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The pressure versus temperature phase diagram of a system of particles interacting through a multiscale
shoulder-like potential is exactly computed in one dimension. The N -shoulder potential exhibits N
density anomaly regions in the phase diagram if the length scales can be connected by a convex curve.
The result is analyzed in terms of the convexity of the Gibbs free energy.
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1 Introduction

The phase behavior of single-component systems con-
sidered as particles interacting via the so-called core-
softened (CS) potential has received attention since the
work of Hemmer and Stell [1]. These potentials exhibit
a repulsive core with a softened region having a shoulder
or a ramp [1–12]. These models are motivated by the
desire to construct a simple two-body isotropic potential
capable of describing the complicated features of systems
interacting via isotropic potentials. This procedure gen-
erates models that are analytically and computationally
tractable, and that one hopes are capable of retaining
the qualitative features of real complex systems.

The physical motivation behind these studies is the
recently acknowledged possibility that some single-
component systems exhibit the coexistence of two dif-
ferent liquid phases [1, 2, 6]. This has opened a discus-
sion about the relationship among the presence of two
liquid phases, the existence of thermodynamic anoma-
lies in the liquids, and the form of the potential. The
case of water has probably been the most intensively
studied. For instance, liquid water has a temperature at

*Special Topic: Water and Water Systems (Eds. F. Mallamace,
R. Car, and Limei Xu).

which the density is maximum at constant pressure [13].
It was proposed some time ago that the temperature of
maximum density (TMD) might be associated with a
critical point at the terminus of a liquid–liquid phase
transition [14]. This hypothesis has been supported by
simulations [14, 15] and experiments [16, 17].

The natural question that follows is whether a CS po-
tential with two length scales will have one region in the
pressure versus temperature phase diagram in which the
density is anomalous and a liquid–liquid phase transition
is present, and one with three length scales will have two
TMD lines. To address this question, in this paper, we
present an exact solution of a system of particles inter-
acting through a multi-length-scale potential. Our anal-
ysis, even though it is restricted to one dimension, shows
that the TMD lines are associated with the presence of
liquid–liquid critical points. The existence of both vari-
ous TMD lines and critical points depends on the shape
of the pair interaction potential. If the length scales
can be connected by a convex curve, multiple TMDs are
present; otherwise, they are absent.

The rest of the paper is structured as follows. In Sec-
tion 2, the exact solution is presented and applied to the
one-shoulder, two-shoulder, and multiple-shoulder po-
tentials. In Section 3, the analytic solution is applied
to the lattice version of the model. Conclusions are pre-
sented in Section 4.

© Higher Education Press and Springer-Verlag GmbH Germany 2018



Research article

2 Analytic solution

We consider a one-dimensional system composed of a
set of identical classical particles of mass m that inter-
act only with their nearest neighbors. As the prob-
lem is treated using classical mechanics, we can as-
sign to the particles moving on this line the positions
q = (q1, . . . , qN ) and linear momenta p = (p1, . . . , pN ).
The time evolution is described by the Hamiltonian

H (q,p) =
p2

2m
+ U(q), (1)

where U is the total potential energy. In addition, we
suppose that interaction occurs among adjacent pairs
through a potential Φ that is translationally invariant;
U is then expressed as

U(q) =
N−1∑
i=1

Φ(qi+1 − qi), (2)

where Φ(qi+1 − qi) is the potential energy between two
particles.

The pressure ensemble corresponds to a system in
thermodynamic equilibrium with heat and volume reser-
voirs, which fix the temperature β−1 = kBT and pressure
p. A simplified expression for the partition function J is
given by [18, 19]

J(T, p,N) =
1

(βp)2Λ0ΛN

(∫ ∞

0

e−β[Φ(r)+pr]dr
)N−1

,

(3)

where β = 1/(kBT ), Λ0 is a constant with dimensions
of length, and Λ is the de Broglie thermal wavelength,
namely,

Λ(T ) =

(
h2

2πmkBT

)1/2

. (4)

In the thermodynamic limit, where N → ∞, the Gibbs

free energy per particle is then expressed as

g(T, p) = −kBT lim
N→∞

1

N
log J

= − 1

β
log 1

Λ

(∫ ∞

0

e−β[Φ(r)+pr]dr
)
. (5)

From this fundamental equation follows the equation of
state,

v(T, p) =
∂g(T, p)

∂p
,

ρ(T, p) =
1

v(T, p)
, (6)

allowing us to map the behavior of the isobaric thermal
expansion coefficient given by

α(T, p) =
1

v

(
∂v

∂T

)
p

. (7)

3 Continuous potentials

3.1 One-shoulder pair potential

We begin by analyzing the simplest two-length scale po-
tential Φ:

Φ(r) =


∞, r < λ0

V0, λ0 ≤ r < λ1

V1, λ1 ≤ r.

(8)

Figure 1(a) shows the interparticle potential energy,
Φ∗ = Φ/V0, versus the distance between particles, r∗ =
r/λ0, where V1 = 0, λ0 < λ1 < 2λ0, and λ∗

1 = λ1/λ0.
For these reduced units, the Gibbs free energy in Eq. (5)

Fig. 1 (a) Pair potential Φ∗ = Φ/V0 versus r∗ = r/λ0, (b) pressure versus temperature, and (c) thermal expansion
coefficient versus pressure for λ∗

1 = λ1/λ0.
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assumes the form

g∗(T, p) ≡ g(T, p)

V0

= −T ∗ log T ∗

Λ∗p∗

[
e−(1+p∗)/T∗

− e−(1+λ∗
1p

∗)/T∗

+e−(V ∗
1 +λ∗

1p
∗)
]
, (9)

where the temperature, pressure, and thermal wave-
length in reduced units are given by T ∗ = kBT/V0,
p∗ = pλ0/V0, and Λ∗ = Λ/λ0, respectively, and the po-
tential parameters are λ∗

1 = λ1/λ0 and V ∗
1 = V1/V0.

The density versus temperature plot for a fixed pres-
sure reveals the temperature at which the density is max-
imum. For different pressures, this maximum occurs at
different temperatures, as illustrated in Fig. 1(b). The
intuitive idea behind this is that competition between
the two length scales in the potential generates a density
maximum if both scales are accessible to the system [20–
24]. The anomaly then manifests itself when the system
passes from a less dense structure associated with the
scale λ1 to a more compact one associated with λ0 when
the temperature is increased at a fixed pressure. Fur-
thermore, the response function α, shown in Fig. 1(c),
not only changes sign, indicating the presence of a den-
sity anomaly region in the pressure versus temperature
phase diagram, but also diverges as T → 0, a behavior
that is generally related to the presence of criticality [23].

One-dimensional systems with finite-range interac-
tions, such as the model we are analyzing, obviously ex-
hibit phase transitions only at T = 0. The temperature
destroys any attempt at ordering. Indeed, Takahashi’s
solution [18], which is illustrated in Eq. (3), does not
violate this principle.

Let us analyze, therefore, the zero-temperature phase
transitions in order to establish a relationship with the
density anomaly regions. First, let us fix p > 0. The
leading behavior of g(T, p) depends essentially on the
argument of its exponentials in Eq. (9). In this case, the
condition λ1 > λ0 implies V0 + λ0p < V0 + λ1p for every

p > 0; consequently,

lim
β→∞

g = − lim
β→∞

1

β
log

[
e−β(V0+λ0p) + e−β(V1+λ1p)

]
.

(10)

Hence, this limit is determined by the straight lines
η0(p) = V0 + λ0p and η1(p) = V1 + λ1p of smallest value
at a particular pressure p, as shown in Fig. 2(a). By
defining their intersection as

p01 =
V0 − V1

λ1 − λ0
, (11)

we can express g = g(p) in this regime, as illustrated in
Fig. 2(a), as

g(p) =


−∞, p = 0

V1 + λ1p, 0 < p < p01

V0 + λ0p, p01 < p.

(12)

In the ground state, g(p), despite its well-defined con-
cavity, as a function of p exhibits singularities at the
origin (p = 0) and at p = p01. At p = p01, the system
undergoes a discontinuous phase transition in which the
high-density phase, v = λ0, associated with the length
scale λ0 coexists with the low-density phase, v = λ1, as-
sociated with λ1, according to Fig. 2(b). This suggests
a mechanism for the density anomaly. Its origin should
be related to the phase separation at T = 0. The system
at zero temperature and p01 has two coexisting phases.
As the temperature increases, the competition between
these two phases give rise to the density anomaly.

We can extend this analysis and look for a connection
between the interaction potential Φ and the thermody-
namic anomaly. This can be approached through the ex-
pected value ⟨Φ⟩, which is defined for equilibrium states
as the probability measure of the pressure ensemble and
expressed as

⟨Φ⟩ = u− 1

2
kBT. (13)

Fig. 2 (a) Gibbs free energy g as a function of the pressure p for T = 0 (solid line; the singularity at p = 0 was omitted);
the coexistence pressure p01 is just the intersection of η0 and η1. (b) Specific volume v versus p follows from the slopes of
these lines. (c) Internal energy representation of the same system.

Eduardo O. Rizzatti, et al., Front. Phys. 13(1), 136102 (2018)
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Hence, for T → 0, the expected value of the potential
coincides with the internal energy of the system. This
result allows us to employ the internal energy represen-
tation u = u(v) instead of the Gibbs representation. By
performing the Legendre transformation1) between the
conjugate variables (v,−p), we obtain the energy
u(v) = sup

p
{g(p)− pv}. (14)

Figure 2(c) shows the energy versus the pressure; as
expected, the internal energy is a convex function of its
argument, whereas its magnitude is the slope of the co-
existence pressure p01.

3.2 Two-shoulder pair potential

Next, we explore the possibility that there are two re-
gions in the pressure versus temperature phase diagram
where a density anomaly and criticality appear as the
system interacts through a potential with three length
scales. When another scale of interaction is added, the
interaction potential Φ is given by

Φ(r) =



∞, r < λ0

V0, λ0 ≤ r < λ1

V1, λ1 ≤ r < λ2

V2, λ2 ≤ r,

(15)

where V2 = 0, and λ0 < λ1 < λ2 < 2λ0, as shown in
Fig. 3.

Then, the Gibbs fundamental equation [Eq. (5)] of this
system is expressed as

g(β, p) = − 1

β
log 1

Λβp

[
e−β(V0+λ0p) − e−β(V0+λ1p)

+e−β(V1+λ1p) − e−β(V1+λ2p) + e−β(V2+λ2p)
]
.

(16)

Fig. 3 Pair potential versus distance with three length
scales.

1)It is well defined because limT→0 Ts(T, p) = 0, where s = s(T, p)
is the entropy per particle.

It is reasonable to expect that the inclusion of a new
scale of interaction allows for the occurrence of a new
density anomaly region in the phase diagram. However,
Fig. 4 shows that, depending on the choice of parame-
ters, the system exhibits just one or two density anomaly
regions in the pressure versus temperature phase dia-
gram. The origin of this behavior can be understood if
we analyze the ground-state phase transitions, which are
precursors of density anomalies, as seen in the former
section. First, take p > 0; then the zero-temperature
Gibbs free energy is given by

lim
β→∞

g = − lim
β→∞

1

β
log

[
e−β(V0+λ0p) + e−β(V1+λ1p)

+e−β(V2+λ2p)
]
. (17)

The zero-temperature Gibbs free energy is determined
by the smallest value among the straight lines η0(p) =
V0 + λ0p, η1(p) = V1 + λ1p, and η2(p) = V2 + λ2p for a
particular pressure p. If we define their intersections as

p01 =
V0 − V1

λ1 − λ0
, p02 =

V0 − V2

λ2 − λ0
,

and

p12 =
V1 − V2

λ2 − λ1
, (18)

two possible scenarios arise: p01 ≤ p12 or p01 > p12 (a
consequence of the restrictions λ0 < λ1 < λ2). It follows
that g = g(p) in this regime [see Figure 5(a) and 5(b)]
assumes the form

g(p) =


−∞, p = 0

V2 + λ2p, 0 < p < p02

V0 + λ0p, p02 < p

(19)

if p01 ≤ p12, or the form

g(p) =



−∞, p = 0

V2 + λ2p, 0 < p < p12

V1 + λ1p, p12 < p < p01

V0 + λ0p, p01 < p

(20)

if p01 > p12. Therefore, the phase diagram shows only
one density anomaly region in the pressure versus tem-
perature phase diagram in the first case and two density
anomaly regions in the second case.

To visualize the energetic conditions for the existence
of one or two density anomaly regions in the pressure
versus temperature phase diagram, the behavior of Φ
at T = 0 is analyzed. Eq. (13) shows that at T = 0,
Φ = u(v). Therefore, in Fig. 4(a), the slopes of the
lines joining the points (λ0, V0), (λ1, V1), and (λ2, V2)
are equal in magnitude to the coexistence pressures de-
fined by Eq. (18). The condition p01 > p12, illustrated

136102-4
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Fig. 4 Potential Φ versus r for λ2 = 1.8, λ1 = 27/20, λ0 = 1, V1 = 7/16, and and V0 = 1 (a) and λ2 = 1.8, λ1 = 1.6,
λ0 = 1, V1 = 0.75, and V0 = 1 (d). The corresponding phase diagrams exhibiting the density anomaly states are shown
in (b) and (e), respectively. The divergence of the response function α at the critical pressures as the system approaches
T = 0, as well as its sign change, are shown in (c) and (f), respectively.

in Fig. 4(b), permits all scales to be accessible inasmuch
as it generates a convex u (phases of lower volume co-
exist at a pressure higher than phases of higher volume;
translating this idea to our notation, stability requires
p01 > p12 for λ0 < λ1 < λ2). Thus, the transitions 01
and 12 are allowed. Consequently, the thermal expan-
sion coefficient shown in Fig. 4(c) exhibits two regions
with divergence as T → 0. On the other hand, if Φ ver-
sus distance behaves as shown in Fig. 4(d), p01 ≤ p12.
The length scale, (λ1, V1), becomes inaccessible because
its location implies a nonconvex u as a function of the
specific volume. The system then coexists only in phases
0 and 2, as illustrated in Fig. 4(e). In this case, the di-

vergence of the thermal expansion coefficient is similar
to that in the system with two length scales, as shown
in Fig. 4(f).

We can easily identify, for T = 0, whether the system
has one or two density anomaly regions in the pressure
versus temperature phase diagram by using the following
geometric picture. First, we draw one straight line con-
necting (λ0, V0) and (λ1, V1) and another straight line
connecting (λ1, V1) and (λ2, V2) in the potentials illus-
trated in Figs. 5(a) and (e). In Fig. 5(a), the two lines
together form a convex curve, and two density anomaly
regions are present, whereas in Fig. 5(e), a concave curve
is present, and just one density anomaly region is present.

Eduardo O. Rizzatti, et al., Front. Phys. 13(1), 136102 (2018)
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Fig. 5 Φ versus r for (a) p01 ≤ p12 and (e) p01 > p12; v versus p for (b) p01 ≤ p12 and (f) p01 > p12; u versus v for
(c) p01 ≤ p12 and (g) p01 > p12; and g versus p for (d) p01 ≤ p12 and (h) p01 > p12.

136102-6
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The difference in the two cases is also reflected in the
reduced volume versus pressure diagram, which shows
three phases in Fig. 5(b) and two phases in Fig. 5(f).
Consequently, the internal energy u versus v shows three
stable densities in Fig. 5(c) and only two in Fig. 5(g).
Finally, the free energy g as a function of p is a concave
stable function with three densities in Fig. 5(d) and only
two in Fig. 5(h).

Another way to visualize whether a pair potential leads
to multiple density anomaly regions is to draw a line con-
necting (λ0, V0) and (λ1, V1), another straight line con-
necting (λ1, V1) and (λ2, V2), and a third line connecting
(λ0, V0) and (λ2, V2). If the first two lines lie above the
third line, the system has two density anomaly regions.

This same argument will be generalized in the follow-
ing section, where we will deal with the limit of N shoul-
ders.

3.3 Infinite-shoulder pair potential

In this section, let us consider an extrapolation of the
interaction potential Φ of the form

Φ(r) =



∞, r < λ0

V0, λ0 ≤ r < λ1

...
Vi, λi ≤ r < λi+1

...
VN , λN ≤ r < λN+1,

(21)

where VN = 0, λ0 < . . . < λi < . . . < λN < 2λ0, and
λN+1 → ∞. The Gibbs free energy g associated with
this potential is

g(β, p)=− 1

β
log

[
1

Λβp
×

N∑
i=0

(e−β(Vi+λip)−e−β(Vi+λi+1p))

]
.

(22)

In the ground state, the free energy behaves as

lim
β→∞

g = − lim
β→∞

1

β
log

[
N∑
i=0

e−β(Vi+λip)

]
(23)

for λi < λi+1 and 0 ≤ i ≤ N . If we define the straight
lines

ηi(p) = Vi + λip (24)

for 0 ≤ i ≤ N , the ground-state free energy becomes

g(p) = inf
0≤i≤N

ηi(p) (25)

for p > 0. The intersection of the ηi(p) and ηj(p)

lines represents the possible coexistence pressures be-
tween phases i and j:

pij =
Vi − Vj

λj − λi
, (26)

where 0 ≤ i < j ≤ N .
For this multiscale system, the fundamental question

is whether a scale (λk, Vk) determines a phase transition
and consequently a density anomaly region. In other
words, if there exists an interval Ik (on the domain of g)
such that p ∈ Ik, this implies that g(p) = Vk+λkp. This
happens only if pik > pkj for all i, j obeying i < k < j
(i.e., λi < λk < λj); N+1 phases and N density anomaly
regions are present in the system.

Figure 6(a) shows the free energy versus pressure for a
system with N+1 phases and N density anomaly regions,
whereas Fig. 6(c) shows the free energy versus pressure
for a system with N phases and N − 1 density anomaly
regions. The internal energies of these two systems are
shown in Figs. 6(b) and (d), respectively.

4 Lattice pair potentials

The previous section presented an analysis of one-
dimensional systems interacting through shoulder pair
potentials in continuous space. We found that the ex-
istence of many density anomaly regions in the pressure
versus temperature phase diagram depends on the con-
vexity of Φ. In this section, we test the generality of this
result regarding the convexity of Φ for a lattice system.
We consider a lattice gas model with a four-shoulder pair
potential that is restricted to a lattice whose sites are
regularly spaced by l = l0, with l0 = 1 (reduced units).
A partition function similar to that derived in the previ-
ous section [Eq. (3)] but for a lattice system is given by
J(β, p,N):

J(β, p,N) =

[∑
r

e−βηr(p)

]N

, (27)

where ηr(p) was defined above.2) It follows that an exact
expression for g is simply

g = − 1

β
ln

[ ∞∑
r=1

e−βηr(p)

]
, (28)

which is identical to the low-temperature limit obtained
for continuous models in Eq. (23). Thus, the restrictions
obtained above for the scales (λk, uk) on the continuous
model can be applied to lattice models.

2)Note that ηr(p) was previously interpreted as the microscopic
enthalpy for a pair of successive particles in previous works, with
ηr(p) = h(r; p) [23, 25].

Eduardo O. Rizzatti, et al., Front. Phys. 13(1), 136102 (2018)
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Fig. 6 Ground-state potentials g = g(p) and u = u(v) for the two scenarios described here.

As an application, we design a simple lattice gas model
pair potential presenting five states in the ground state
and four phase transitions between fluid phases.3) The
critical pressures are set to pk,k+1 = 5 − k, where the
molecules in phase k are separated by k lattice sites.
With this definition, the critical pressures are simply
{p4,5 = 1, p3,4 = 2, p2,3 = 3, p1,2 = 4}, and a pair po-
tential with this behavior can be found by starting with
u5 = 0 and recursively calculating uk from Eq. (26). The
resulting pair potential is shown in Fig. 7.

The pressure versus temperature phase diagram of the
model is shown in Fig. 7, where ground-state phase tran-
sitions between different fluids are indicated by filled cir-
cles, at the expected pressures p = 1, 2, 3, 4, and a gas–
liquid transition is indicated by a filled triangle at p = 0.

The TMD line is also shown in the upper right panel of
Fig. 7. The TMD line emanates from each ground-state
phase transition, creating four regions of negative ther-
mal expansion coefficient, i.e., regions where the density
anomalously increases with temperature at fixed pres-
sure. Each TMD line reaches a maximum tempera-

3)For simplicity, neither the gas phase nor the liquid–gas phase
transition are numbered.

ture and returns to a lower temperature, reaching the
ground state at a pressure that is exactly between two
critical points. The exact location for the endpoints of
these TMD lines can be explained by the competing ef-
fects of contraction and expansion on the stable ground-
state configuration (a similar calculation was described
in Ref. [25]).

We finish discussing this example by investigating the
behavior of thermal expansion as a function of pressure
at fixed temperature. In the last panel of Fig. 7, α oscil-
lates when crossing pressures near the critical value, indi-
cating a relationship between phase transitions and den-
sity anomalies in one-dimensional systems. This result is
consistent and was also found in other one-dimensional
lattice models [24, 25], three-dimensional CS fluids [23],
and the continuous one-dimensional systems investigated
here.

5 Conclusions

In this paper, we obtained an exact solution for a family
of one-dimensional potentials that are characterized by
having N shoulders. The presence of one shoulder re-

136102-8
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Fig. 7 (a) Pair potential exhibiting different phases, (b) pressure versus temperature phase diagram illustrating the TMD
line, (c) density versus pressure for different temperatures, and (d) thermal expansion coefficient versus pressure for different
temperatures.

sults in a density anomaly region in the pressure versus
temperature phase diagram, and consequently, a zero-
temperature liquid–liquid phase transition. The pres-
ence of two, three, . . . , N density anomaly regions for
two, three, . . . , N shoulders occurs only if the pair po-
tential forms a convex curve when the different length
scales are connected.

The prediction in one dimension can be extrapolated
to the three-dimensional case, and that for two shoulders
results in the existence of two density anomaly regions
and two liquid–liquid phase transitions [23].
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