 to r1, using

the increase of pressure pressure (or density) as illustrated by the Eq. 5. From statistical

point of view, the two mechanisms governing the behavior for ρ∗ > ρ∗min and ρ∗ < ρ∗min are

quite different. While increasing temperature affects particles individually, increasing the

density or the pressure affects the particles as clusters or networks. Then, as the potential
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FIG. 9: Isobaric specific heat for the S1 potential for different temperatures for different pressures.

becomes more soft, the threshold density ρ∗min beyond which the particles move form one

scale to the other by compression should decrease as observed in Fig. 8. Therefore ρ∗min is

the threshold between these two mechanisms present in systems that have density anomaly.

In addition to these low density limit, the density anomalous systems also have a high

density threshold, ρ∗max(T ). Fig. 8 illustrates as a solid thick line the temperatures and

densities, ρ∗max(T ), in which g(r1) = g(r2). Since g(r) is related with the number of particles

at distance r, for ρ∗ < ρ∗max(T ) more particles are in the attractive scale, r2, while for

ρ∗ > ρ∗max(T ) more particles are at the repulsive scale r1. Therefore, the thick solid line

is a boundary between the high density liquid and the low density liquid. Analysis of the

stability indicates that no real phase transition is observed across this line.

In order to understand what what happens in the region of the pressure-temperature

phase diagram of the ρ∗max(T ), the behavior of the specific heat in this region was analyzed.

Fig. 9 shows the curves of isobaric specific heat, for different pressures as a function of the

temperature for the potential S1. The peak of cp for each one of the potentials analyzed in

this manuscript coincide with the region ρ∗max(T ) where g(r1) = g(r2). This result indicates

that the structure in the TMD region already build the liquid arrangements required for the

liquid-liquid phase separation.
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IV. CONCLUSIONS

In this paper we have studied three families of core-softened potentials that exhibit two

length scales, one repulsive, r1, and another attractive, r2.

We had observed that the region in the pressure-temperature phase diagram occupied

by the TMD is quite sensitive to the slope between the two length scales. As the slope

increases the region decreases. We also found that the region in the pressure-temperature

phase diagram where the density, diffusion and structural anomalous behavior is observed

shifts to lower pressures and shrinks the attractive scales or the repulsive scales become

wider. Our results suggests the competition between two length scales are the relevant

mechanism for the existence of the TMD.

In an attempt to confirm this assertion we showed in this family of potentials that the

condition Π1,2 < 0 seems to be associated with the presence of anomalous behavior. In addi-

tion we also observed that the peaks of the radial distribution function at each length scales

exhibit very distinct behavior with density and temperature suggesting two complementary

mechanisms for the competition between the two scales.

At low densities, ρ∗ < ρ∗min particles move from r2 to r1 with the increase of temperature,

using thermal energy. For densities above ρ∗min the increase of g(r1) is associated with the

increase in the pressure (density). In this interval of densities at a certain density and

temperature the radial distribution function at the first length scale equals the value at the

second scale, namely g(r1) = g(r2). This point can be identified with the Widom line.

The relation between the radial distribution function and the Widom line, believed to be

the onset of the liquid-liquid phase transition give the support to the idea that the Widom

line separates two structural distinct regions that are also separated by a fragile-strong

transition18.

We expect that his result will not only shade some light in the definition of what is the

shape an effective core-softened would have in order to held anomalies but also would serve

to reinforce the ideas of linking dynamic transitions and thermodynamic properties.
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