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Quantum density anomaly in optically trapped ultracold gases
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Water, the substance of life, is known for its myriad of anomalous properties, whose origins are still the subject
of intense debates. In order to provide a different insight into this problem, we show how its density anomaly
can be reproduced using a quantum simulator. In particular, we demonstrate that the Bose-Hubbard model, a
paradigm system in quantum mechanics, exhibits an increase in density with temperature at fixed pressure in
the regular fluid regime and in the superfluid phase. We propose that the mechanism underlying the anomalies
is related to zero-point entropies and ground-state phase transitions. A connection with the typical experimental
scales and setups including confinement effects is also addressed. In this scenario, such finding opens a pathway
for theoretical and experimental studies of waterlike anomalies in the area of ultracold quantum gases.
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I. INTRODUCTION

The experimental realization of the Bose-Einstein conden-
sation [1,2] inaugurated a new era in physics by merging
different areas, from condensed matter [3,4] to quantum infor-
mation [5,6]. This landmark provided grounds for new appli-
cations involving the manipulation of ultracold atoms, from
which optical lattices, literal crystal arrays of light trapping
neutral cold atoms [7,8], stand as a prominent one. Among
these applications, systems known as quantum simulators
[9,10] have attained great importance since they can be used
to experimentally implement and simulate scenarios for a
plethora of theoretical ideas [11,12]. Indeed, it is possible
to engineer them in highly controllable ways in regards to
parameters such as dimensionality, lattice structure, compo-
sition, and atomic interactions [13]. In a theoretical level, the
Bose-Hubbard model can be considered as a true prototype
system, currently used to investigate quantum phase transi-
tions, quantum coherence, and quantum computation [14–16].

In this work we theoretically show that the density of
bosons in optical lattices, described by the Bose-Hubbard
model, anomalously increases with temperature at fixed pres-
sure in both superfluid and normal fluid regimes. Such coun-
terintuitive behavior, usually denominated as density anomaly,
according to our analysis occurs at temperatures below 1.8 nK
(superfluid) and 14.8 nK (normal fluid) for rubidium-87 atoms
trapped in a simple cubic optical lattice. These anomalies are
similar to those presented by liquid water between 0 and 4 ◦C
at 1 atm [17,18] and are useful to test the concept that ther-
modynamic waterlike anomalies arise from the competition
between two scales of interaction, associated with critical phe-
nomena. In a quantum-mechanical context such anomaly has
also been reported experimentally for liquid helium [19,20].
The advantage exhibited by the optical lattice environment
is the possibility to control and tune the interactions between
particles, enabling a clear analysis regarding possible physical
mechanisms.
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An explanation for the thermodynamic and dynamic
anomalous behavior of liquid water has been disputed through
different thermodynamic scenarios. In the second critical
point (SCP) hypothesis, which is based on computer simu-
lations of the ST2 atomically detailed model of water [21],
followed by extensive investigations on other models for
water [22], the apparent divergence of thermodynamic re-
sponse functions in a metastable region is a consequence of
a metastable liquid-liquid phase transition ending in a critical
point [21,23]. Nevertheless, this behavior in the case of water
was never observed experimentally. The liquid-liquid transi-
tions were reported in models for carbon [24], silicon [25],
and silica [26], and experimentally observed in phosphorus
[27], triphenyl phosphite, and n-butanol [28]. More recently,
experiments with mixtures of water and glycerol [29] and
measurements of correlation functions using time-resolved
optical Kerr effect (OKE) of supercooled water [30] favor the
SCP hypothesis, despite debates in literature [22,31].

The suggested connection between thermodynamic
anomalies and criticality in water is difficult to test experi-
mentally since the system freezes before reaching the critical
temperature. In addition, the complexity of the water structure
makes it difficult to unveil the relation between the micro-
scopic interactions, thermodynamic anomalies, and criticality.
Due to its experimental manageability and for being numer-
ically treatable, we propose using the Bose-Hubbard model
as a platform to establish this connection. In such context, we
explore simple cubic and square geometries, constructed by
sets of orthogonal, counterpropagating laser beams of wave-
length λ. The resultant standing waves determine the scenario
for the interacting bosons, an optical potential of the form

VL(r) = V0

d∑
i=1

sin2
(πxi

a

)
, (1)

where a = λ/2 is the lattice spacing, V0 is the depth of the
optical potential, and d represents the dimensionality of our
system with coordination number z = 2d . Our theoretical
calculations are based on the bosonic self-energy functional
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theory [32], which generates results numerically close to
quantum Monte Carlo [33] and bosonic dynamical mean-field
theory (BDMFT) techniques.

The paper is organized as follows. First, we introduce the
model and its relevant parameters in Sec. II. The theoretical
methods employed are explained in Sec. III, with greater
details given in the Appendix. The density anomaly in simple
cubic and square lattice geometries is discussed in Sec. IV
and a mechanism involving residual entropies is proposed in
Sec. V for the reported phenomenon. In Sec. VI, we discuss
how the anomaly could be experimentally observed based on
2D in situ imaging of the atoms. Final considerations are
addressed in Sec. VII.

II. BOSE-HUBBARD MODEL

The dynamics of itinerant bosons in a lattice occupying
the lowest-energy band is governed by the Bose-Hubbard
Hamiltonian [14,16]

H = −J
∑
〈i, j〉

b†
i b j + U

2

∑
i

ni(ni − 1) − μ
∑

i

ni, (2)

where b†
i , bi, and ni designate the bosonic creation, annihi-

lation, and number operators at site i, respectively; μ is the
chemical potential.

The parameter U represents the (typically repulsive) in-
teraction of bosons on the same lattice site. More precisely,
it corresponds to the atom-atom s-wave scattering process,
which can be regarded as an effective contact interaction of the
form U (r) = gδ(r), with a coupling constant g = 4π h̄2as/m
depending on the s-wave scattering length as and mass m of
the atoms. By employing the local Wannier states w(r), the
term U is expressed through the matrix element

U = g
∫

dr|w(r)|4. (3)

On the other hand, the parameter J indicates the hopping
amplitude, a kinetic term involving the probability of tun-
neling between first neighbor sites. Explicitly, it is quantified
as the following overlapping integral over adjacent Wannier
functions:

J = −
∫

dr w(r − ri )

(
−h̄2 ∇2

2m
+ VL(r)

)
w(r − r j ). (4)

Therefore, the Bose-Hubbard model terms U and J can be
related to the experimental parameters λ, as, and V0 through
Eqs. (3) and (4) [34], numerically calculating the band struc-
ture and obtaining the Wannier states [35,36]. These prescrip-
tions allow us to express temperatures in kelvin units and the
lattice depth in terms of the recoil energy Er = h̄2π2/2ma2,
according to the values of U and J chosen. It is thus possible to
consider our theoretical results within the context of a specific
optical trap implementation, from which we select a gas of
rubidium-87 atoms in simple cubic [7,8] and square optical
lattices [37,38].

III. METHODOLOGY

In order to map the thermodynamics of the bosons we
employ a variational and nonperturbative self-consistent ap-

proach, the self-energy functional theory derived by Hügel
et al. [32], inspired in the original works for fermions by
Potthoff [39]. The formalism, which includes U(1) symme-
try breaking and comprehends previous BDMFT approaches
[40–43], is based on successive Legendre transformations of
the free-energy functional � leading to a new functional �SE

of the self-energies. The approximation scheme to the many-
body problem constricts the variational space: the self-energy
domain is restricted to a subspace of self-energies of a simpler
reference system. Then, the original problem is transformed
into determining stationary solutions of this new functional in
terms of the reference system’s free propagators. This section
is devoted to providing an overview of the method, following
Refs. [32,44,45].

First, we write the Hamiltonian of Eq. (2) in a more concise
and general form,

H = 1
2 b†

αtα
βbβ + V + F†

αbα, (5)

including an explicit symmetry breaking field F which cou-
ples to the bosonic operators. In this notation, we use the
Einstein summation convention and the superindex α spans
the site index i as well as the Nambu index ν. Explicitly,
the bosonic operator reads as b†

α ≡ b†
iν = (b†

i , bi )ν , with com-
mutation relations [bα, b†

β ] = (1 ⊗ σz )αβ . Also, we have the

generalized hopping tα
β = tiη

jν = ti j ⊗ 1ην and interaction of
the form V = Uαβγ δbαbβbγ bδ .

Including finite-temperature effects (with kBT = 1/β), the
partition function Z = Tr[T e−S ] follows as a trace compris-
ing the imaginary time-ordered exponential of the action S
[46–48],

S
[
F, G−1

0

] = −1

2

∫ β

0

∫ β

0
dτ dτ ′b†(τ )G−1

0 (τ, τ ′)b(τ ′)

+
∫ β

0
dτ V[b(τ )] +

∫ β

0
dτ F†b(τ ), (6)

written according to its explicit dependence on F and the
noninteracting Green’s function G0:

G−1
0 = δ(τ − τ ′)(−[1 ⊗ σz]∂τ ′ − t). (7)

From the partition function, averages can be defined as
〈O(τ )〉 = Tr[T e−SO(τ )]/Z . Also, its logarithm provides the
free energy �[F, G−1

0 ] = − ln[Z]/β, which is a generating
functional of the propagators: the condensate Green’s function
�,

β
δ�

δF†
= 〈b〉 ≡ �, (8)

and the connected interacting Green’s function G,

2β
δ�

δG−1
0

= −〈b(τ )b†(τ ′)〉 ≡ G(τ, τ ′) − ��†. (9)

Further details regarding products and traces are addressed in
Appendixes A and B.

Based on a Legendre transformation, the free-energy func-
tional dependence can be exchanged from F and G−1

0 to the
dressed propagators � and G, leading to the Baym-Kadanoff
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functional [49–52]

β�BK[�, G] = F†� − 1
2�†G−1

0 � + 1
2 Tr

[
G−1

0 G
]

+ 1
2 Tr ln[−G−1] + �LW[�, G]. (10)

In Eq. (10), �LW[�, G] is the Luttinger-Ward functional
[53,54], a universal contribution which encompasses the com-
plexity of the many-body system, containing all two-particle
irreducible (2PI) diagrams [55,56]. At the physical solution,
the functional �BK[�, G] is stationary,

δ�BK

δ�†
= 0,

δ�BK

δG
= 0, (11)

and it is equal to the equilibrium free energy �BK = �. The
variations,

β
δ�BK

δ�†
= F − G−1

0 � + δ�LW

δ�†
(12)

and

2β
δ�BK

δG
= G−1

0 − G−1 + 2
δ�LW

δG
, (13)

associated to the conditions of Eq. (11) lead to the following
identification:

�1/2 = −δ�LW

δ�†
, � = −2

δ�LW

δG
, (14)

where �1/2 and � are the one- and two-point self-energies,
respectively. Therefore, the propagators obey the Dyson
equations

G−1
0 � = F − �1/2 (15)

and

G−1 = G−1
0 − �. (16)

With another Legendre transform, the Baym-Kadanoff func-
tional dependence can be exchanged from the one- and two-
point propagators � and G to their respective self-energies
�1/2 and �, yielding the self-energy functional

β�SE[�1/2,�] = 1
2 (F − �1/2)†G0(F − �1/2)

+ 1
2 Tr ln[−(G0

−1 − �)]

+F[�1/2,�]. (17)

The universal functional F[�1/2,�] = �LW[�, G] +
�†

1/2� + 1
2 Tr[�G] is simply the Legendre transform of

the Luttinger-Ward functional �LW[�, G], with the following
variations:

δF
δ�†

1/2

= �, 2
δF
δ�

= G. (18)

At the physical solution, �SE is stationary and equal to the
free energy �SE = �BK = � (as a result of �, �BK, and �SE

being connected by successive Legendre transforms), yielding
once again the Dyson equations

0 = β
δ�SE

δ�†
1/2

= −G0(F − �1/2) + � (19)

and

0 = 2β
�SE

δ�
= −(

G0
−1 − �

)−1 + G. (20)

The mentioned universality of the functional F enables us to
overcome its complexity with the introduction of an exactly
solvable reference system (denoted by primed quantities)
exhibiting the same symmetry and interactions as the original
one. According to Eq. (17), the reference system’s self-energy
functional

β�′
SE[�1/2,�] = 1

2 (F′ − �1/2)†G′
0(F′ − �1/2)

+ 1
2 Tr ln

[−(G′−1
0 − �)

] + F[�1/2,�]

(21)

evaluated at the physical solutions �1/2 = �′
1/2 and � = �′ is

equal to the reference system’s free energy �′
SE[�′

1/2,�
′] =

�′[F′, G′−1
0 ]. Subtracting Eq. (21) from Eq. (17), �SE evalu-

ated at �1/2 = �′
1/2 and � = �′ becomes

β�SE[�′
1/2,�

′] = β�′ + 1

2
(F − �′

1/2)†G0(F − �′
1/2)

− 1

2
(F′ − �′

1/2)†G′
0(F′ − �′

1/2)

+ 1

2
Tr ln

[
G−1

0 − �′

G′−1
0 − �′

]
. (22)

Therefore, the solution of the reference system provides a
parametrization of the self-energies in terms of F′ and G′−1

0 ,
which allows for the construction of the self-energy functional
theory approximation �SFT to the self-energy functional �SE

according to

�SFT
[
F′, G′−1

0

] = �SE[�′
1/2[F′, G′−1

0 ],�′[F′, G′−1
0 ]]. (23)

The approximation consists in constraining the variational
principle to the subspace of self-energies of the reference sys-
tem; this procedure applied to the variations of Eqs. (19) and
(20) yields the Euler equations δF′†�SFT = 0 and δG′−1

0
�SFT =

0.
In particular, we choose a local reference system, the SFA3

minimal construction [32], comprehending three variational
parameters: the U(1) symmetry breaking linear field F ′ con-
jugated to the creation b† and annihilation b operators, the two
fields �00, coupled with the density b†b, and �01, conjugated
to pair creation b†b† and pair annihilation bb operators. The
Hamiltonian describing the bosonic state is given by

H ′[F′,�] = 1

2
b†�b + U

2
n(n − 1) − μn + F′†b, (24)

where b = (b, b†), F′ = (F ′, F ′∗), and � = �001 + �01σx.
Therefore, the states of thermodynamic equilibrium are

determined by the stationary points of �SFT, given by
∇�SFT[F,�00,�01] = 0 (or δF′†�SFT = 0 and δ��SFT = 0).
The functional can be evaluated according to the following
steps, which are completely developed throughout the Ap-
pendix sections. Given the parameters F ′, �00, and �01, the
Hamiltonian of Eq. (24) is determined. From Appendix C,
the reference system’s partition function and free energy are
computed through Eqs. (C1) and (C2), followed by its one-
and two-point propagators of Eqs. (C3) and (C5), and the
self-energies according to the Dyson Eqs. (C7) and (C8). The
next step is to calculate the lattice system’s one- and two-point
propagators by using Eqs. (D4) and (D3), respectively. These
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FIG. 1. Density ρ as a function of the reduced temperature kBT/U (bottom) and the temperature T in nanokelvin units (top) at fixed
pressures for hopping amplitudes: (a) zJ = 0.06U , (b) zJ = 0.12U , and (c) zJ = 0.30U , considering a simple cubic lattice (z = 6). The
superfluid phase is highlighted in blue, while the normal phase is portrayed in white. Blue dashed lines denote the boundaries between
superfluid and normal phases, while orange dotted lines represent the TMD curves. In (a), the inset exhibits a zoom of isobaric curves in the
superfluid phase, while the red point signals the atomic limit critical point at T = 0. The triangular points denote the maximum temperatures
reached by each TMD curve.

products and the logarithmic trace Tr ln[G′G−1] are deter-
mined following the prescriptions presented in Appendixes
A and B, respectively. By collecting the required terms in
Eq. (22), the desired self-energy functional is evaluated and
its stationary points can be determined. The code employed
in our calculations is available in the Supplemental Material
[57].

IV. DENSITY ANOMALY

From the equilibrium free energy � = �SFT calculated
previously, the density is given by

ρ = − 1

V

(
∂�

∂μ

)
T

, (25)

where V = Nsad is the volume and Ns is the number of
lattice sites. Its temperature dependence at fixed pressure P
is determined by the isobaric thermal expansion coefficient

α = − 1

ρ

(
∂ρ

∂T

)
P

. (26)

For α < 0, density increases with temperature and a region of
anomalous density behavior is identified by a temperature of
maximum density (TMD) line defined as α = 0. The pressure
is fixed employing the Gibbs-Duhem relation dP = ρ dμ +
s dT = 0, where s = − 1

V ( ∂�
∂T )

μ
is the entropy density and P is

related to the grand-canonical potential according to −PV =
� = �SFT.

FIG. 2. Density ρ as a function of the reduced temperature kBT/U (bottom) and the temperature T in nanokelvin units (top) at fixed
pressures for hopping amplitudes: (a) zJ = 0.06U , (b) zJ = 0.12U , and (c) zJ = 0.30U , considering a square lattice (z = 4).
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TABLE I. Experimental parameters regarding potential depths V0, scattering length as, and laser wavelengths λ of optical lattices
implemented using different alkali-metal elements, for the hopping amplitudes zJ = 0.06U and zJ = 0.12U . The maximum temperatures
in which density anomalies are observed in superfluid TSF and normal phases TNA (the highlighted triangular points in Fig. 1 and Fig. 2) are
also addressed. In the 2D scenarios, the vertical confinement is achieved by an optical potential along the z axis. For rubidium-87 [38] the
lattice depth is V0,z = 26Er , while the cesium-133 [58] atoms are confined in a Gaussian wave packet of width az = 0.30 μm.

zJ = 0.06U zJ = 0.12U

Element Geometry λ (nm) as (a0) V0/Er TNA (nK) TSA (nK) V0/Er TNA (nK) TSA (nK)

23Na [59] Simple cubic (z = 6) 595 52 18.30 88.35 10.68 15.49 74.67 17.82
87Rb [7] Simple cubic (z = 6) 852 103 16.95 14.76 1.78 14.25 12.39 2.95
87Rb [38] Square (z = 4) 1064 103 15.64 8.13 0.95 12.85 7.00 1.69
133Cs [58] Square (z = 4) 1064 310 16.65 4.36 0.51 13.77 3.77 0.91

Considering a simple cubic lattice, with z = 6, Figs. 1(a)–
1(c) illustrate the density ρ versus the reduced temperature
kBT/U at fixed pressures (represented as black lines) for
increasing hopping amplitudes: (a) zJ = 0.06U , (b) zJ =
0.12U , and (c) zJ = 0.30U . The corresponding potential
depths, which decrease from (a) to (c), and temperature
scales in nanokelvin units are calculated considering atoms
of rubidium-87, with realistic values based on the experi-
ments performed by Greiner et al. [7]. The superfluid to
normal phase boundary is illustrated as a reentrant dashed
blue line and the blue filled area represents the superfluid
phase. Figures 1(a) and 1(b) show that at sufficient high values
of V0 (low values of zJ/U ) there are two regions in which
density presents a local maximum, with the TMD curves
represented as orange dots: one at the normal phase [normal
phase anomaly (NA)] and another at the superfluid phase
[superfluid phase anomaly (SA)]. The maximum temperature
values reached by the TMD curves are highlighted as triangu-
lar black points.

Figure 1(a) portrays a large area in the density versus tem-
perature phase diagrams where the NA is present. However,
as the hopping increases, according to Fig. 1(b), the anomaly
occupies a smaller region in temperatures. In addition to
the normal phase TMD, the superfluid phase also exhibits a
density anomalous behavior illustrated in Fig. 1(a), with a
few superfluid isobaric densities drawn in the inset. When the
hopping becomes larger it dominates the free energy, leading
the superfluid to occupy a bigger region in the phase diagram
and suppressing both superfluid and normal anomalies, as
presented in Fig. 1(c).

Analogously, Fig. 2 displays the two-dimensional results
considering a square lattice geometry, with z = 4. For com-
parison reasons, we chose the same ratios zJ/U as shown in
Fig. 1. The superfluid domain exhibits a small retraction when
compared to the simple cubic case. In spite of this, the same
general behavior is observed. Specifically, Fig. 2(a) presents
the density anomaly in both phases; the anomaly is reduced
for a larger hopping amplitude as illustrated in Fig. 2(b) and
finally it vanishes completely as shown in Fig. 2(c). For this
two-dimensional system, the respective potential depths and
temperature scales in nanokelvin units are calculated also
considering atoms of rubidium-87, with parameters according
to the experiments performed by Sherson et al. [38].

Although the upper temperature scales and potential depths
addressed in Figs. 1 and 2 refer to specific setups using

rubidium-87, they can be adapted to other elements. Indeed,
we collect in Table I the temperatures, TSA and TNA, that must
be achieved for experimentally detecting SA and NA not only
for the previous cases of rubidium-87 but also for sodium-23
[59] (in a simple cubic lattice) and cesium-133 [58,60,61] (in
a square lattice). These points are marked as the triangular
symbols over the TMD curves.

FIG. 3. Considering square (d = 2) and simple cubic (d = 3)
lattices, the entropy (a) and thermal expansion coefficient (b) are
exhibited as functions of the chemical potential μ for zJ = 0.06U at
kBT = 0.023U deep in the superfluid regime. The respective insets
depict the atomic limit (J = 0) scenario.
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FIG. 4. Density distribution in the normal phase, considering harmonic confinement effects. (a) The two-dimensional configuration of a
square optical lattice is created by counterpropagating red detuned laser beams. The additional harmonic effects are represented in (b), where
the optical potential V (r) and the intensity profile I (r) are schematically shown. (c) The phase diagram ρ versus T for the configuration
V0 = 15.64Er (zJ = 0.06U ) highlights two chosen temperatures kBT = 0.08U (blue) and kBT = 0.18U (red). Considering the LDA scenario,
the density ρ is mapped in the xy plane for the respective temperatures in (d) and (e).

V. RESIDUAL ENTROPY MECHANISM

The density anomalies in the normal fluid can be traced
back to the ground-state phase transitions between Mott insu-
lators of successive occupation numbers [62]. This anomalous
behavior, present even in the absence of hopping, arises
from the competition between the chemical potential, which
promotes the boson occupation in the lattice, with the on-site
repulsion interaction U , which favors the boson removal. As
the temperature increases, entropy first favors filling up the
sites but, for high enough temperatures, entropy increases by
removing particles from the system to increase the mobility
of the particles left. This is a classical behavior similar to
that of liquid water, where bonding and nonbonding structures
compete: at lower temperatures density increases by disrupt-
ing hydrogen bonds, while at higher temperatures enhanced
particles’ velocities increase the available volume, decreasing
density. The difference here is that this phase is not completely
destroyed by the hopping, persisting for values of the J
possible to be observed experimentally.

Indeed, the hopping brings another phenomenon not ob-
served for J = 0: the SA, a quantum density anomaly. The
physical origin of this behavior is also the competition be-
tween chemical potential and the repulsion U . But for the

SA the TMD line appears at lower temperatures and higher
densities when compared with the NA, because in this case
the hopping contributes to the temperature effects, favoring
the movement and the spread of particle over the lattice.

Such competition of interaction scales can also be trans-
lated in terms of degeneracies and residual entropies. Inhibit-
ing the hopping, a ground-state degeneracy, related to a phase
transition in number occupation between Mott insulators, is
settled whenever the chemical potential μ reaches an integer
value of the interaction U . At such transition points, two
states are equally accessible and this degeneracy accounts
for an observed macroscopic residual entropy of kB ln 2 per
site. For finite temperatures, these entropies develop into
peaks near those points as the chemical potential is var-
ied; see the inset of Fig. 3(a). By turning on the tunneling
probability adiabatically the superfluid phase emerges exactly
from Mott insulator transition points, mitigating residual en-
tropies, since the previous degeneracy gets lifted. Thus, for
a finite hopping transition, the mentioned entropy maxima
remain deep in the superfluid phase but are less prominent,
as shown in Fig. 3(a) for zJ = 0.06U and kBT = 0.023U .
Formally, the entropy peaks mark a change in the behav-
ior of density with temperature according to the Maxwell

033331-6



QUANTUM DENSITY ANOMALY IN OPTICALLY TRAPPED … PHYSICAL REVIEW A 102, 033331 (2020)

relation (
∂s

∂μ

)
T

=
(

∂ρ

∂T

)
μ

= −ραμ, (27)

which results in the sign flip of thermal expansion in the
superfluid phase illustrated in Fig. 3(b).

VI. 2D IN SITU OBSERVATION INCLUDING
CONFINEMENT EFFECTS

On the basis of the recently developed in situ measurements
of ultracold gases in optical lattices [63], we discuss a physical
realization of the reported phenomenon considering rubidium-
87 atoms disposed in a square lattice, as Fig. 4(a) depicts.
These modern tools encompass high resolution absorption
[58,61], fluorescence imaging [37,38], and even scanning
electron microscopy [64], each technique with its specific
applications. Considering the range of density and fluctuations
presented here, our theoretical proposal appears better suited
to the absorption imaging realized by Chin et al. [58,61],
complementing the well-known time-of-flight methods which
probe the system in momentum space. In such experimental
framework, in situ density distributions ρ(x, y) of 2D gases
can be determined by performing absorption imaging perpen-
dicular to the horizontal plane xy. This technique allows for
mapping the occupation number at a single site resolution,
providing direct access to density fluctuations, which is our
ultimate goal in the analysis of the anomaly.

In our discussion, the confinement effects of the harmonic
trapping field, represented in Fig. 4(b), are considered using
a local density approximation (LDA). The harmonic con-
finement potential is given by Vh(r) = 1

2 mω2r2, where r =√
x2 + y2 is the radial distance from the center of the trap

and the associated oscillation frequency ω is fixed at ω/2π =
60 Hz, as typically chosen. Consequently, in the LDA frame-
work the chemical potential across the lattice takes the form
μ(r) = μ0 − Vh(r). The lattice depth is held at V0 = 15.64Er

(zJ = 0.06U ), as already discussed in Fig. 2(a). Furthermore,
the total number of particles is kept constant, Ntotal = 1096, as
well as the total pressure, Ptotal = 1.9765 U/a2. Under these
described conditions, such quantities satisfy the equation of
state [65,66]

Ptotal = mω2

2π
Ntotal, (28)

as demonstrated in Appendix F. This simple relation implies
that, if Ntotal is fixed, then Ptotal is naturally held constant.
Given all these parameters, we restrict our analysis to the
normal phase anomaly since the variations in density with
temperature are more prominent.

Since we want to investigate how the density behaves when
temperature is changed at fixed pressure, Figs. 4(d) and 4(e)
exhibit the density ρ on each lattice site of the xy plane for
temperatures kBT = 0.08U (T = 2.97 nK) and kBT = 0.18U
(T = 6.68 nK), respectively. These two temperatures are also
marked as blue and red straight lines in the phase diagram of
Fig. 4(c), showing that only the normal phase is present. In

FIG. 5. Analysis of the setup presented in Fig. 4. Panel (a) shows
the pressure P for two different temperatures (kBT = 0.08U and
kBT = 0.18U ) and their relative differences �P/P as a function of
the radial distance r. The gray area signals the distances where such
pressure deviation becomes greater than 5%. (b) The density profiles
for these temperatures are exhibited as functions of the distance r
as well as their difference �ρ, with the anomalous region (9 a <

r < 14 a) delimited by two TMD points (orange squares). (c) �ρ is
represented as a color map in the xy plane.

a qualitative perspective, we observed a melting of the steps
as temperature is raised and a larger number fluctuations be-
tween the steps of integer density. Quantitatively, a closer look
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at how the local pressure P varies across the radial direction is
discussed in Fig. 5(a). Due to the finite deviation between such
temperatures kB�T = 0.1U , there are differences in pressure
�P compared to their respective values at each site which
are less than 5% until r = 14a. Larger distances are filled
in gray, comprehending an area where the relative variation
�P/P grows towards the boundaries of the lattice. Hence the
pressure is kept approximately constant at each site except
inside the gray area, where r > 14a. Figure 5(b) shows the
radial density profiles in greater detail, with their difference
�ρ in green. This curve shows oscillations, taking on positive
values. These positive values indicate the density anomaly
and are limited by two TMD points, shown as orange square
points. Finally, Fig. 5(c) summarizes our analysis where the
difference in density �ρ is represented through a color map
in the xy plane. The anomalous region �ρ > 0 denotes an in-
crease in density with temperature at fixed pressure, while the
regular behavior corresponds to �ρ < 0. As previously, the
gray area excludes the regions where the local pressure does
not remain fixed. Under these circumstances, we have shown
a signature of the density anomaly in this 2D configuration,
illustrated as the red circular ring of Fig. 5(c).

VII. CONCLUSION

We have predicted theoretically the occurrence of density
anomaly in a quantum system considering parameters com-
patible with its experimental realization in optical lattices,
within the framework described by the self-energy functional
theory. It was also shown that the physical mechanism un-
derlying normal density anomalies relies on the presence
of a zero-point entropy in the atomic limit, marking phase
transitions between Mott insulators with different occupation.
The inclusion of the hopping amplitude (enabling the rise of
a superfluid phase) lifts the ground-state degeneracy, gener-
ates correlations among different sites, and damps residual
entropies and thermal expansion. Nevertheless, regions of
anomalous density behavior can be found in a perturbative
regime (J 
 U ) corresponding to atomic recoil energy being
much smaller than the intensities of the confining field Er 

V0. For very intense confining fields waterlike anomalies are
also found inside the superfluid regime, as was illustrated for
the case of rubidium-87 in Figs. 1 and 2. Our proposition
is that by understanding the competition between different
physical mechanisms contributing to free energy, usually
manifested through interactions between particles (but here
including chemical potential and hopping), and the relation
between residual entropy and ground-state phase transitions,
it is possible to design and predict the phenomenology of
density anomaly in systems other than liquid water, as illus-
trated here with optical lattices of rubidium-87, sodium-23,
and cesium-133 atoms.
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APPENDIX A: TENSOR PRODUCTS

The product Vα (τ ) of a second-order tensor Mα
β (τ, τ ′)

and a first-order tensor Fα (τ ) comprises the sum over the
superindex and integration in imaginary time according to

Vα (τ ) =
∑

γ

∫ β

0
d τ̃ Mα

γ (τ, τ̃ )Fγ (τ̃ ). (A1)

Similarly, the product Mα
β (τ, τ ′) of two second-order tensors

Aα
β (τ, τ ′) and Bα

β (τ, τ ′) is defined by

Mα
β (τ, τ ′) =

∑
γ

∫ β

0
d τ̃ Aα

γ (τ, τ̃ )Bγ

β (τ̃ , τ ′). (A2)

As a consequence, a scalar R = V†MF, given by the con-
traction of two first-order tensors Vα (τ ) and Fα (τ ) with a
second-order tensor Mα

β (τ, τ ′), can be expressed as

R =
∑
α β

∫ β

0

∫ β

0
dτ dτ ′V†

α (τ )Mα
β (τ, τ ′)Fβ (τ ′). (A3)

Also, time and space translation invariances imply Mα
β (τ −

τ ′) = Mri, η
r j , ν (τ − τ ′) = Mη

ν (ri − r j, τ − τ ′). The connection
between the imaginary time domain and the Matsubara fre-
quency space (with ωn = 2π

β
n) is established through the

Fourier relations

Mα
β (iωn) =

∫ β

0
dτ eiωnτ Mα

β (τ ), (A4)

Mα
β (τ ) = 1

β

∞∑
n=−∞

e−iωnτ Mα
β (iωn). (A5)

Analogously, real and momentum spaces are related by

Mη
ν (k, τ ) =

∑
r

e−ik·rMη
ν (r, τ ), (A6)

Mη
ν (r, τ ) = 1

Ns

∑
k

eik·rMη
ν (k, τ ). (A7)

Similar conclusions also hold for first-order tensors. Com-
bining space and time translation invariances, in momentum
and Matsubara frequency space the products exhibited by
Eqs. (A1)–(A3) simplify to

Vη =
∑

ν

Mη
ν (k = 0, iω0)Fν, (A8)

Mη
ν (k, iωn) =

∑
μ

Aη
μ(k, iωn)Bμ

ν (k, iωn), (A9)

R = βNs

∑
η ν

V†
ηMη

ν (k = 0, iω0)Fν . (A10)

APPENDIX B: TRACES

1. General definitions

The traces presented in the functional formulations are
defined as the complete contraction over superindices and a
double integration in imaginary time according to

Tr[M] =
∑

γ

∫ β

0

∫ β

0
dτ dτ ′δγ (τ − τ ′)Mγ

γ (τ, τ ′), (B1)
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where δγ (τ ) = δri, ν (τ ) = δ(τ − (−1)ν0−) with ν = 0, 1.
The delta function is introduced in order to impose normal
ordering of the diagonal Nambu components of M. Consid-
ering time and space translation invariances, the trace defined
by Eq. (B1) becomes

Tr[M] = βNs

∑
ν

Mν
ν[ri = 0, τ = (−1)ν0−]

=
∑
ν k n

eiωn (−1)ν0+
Mν

ν (k, iωn). (B2)

The summation over Matsubara frequencies within the de-
scribed limit can impose difficulties depending on the asymp-
totic behavior of M. In order to improve the convergence prop-
erties of such sums, we analyze explicitly its high-frequency
expansion in the following.

2. High-frequency expansion

We define the high-frequency expansion of

M(k, iωn) = M(k, iωn) + O((iωn)−(Nh+1)) (B3)

up to order Nh according to

M(k, iωn) =
Nh∑

p=1

mp(k)Qp(iωn), (B4)

where

Qp(iωn) =
{ 1

(iωn )p , ωn �= 0,

0, ωn = 0.
(B5)

By adding and subtracting the term Tr[M] in Eq. (B2), the
corresponding trace can be expressed as

Tr[M] =
∑
ν k

(∑
n

[M(k, iωn) − M(k, iωn)]νν

+βMν
ν[k, τ = (−1)ν0−]

)
, (B6)

since the asymptotic behavior [M − M]νν ∼ (iωn)−(Nh+1) al-
lows us to drop the exponent present in the trace definition.
Considering a finite number Nω of Matsubara frequencies and
a high-frequency expansion of order Nh, the trace approxima-
tion reads as

Tr[M] ≈
∑
ν k

(
Mν

ν (k, iω0)

+
Nω∑

n=−Nω

′

⎡
⎣M(k, iωn) −

Nh∑
p=1

mp(k)

(iωn)p

⎤
⎦

ν

ν

+ β

Nh∑
p=1

[mp(k)]ννQp[k, τ = (−1)ν0−]

⎞
⎠, (B7)

where the primed sum excludes ωn = 0. The calculations
presented in this paper employ Nω = 1000 with a second-
order Nh = 2 tail expansion.

In order to compute the trace approximation of Eq. (B7),
the functions Qp(τ ), Fourier transforms of Qp(iωn), need to

be determined. The idea is to visualize them as sums of the
residues [46] of a given complex function as follows:

Qp(τ ) = 1

β

∞∑
n=−∞

′ e−iωnτ

(iωn)p
=

∞∑
n=−∞

′ Res

[
e−τ z

zp
h(z), iωn

]
,

(B8)

with h(z) = (1 − e−βz )−1. The poles z = iωn are located
along the imaginary axis; then, the residue theorem allows us
to relate the result to a contour integral, comprehending the
imaginary axis of the complex plane

∞∑
n=−∞

Res

[
e−τ z

zp
h(z), iωn

]
=

∮
C

dz

2π i

e−τ z

zp
h(z). (B9)

By deforming the original contour C into two semicircles of
infinite radius this same integral becomes∮

C′

dz

2π i

e−τ z

zp
h(z) = 0, (B10)

once this new path C′ encloses regions free of poles. By
inserting Eq. (B10) into Eq. (B9) and comparing to Eq. (B8),
Qp(τ ) is determined simply by n = 0

Qp(τ ) = −Res

[
e−τ z

zp
h(z), 0

]
. (B11)

The relevant pole z = 0 is of order p + 1; hence the corre-
sponding residue is given by the formula

Qp(τ ) = − 1

p!
lim
z→0

(
d

dz

)p

z e−τ zh(z), (B12)

with the following first-order terms:

Q1(τ ) = (2τ − β )/(2β ), (B13)

Q2(τ ) = (−6τ 2 + 6βτ − β2)/(12β ). (B14)

Since the functions Qp(τ ) are periodic on the interval τ ∈
(0, β ), the respective zero time limits are

Q1[τ = (−1)ν0−] = (−1)ν/2, (B15)

Q2[τ = (−1)ν0−] = −β/12. (B16)

3. Trace of logarithm

Besides the already mentioned ordinary traces, the self-
energy functionals also contain traces regarding the logarithm
of the Green’s function G. Actually, in order to guarantee
the correct noninteracting limit, a regularization factor must
be included. Therefore, we define the regularized Matsubara
trace logarithm functional L[G],

L[G] = 1
2 Tr ln[−G−1] − 1

2 Tr ln
[−G−1

r

]
, (B17)

with the regularization carried by the second-order tensor

Gr (iωn) =
{ −β1, ωn = 0,

σz

iωn
, ωn �= 0.

(B18)

According to Eq. (B2), such trace is represented as

L[G] = −1

2

∑
ν k n

eiωn (−1)ν0+{
ln[G−1

r G(k, iωn)]
}ν

ν
,
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and the approximation described by Eq. (B7) yields

L[G] ≈ −1

2

∑
ν k

(
ln[−G(k, iω0)/β]νν

+
Nω∑

n=−Nω

′

⎡
⎣ln[(σziωn)G(k, iωn)] −

Nh∑
p=1

qp(k)

(iωn)p

⎤
⎦

ν

ν

+ β

Nh∑
p=1

[qp(k)]ννQp[k, τ = (−1)ν0−]

⎞
⎠. (B19)

The terms qp(k) are the coefficients from the high-frequency
expansion of ln[(σziωn)G(k, iωn)] = ∑∞

p=1
qp(k)
(iωn )p given ex-

plicitly by

q1(k) = σzc2(k), (B20)

q2(k) = σzc3(k) − [σzc2(k)]2

2
, (B21)

until second order, where cp(k) are the coefficients in the
high-frequency expansion of the Green’s function

G(iωn) =
∞∑

p=1

cp(k)

(iωn)p
. (B22)

Hence, using second-order tail corrections, the Matsubara
trace logarithm exposed in Eq. (B19) reads as

L[G] ≈ −1

2

∑
ν,k

(
ln[−G(k, iω0)/β] + β

2
c2(k) − β2

12
q2(k)

+
Nω∑

n=−Nω

′
[

ln[(σziωn)G(k, iωn)] − q2(k)

(iωn)2

])ν

ν

.

(B23)

APPENDIX C: REFERENCE SYSTEM

In the basis of local occupation number states, we generate
matrix representations for the reference system Hamiltonian
H ′ of Eq. (24) and the bosonic creation and annihilation op-
erators b† and b. A cutoff Nmax = 10 bounding the occupation
number from above is introduced. The diagonalization of the
Hamiltonian H ′ provides its eigenvalues En and eigenvectors
|n〉. Given these procedures, the partition function is written
as

Z ′ =
∑

n

e−βEn , (C1)

from which we derive the reference system free energy

�′ = − 1

β
ln[Z ′]. (C2)

Regarding the propagators, the static expectation value of b,
defined in Eq. (8), is given by

�′ = 〈b〉 = 1

Z ′
∑

n

e−βEn〈n|b|n〉, (C3)

and the connected Green’s function of Eq. (9)

G′(τ ) = −〈b(τ )b†〉 + �′�′† (C4)

expressed in the Matsubara frequency space yields

G′(iωn) = 1

Z ′
∑
n,m

(e−βEn − e−βEm )

iωn + En − Em
〈n|b|m〉〈m|b†|n〉

− δωn,0β
1

Z ′
∑

n

e−βEn〈n|b|n〉〈n|b†|n〉

+ δωn,0β�′�′†. (C5)

The noninteracting Green’s function is determined by setting
U = 0 in Eq. (24),

G′−1
0 (iωn) = σziωn + 1μ − �, (C6)

while the self-energies follow from the Dyson equations,
Eqs. (19) and (20), as

�′
1/2 = F′ − G′−1

0 (iω0)�′, (C7)

�′(iωn) = G′−1
0 (iωn) − G′−1(iωn). (C8)

APPENDIX D: LATTICE SYSTEM

Considering the lattice system, the noninteracting Green’s
function satisfies

G−1
0 (k, iωn) = σziωn + 1(μ − εk ), (D1)

where εk is the energy dispersion relation

εk = −2J
d∑

i=1

cos(kia) (D2)

for a hypercubic lattice in d dimensions. Also, the interacting
lattice Green’s function follows from Eq. (20) as

G−1(k, iωn) = G−1
0 (k, iωn) − �′(iωn), (D3)

evaluated at the reference system self-energy �′. According
to Eq. (19), the other Dyson equation implies

� = −G0(iω0)�′
1/2, (D4)

taking into account that F = 0, since there is no symmetry
breaking field on the complete lattice.

APPENDIX E: HIGH-FREQUENCY EXPANSION OF THE
GREEN’S FUNCTION

To complete the evaluation of the trace log functional of
Eq. (B23), the coefficients cp, regarding the tail expansion of
the Green’s function in Eq. (B22), remain to be determined
for both reference and lattice systems.

1. Reference system

By expressing the Matsubara Green’s function as a Fourier
transform of the imaginary time Green’s function, successive
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integration by parts yields

G′(iωn) =
∫ β

0
dτ eiωnτ G′(τ )

=
∞∑

p=0

(−1)p ∂
p
τ G′(β−) − ∂

p
τ G′(0+)

(iωn)p+1
. (E1)

Therefore, the high-frequency expansion coefficients take the
form

c′
p+1 = (−1)p

[
∂ p
τ G′(β−) − ∂ p

τ G′(0+)
]
. (E2)

From the definition of the Green’s function as the time-
ordered expectation value of Eq. (C4) and the equation of
motion satisfied by b(τ )

∂τ b(τ ) = [H ′, b(τ )], (E3)

we extract the imaginary time derivative of G′(τ ):

∂τ G(τ ) = −〈[H ′, b(τ )]b†〉. (E4)

By induction on Eq. (E3) and Eq. (E4), the derivative of order
p reads as

∂ p
τ G(τ ) = −〈[[H ′, b(τ )]](p)b†〉, (E5)

with [[H ′, b(τ )]](p) = [H, . . . , [H, [H, b(τ )]] . . . ] the left
side commutator of H ′ with b(τ ) applied p times. The eval-
uation of such derivatives at the imaginary times τ = 0+ and
τ = β− allows us to fix the time ordering

∂ p
τ G′(0+) = −〈[[H ′, b]](p)b†〉, (E6)

∂ p
τ G′(β−) = −〈b†[[H ′, b]](p)〉. (E7)

Inserting these results into Eq. (E2), the desired coefficients
simplify to

c′
p+1 = (−1)p〈[ [[H ′, b]](p), b† ]〉. (E8)

Explicitly, the first-order terms are

c′
1 = 〈[b, b†]〉 = σz, (E9)

c′
2 = −〈[[H ′, b], b†]〉, (E10)

c′
3 = 〈[[H ′, [H ′, b]], b†]〉. (E11)

2. Lattice system

According to Eqs. (D1) and (D3), the lattice Green’s func-
tion G(k, iωn) presents a tail expansion of the form

G(k, iωn) = σz

iωn
+ σz[1(εk − μ) + s′

0]σz

(iωn)2

+σzs′
1σz + {σz[1(εk − μ) + s′

0]}2σz

(iωn)3
+ O

(
1

(iωn)4

)
,

where s′
p are the high-frequency expansion coefficients of the

reference system’s self-energy �′(iωn) = ∑∞
p=1

s′
p

(iωn )p . Hence
the first-order terms are

c1(k) = σz, (E12)

c2(k) = σz[1(εk − μ) + s′
0]σz, (E13)

c3(k) = σzs′
1σz + {σz[1(εk − μ) + s′

0]}2σz. (E14)

To determine the coefficients s′
p of the self-energy �′(iωn) =

G′−1
0 (iωn) − G′−1(iωn), we need to compute the inverse of G′,

given by

G′−1(iωn) =
⎡
⎣ σz

iωn
+

∞∑
p=2

c′
p

(iωn)p

⎤
⎦

−1

= σziωn − σzc′
2σz

+ −σzc′
3σz + (σzc′

2)2σz

iωn
+ O

(
1

(iωn)2

)
.

Then, the previous result combined to Eq. (C6) implies

�′−1(iωn) = G′−1
0 (iωn) − G′−1(iωn)

= 1μ − � + σzc′
2σz

− −σzc′
3σz + (σzc′

2)2σz

iωn
+ O

(
1

(iωn)2

)
.

Consequently, the first-order coefficients of the self-energy
tail expansion can be written as

s′
0 = 1μ − � + σzc′

2σz, (E15)

s′
1 = σzc′

3σz − (σzc′
2)2σz. (E16)

From these terms, the desired lattice Green’s function coeffi-
cients are evaluated according to Eqs. (E12)–(E14).

APPENDIX F: EQUATION OF STATE AND PRESSURE

Considering the two-dimensional setup discussed in
Sec. VI, the total pressure Ptotal is evaluated by integrating the
Gibbs-Duhem relation dP = ρ dμ + s dT at fixed tempera-
ture T over the lattice

Ptotal =
∫ μ0

−∞
ρ dμ = −

∫ ∞

0
ρ(r)

dμ

dr
dr. (F1)

For an isotropic harmonic trap in the xy plane, μ = μ0 −
1
2 mω2r2 and dμ

dr = −mω2r; then Eq. (F1) becomes

Ptotal = mω2
∫ ∞

0
ρ(r)r dr. (F2)

The total number of particles Ntotal is obtained by integration
of the local density ρ(r) according to

Ntotal = 2π

∫ ∞

0
ρ(r)r dr. (F3)

Comparing both Eqs. (F2) and (F3), we deduce the equation
of state,

Ptotal = mω2

2π
Ntotal, (F4)

valid for 2D gases including an isotropic harmonic confine-
ment [65,66]. There is also another interesting observation
concerning the value of the fixed total pressure. Since the
density ρ is a derivative of the free energy �, see Eq. (25),
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we can write Ptotal as

Ptotal = −
∫ μ0

−∞

1

V

(
∂�

∂μ

)
T

dμ

= 1

V
[�(μ = −∞) − �(μ0)]. (F5)

Considering that �(μ = −∞) = 0 and −PV = �, the total
pressure is equal to the local pressure at the center of the trap

Ptotal = P(μ0) = P(r = 0), (F6)

as Fig. 5(a) confirms.
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