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Abstract
Water and other tetrahedral liquids are characterized by a density anomaly
whose origin is not well understood. A very simple model of a short-range
attraction followed by an outer shell repulsion is proposed as a test potential for
the density anomaly. We show that these competing interactions when applied
to a two-dimensional lattice gas leads to the formation of two liquid phases and
to the appearance of a density anomaly. The coexistence line between the two
liquid phases meets a critical line between the fluid and the low-density liquid
phase at a tricritical point. The line of maximum density emerges in the vicinity
of the tricritical point, close to the demixing transition.

1. Introduction

Water is an anomalous substance in many respects. Most liquids contract upon cooling. This is
not the case for water, a liquid where the specific volume at ambient pressure starts to increase
when it is cooled below T = 4 ◦C [1]. Besides, in a certain range of pressures, water also
exhibits an anomalous increase of compressibility and specific heat upon cooling [2–4]. It is
less well known that water diffuses faster under pressure at very high densities and at very low
temperatures [5] and that the viscosity of water decreases upon increasing pressure [6–8].

It was proposed a few years ago that these anomalies are related to a second critical point
between two liquid phases, a low-density liquid (LDL) and a high-density liquid (HDL) [9].
This critical point, discovered by computer simulations, might be located at the supercooled
region beyond the line of homogeneous nucleation and thus cannot be experimentally
measured. This hypothesis has been supported by indirect experimental results [7, 10]. In
spite of the limit of 235 K below which water cannot be found in the liquid phase without
crystallization, two amorphous phases were observed at much lower temperatures [11]. There
is evidence, although yet under test, that these two amorphous phases are related to two liquid
phases in fluid water [12, 13].
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Water is not an isolated case. There are also other examples of tetrahedrally bonded
molecular liquids such as phosphorus [14, 15] and amorphous silica [16] that also are good
candidates for having two liquid phases. Moreover, other materials such as liquid metals [17]
and graphite [18] also exhibit thermodynamic anomalies. Unfortunately a coherent and general
interpretation of the low-density liquid and high-density liquid phases is still missing. The
relation between liquid polymorphism and density anomaly has been a subject of debate in
recent theoretical literature [19].

What type of potential would be appropriate for describing the tetrahedrally bonded
molecular liquids? Directional interactions are certainly an important ingredient in obtaining
quantitative predictions for network-forming liquids like water [20, 21]. However, the models
that are obtained from this approach are too complicated. Isotropic models became the simplest
framework to understand the physics of the liquid–liquid phase transition and liquid state
anomalies.

Recently it has been shown that the presence of two liquid phases can be associated with
a potential with an attractive part and two characteristic short-range repulsive distances. The
smaller of these two distances is associated with the hard core of the molecule, and the larger
one with the soft core [19]. Acknowledging that core-softened (CS) potentials may engender
a demixing transition between two liquids of different densities, a number of CS potentials
were proposed to model the anisotropic systems described above. The first suggestion was
made many years ago by Stell and co-workers in order to explain the isostructural solid–solid
transition ending in a critical point [22, 23]. Debenedetti et al, using general thermodynamic
arguments, confirmed that CS potentials can lead to a coefficient of thermal expansion negative
and consequently to a density anomaly [24]. This, together with the increase of the thermal
compressibility, has been used as indications of the presence of two liquid phases [25, 26] which
may be hidden beyond the homogeneous nucleation. The difficulty with these approaches is
that continuous potentials usually lead to crystallization at the region where the critical point
would be expected. Consequently, the analysis of the presence of both the two liquid phases
and the critical point becomes indirect.

Despite the apparent success of the introduction of CS potentials, it is not clear that the
presence of two liquid phases and a density anomaly are due to the short-range shoulder [24]
or if they result from the existence of two competing scales.

In this work we analyse another type of model system where two competing scales are also
present. We study a potential with a hard core, a short-range attractive part and a repulsive shell.
While the attraction accounts both for the van der Waals and hydrogen bonding interactions,
the outer shell repulsion introduces the orientational order present in the hydrogen bonds.
Therefore, the two scales emerge as a result of the competition between a first-neighbour
attraction and second-neighbour repulsion.

In order to circumvent crystallization that appears in the continuous potentials, we work
in a two-dimensional lattice gas. We show that this very simple system exhibits both a
density anomaly and two liquid phases. However, instead of having a critical point ending the
coexistence line between the two liquid phases, it has a tricritical point as the locus where the
critical line meets the first-order coexistence line between the two liquid phases.

The paper goes as follows. In section 2 the model is presented, the mean field analysis
is given in section 3, results from simulations are discussed in section 4, and our findings are
summarized in section 5.

2. The model

Our system is represented by a square lattice with N sites. Associated with each site there is an
occupational variable, σi . If the site is occupied by a molecule, σi = 1, otherwise σi = 0. Each
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Figure 1. Sub-lattices.

site interacts with its nearest neighbours with attractive interactions and with its next-nearest
neighbours with repulsive interactions. Therefore the Hamiltonian of this system is given by

H = −V1

∑
〈i j〉

σiσ j − V2

∑
〈〈ik〉〉

σiσk − µ
∑

i

σi , (1)

where the first sum is over the four nearest-neighbour sites and the second sum is over the four
next-nearest-neighbour sites. The last term in equation (1) refers to the chemical potential
contribution. Here we consider periodic boundary conditions.

In order to help the visualization of the phases that might be present in the system, the
lattice is divided into four sub-lattices: 1, 2, 3, 4 (see the example in figure 1).

The sub-lattice density is given by

ρβ = 4

N

∑
j∈β

σ j , β = 1, . . . , 4. (2)

The ground state is obtained from the minimum value of Hamiltonian (equation (1)). For
V1 > 0 and V2 < 0, the ground state has two possible scenarios: V1 < −2V2 and V1 > −2V2.
In the first case and for high chemical potential, µ > −3V1 − 4V2, all sites are occupied and
the system is in the dense liquid (DL) phase. As the chemical potential is decreased some sites
becomes empty and, at µ = −3V1 − 4V2, there is a phase transition from the dense liquid
phase to the structured dilute liquid (SDL) phase, illustrated in figure 1. On decreasing the
chemical potential, at µ = −V1 there is a phase transition between the structured dilute liquid
and the gas phase. If V1 > −2V2 and µ > −2V1 − 2V2 the system is in the dense liquid phase
and at µ = −2V1 − 2V2 it has a phase transition from the SDL to the gas phase.

3. Mean-field approximation

The mean-field analysis follows the sub-lattice strategy introduced by Binder [27]. Even
though it does not takes fluctuations into account, this approach gives an overview of the phase
diagram that is quite helpful for making the right parameters choice for simulations. Moreover,
Binder’s method is able to capture the phase transition that other mean-field schemes miss.
The approach goes as follows. The chemical potential acting on the system is rewritten as the
sum of four potentials, one for each sub-lattice, namely:

µ = 1
4

4∑
α=1

µα. (3)
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The use of independent chemical potentials may be necessary in a more general problem,
where each sub-lattice is composed of a different type of molecule. For our model we have
µ = µα, α = 1, 2, 3, 4. Now, rewriting the Hamiltonian, equation (1), in terms of the sub-
lattices, we get the following expression:

H = −
4∑

α=1

∑
i∈α

H eff
α ({σ j})σi , (4)

where

H eff
α ({σ j}) = µα +

4∑
β=1

∑
i∈β

Ji jσ j , i ∈ α

and where the relations between Ji j , V1 and V2 are given by J12 = J21 = J23 = J32 = J34 =
J43 = J14 = J41 = V1 and J13 = J31 = J24 = J42 = V2. The mean-field approximation here
consists of replacing H eff

α by its mean value, which leads to

〈H eff
α 〉 = µα +

ν∑
β=1

εαβρβ, i ∈ α, j ∈ β, (5)

where ρβ = 〈σ j 〉 and

εαβ =
∑
i( �= j)

Ji j , i ∈ α, j ∈ β.

Substituting equation (5) in (4) we obtain

HMF = −
4∑

α=1

∑
i∈α

( 4∑
β=1

εαβρβ + µα

)
σi +

1

2

4∑
α=1

N

4

4∑
β=1

εαβρβρα, (6)

where the last term corrects for overcounting. Equation (6) is the Hamiltonian in the mean-field
approximation which leads to the grand potential per site given by

φMF = −kBT ln 2 − kBT

4

4∑
α=1

ln cosh

[
1

2kBT

( 4∑
β=1

εαβρβ + µα

)]

− 1
8

4∑
α=1

( 4∑
β=1

εαβρβ + µα

)
+ 1

8

4∑
α=1

4∑
β=1

εαβραρβ, (7)

where kB is the Boltzmann factor and T is the temperature.
The density of each sub-lattice, derived from the grand potential, is given by

ρα = −4

(
∂φMF

∂µα

)
T,µα �=β

, α = 1, 2, 3, 4,

= 1

2
+

1

2
tanh

[
1

2kBT

( 4∑
β=1

εαβρβ + µα

)]
. (8)

The phase diagram illustrated in figure 2 was obtained by solving equation (8) for fixed
values of temperature and chemical potential. For simplicity, we assume that V1 = 1 and
V2 = −1. At high temperatures, each sub-lattice is half full in an disorganized way that
characterizes the fluid phase. As the temperature is lowered at a fixed chemical potential,
µ∗ ≡ µ/V1 > 1, the system goes from the fluid to the dense liquid phase continuously and
no phase transition is observed. Similarly, at very low chemical potentials, µ∗ < −1, as the
temperature is decreased, the system goes from the fluid to the gas phase continuously with
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Figure 2. Mean-field phase diagram: the open circles represent the second-order phase transition,
the solid lines are the two first-order phase transitions and the two filled circles are the two tricritical
points.

no phase transition. For intermediate chemical potentials, −1 > µ∗ > 1, at T = Tc there is a
continuous phase transition between the fluid phase and the structured dilute liquid phase. The
coexistence line between the gas phase and the structured diluted liquid meets this continuous
phase transition at a tricritical point. Another similar point is observed at the contact between
the SDL–DL coexistence line and the critical line. The density is monotonic, therefore no
density anomaly is observed.

4. Monte Carlo simulations

The rather simple mean-field approach introduced in the previous section is unable to account
for the density anomaly. Therefore, Monte Carlo simulations in grand canonical ensemble
were performed. The Metropolis algorithm2 was used to study a square L × L lattice and
|V2|/V1 = 1. Different system sizes L = 10, 20, 30, 40, 50 were investigated. The typical
equilibration time was 1500 000 Monte Carlo time steps for each lattice site.

The non-zero temperature phase diagram was obtained as follows. For a fixed temperature
and chemical potential the density of each sub-lattice and the specific heat was computed by
averaging over 5000 measures. Between consecutive measures, τ Monte Carlo steps were
performed to decorrelate the system. The correlation time τ was calculated using the density
correlation function [28]:

χ(t) = 1

tmax − t

tmax−t∑
t̃=0

ρ(t̃)ρ(t̃ + t) −
[

1

tmax − t

tmax−t∑
t̃=0

ρ(t̃)

][
1

tmax − t

tmax−t∑
t̃=0

ρ(t̃ + t)

]
. (9)

Figure 3 shows the total density for the lattice sizes L = 50, 40, 30, 20 and 10, from
top to bottom (see also inset) and for fixed chemical potential µ∗ = 0.5. According to this
graph, one could conclude that no phase transition happens as the temperature is decreased at
a fixed chemical potential µ∗ = 0.5. However, analysing the sub-lattice’s densities illustrated
in figures 4–7 (here we are illustrating only the result obtained for L = 20), it is clear from
the density fluctuations at T ∗ = T/V1 = 0.45 that a phase transition must be present. The
peak in the specific heat shown in figure 8 confirms the existence of this transition and helps
to determine the exact location of the critical point at T ∗

c .

2 Our system is quite simple and does not require the use of a more sophisticated Monte Carlo algorithm.
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Figure 3. Total density for the 50, 40, 30, 20 and 10 lattices, from top to bottom.
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Figure 4. Sub-lattice 1.

The energy histograms constructed for fixed temperatures around the critical temperature
T ∗

c are shown in figures 9–11. For temperatures above and below T ∗
c , there is only one peak,

indicating that the transition is continuous (two peaks would be a signature of a first-order
transition).

Analyzing again figures 4–7 it can be seen that for T ∗ > T ∗
c = 0.45 the sub-lattice

densities ρβ ≈ 0.56, indicating that the system is in the fluid phase, while for T ∗ < 0.45,
ρ1 = ρ2 = 0 and ρ3 = ρ4 = 1, which is a signature of a structured dilute liquid. Hence, at
T ∗

c = 0.45 there is a continuous transition between the fluid and the SDL phases. The error
bars associated with the location of the critical temperatures for the lattice sizes L = 10, 20 are
respectively �T = 4 × 10−4 and �T = 7.5 × 10−3, while for the lattice sizes L = 30, 40, 50
they are �T = 6.5 × 10−3.

Criticality happens only at the thermodynamic limit. Therefore, in order to determine
the actual critical temperature, it is necessary to extrapolate the results obtained for the finite
systems to L → ∞. The critical temperatures for the finite systems were obtained from the



Density anomaly in a competing interactions lattice gas model 405

0 0,5 1 1,5 2

T

0

0,2

0,4

0,6

0,8

1

ρ 2

*

Figure 5. Sub-lattice 2.

0 0,5 1 1,5 2

T

0

0,5

1

ρ 3

*

Figure 6. Sub-lattice 3.

maximum of the specific heat and from the minimum of the fourth-order Binder’s cumulant
VE [29]. This last method requires computing, for each lattice size, the quantity

VE = 1 − 〈E4〉
3〈E2〉2

, (10)

where E is the total energy of the system.
Figure 12 shows the critical temperatures for different lattice sizes and fixed chemical

potential, µ∗ = 0.5, obtained from the specific heat and from the minimum of the Binder’s
fourth-order cumulant. The critical temperature for the infinite system becomes T ∗

c = 0.466
when derived from the specific heat and T ∗

c = 0.467 from Binder’s cumulant. The difference
between these two results is smaller than the error bars of both numbers. The lattice L = 10
was excluded from the extrapolation because it is so far from the infinite size limit that its
inclusion would require including nonlinear terms in the extrapolation.

Figure 3 shows that for a fixed chemical potential the density has a maximum at a certain
temperature Tmax. The temperature of maximum density as a function of the chemical potential
is illustrated in figure 13.
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Figure 8. Specific heat for µ∗ = 0.50 and L = 50, 40, 30, 20, 10 from top to bottom.

In order to observe the first-order phase transitions between the gas and SDL phases
and between the SDL phase and the DL phase, simulations at fixed temperature and varying
chemical potential were performed. Figure 14 shows that for T ∗ = 0.19 the transition between
the SDL phase and the DL phase happens at µ∗ = 1. At low chemical potentials a similar
transition is observed between the gas and the SDL phases. At the intersection between the
critical line and the first-order phase transition lines two tricritical points appear.

The pressure was computed by numerical integration of the Gibbs–Duhem equation,
S dT −V dP + N dµ = 0, at fixed temperature. Integration was carried out from effective zero
density, at which the pressure is zero, to obtain P(ρ, T ) isotherms. The pressure isotherms
show that an inversion of the behaviour of the density as a function of temperature takes place at
intermediate pressures, in the SDL phase. The phase diagrams for other values of V1 < −2V2

are similar to the one we present here. In the case of V1 > −2V2 both the two liquid phases
and the density anomaly are not present.

5. Conclusions

From a microscopic point of view, water anomalies have been interpreted qualitatively, since
the work of Bernal [30], in terms of the presence of an extensive hydrogen bond network
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Figure 9. Energy histogram for T < Tc, µ∗ = 0.50 and L = 20.
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Figure 10. Energy histogram for T ≈ Tc, µ∗ = 0.50 and L = 20.

which persists in the fluid phase [31]. In the case of lattice models, the main strategy has
been to associate the hydrogen bond disorder with bond Potts states [20, 21]. The coexistence
between two liquid phases follows from the presence of an order–disorder transition, and a
density anomaly is introduced ad hoc by the addition to the free energy of a volume term
proportional to a Potts order parameter.

In this work we propose a description also based on occupational degrees of freedom, but
the orientational degrees of freedom are in the competition between nearest and next-nearest
interactions. Inclusion of the competing interactions aims to represent in an effective way the
directionality of the hydrogen bonding that favours open structures. With our approach, the
density anomaly arises naturally with no need of the addition of a volume term to the free
energy.

For testing our assumption that having two competing scales leads to a demixing transition
and thermodynamic anomalies, we studied a very simple system: a two-dimensional lattice
gas with competing interactions and in contact with reservoirs of particles and temperature.
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Figure 11. Energy histogram for T > Tc, µ∗ = 0.50 and L = 20.
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cumulant and the triangles are the maximum of the specific heat.

Extending our calculations to three dimensions will just increase the computational cost without
bringing any new physics to the problem. Competing interactions models exhibit qualitatively
similar phase diagrams in two and three dimensions.

Our system exhibits two liquid phases and a line of density anomalies. Differently from
the general belief, the density anomaly line is not associated with a single critical point [9] but
with a line of critical points. Moreover, the density anomaly does not arise from a softened
core potential but from an outer shell repulsion that competes with a short-range attraction.
We believe that the common ingredient that leads to the presence of demixing between two
liquid phases both in softened core potentials and in the present model is the existence of two
competing scales for the interaction [33, 32].

The relation between the form of the potential, criticality and the density anomaly goes
as follows. While the short-range attraction favours the formation of a dense liquid phase, the
outer shell repulsion favours the formation of an open structure, the SDL phase. In systems
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are the tricritical points. The error bars are smaller than the symbols.
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dominated by short-range attractive forces, if the pressure is kept fixed, the density increases on
cooling. In our case, similar behaviour is only observed at high temperatures where short-range
interactions are dominant. As the temperature is decreased, the outer shell repulsion prevents
the density increasing beyond a certain limit. Therefore, the same competition responsible for
the appearance of two liquid phases leads to the density anomaly.

One should point out that the presence of a critical line instead of a single critical point
as one could generally expect [9] is not surprising. Due to the lattice structure, the SDL phase
is not one single phase but the region where two different phases coexist (empty/full rows and
empty/full columns). These two phases become critical together with the DL phase at the
tricritical point that is also the locus where the critical line ends.

In summary, we have shown that both a density anomaly and multicriticality can arise
from a very simple interaction model. Obviously our results are just qualitative and cannot be
quantitatively applied to water or to other anomalous liquids.
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