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PACS 65.20.-w – Thermal properties of liquids

Abstract – Using collision-driven molecular dynamics a system of spherical particles interacting
through an effective two-length-scales potential is studied. The potential can be tuned by means of
a single parameter, λ, from a ramp (λ= 0.5) to a square-shoulder potential (λ= 1.0) representing
a family of two-length-scales potentials in which the shortest interaction distance has higher
potential energy than the largest interaction distance. For all the potentials, ranging between the
ramp and the square-shoulder, density and structural anomalies were found, while the diffusion
anomaly is found in all but in the square-shoulder potential. The presence of anomalies in square-
shoulder potential, not observed in previous simulations, confirms the assumption that the two-
length-scales potential is an ubiquitous ingredient for a system to exhibit water-like anomalies.

Copyright c© EPLA, 2009

Introduction. – Some liquids are known as anomalous
liquids since they exhibit unexpected behavior upon varia-
tions of its thermodynamic conditions. Water is the canon-
ical example of those anomalous liquids.
Water expands upon cooling at fixed pressure [1],

diffuses faster upon compression at fixed tempera-
ture [2,3], and becomes less organized upon increasing
density —or equivalently upon compression— at constant
temperature [4]. These are the density, diffusion, and
structural anomalies.
The region where these anomalies occur form nested

domes in the density-temperature diagram [4] —or
pressure-temperature diagram [5]. The structural anom-
aly domain occupies the outer region of the pressure-
temperature phase diagram and the density anomaly
region is the innermost region. The diffusion anomaly
region lies between these two domains [4,5]. This is the
hierarchy of anomalies of water.
Water-like anomalies are also found in other liquids.

For example, density anomaly was found experimentally
in liquid Te [6], S [7,8], and Ge15Te85 [9]. Simulations
for silica [10], silicon [11], and liquid beryllium [12] show
that density anomaly is also present in these materi-
als. Diffusion and structural anomalies were found for
silica [10,13–15] and silicon [16] and structural anomaly is
reported for liquid beryllium [12,17] through simulations.

(a)E-mail: oliveira@if.ufrgs.br

In water, the density anomaly is due to the hydrogen
bonds. The compression of a hydrogen-bonded local envi-
ronment leads to an increase in entropy, or, equivalently,
to the fact that a local hydrogen-bonded environment
possesses a lower density than a non-bonded system would
exhibit [18]. However, there is no hydrogen bond in Te, S
and Ge15Te85.
Therefore, how can the anomalies be explained for

bonding and non-bonding systems? In order to address
this question, instead of looking for the specific mechanism
behind the density anomaly in water or in silica, one has
to find the universality behind it.
The simplest framework in which one can look into the

physics of anomalies is given by the two length scales
potentials. The idea is that in principle an anisotropic
interparticle potential can be modeled as effective poten-
tial [19]. We will examine one class of effective two length
scales potential in which a compression-based competition
arises between particles population in the second and first
shells.
This assumption was confirmed in a number of isotropic

two-scales potentials [20–31] in which density, diffusion,
and structural anomalies were found. This was also
shown to be correct in anisotropic potentials in which
the two length scales emerge from the mapping of the
anisotropic potential in an equivalent spherical symmetric
potential [19,32]. Ramp-like potentials have shown to be
particularly useful since they can describe the effective
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Fig. 1: Interparticle potential studied in this work. The poten-
tial can be tuned by means of the parameter λ, ranging from
a ramp (λ= 0.5) to a square-shoulder potential (λ= 1.0). See
the text for more details.

interaction between clusters of water molecules [33,34]. In
fact, Yan et al. showed a quantitative agreement between
the phase-diagram for the ramp potential (λ= 0.5 in
fig. 1) and that one for the TIP5P molecular model
for water [34]. The authors show that a central water
molecule interacting with its four nearest neighbors can
be modeled effectively through a ramp potential.
A ramp liquid was also used to mimic water in a

system composed by a mixture of water and hard-sphere
particles [35]. The solvation thermodynamics of the ramp
and hard-sphere mixture describes well the qualitative
behavior of the water-like solvation thermodynamics [35].
For studying the water-like anomalies the exceptional

case is the square-shoulder potential in which no anomalies
were reported yet (fig. 1 with λ= 1.0) [36]. This led to the
idea that anomalies are present in ramp-like potentials
(fig. 1 with λ= 0.5) but not in shoulder-like potentials.
The aim of this paper is to propose that two scales

potentials, potentials in which two preferred distances are
present, exhibit water-like anomalies. It will be shown that
in some cases the anomalies are in an inaccessible region,
as inside a crystal phase. This is the case for the square-
shoulder potential [36].

The model. – In order to test our assumption we
developed a tunable potential ranging from a ramp
potential to a square-shoulder potential. The potential is
given by

U(r) =



∞, r < σ0,
φ1(r), σ0 < r < σ1,
φ2(r), σ1 < r < σ2,
0, σ2 < r,

(1)

where φ1(r) = [U0(σ1− r)−U1(σ0− r)]/(σ1−σ0) and
φ2(r) =U1(σ2− r)/(σ2−σ1).
A single parameter λ is used to tune the potential from

a ramp (λ= 0.5) to a square-shoulder (λ= 1.0), where
σ1 = σ0+λ(σ2−σ0) and U1 = λU0.
In this work σ2/σ0 = 1.75 and the potential was approx-

imated by discrete steps in the same spirit of ref. [37], in
such a way that the discrete energy step is ∆U = 0.025U0.

Systems with 0.5� λ� 1.0 were analyzed for density,
diffusion, and structural anomalies.
Using the collision driven molecular dynamics tech-

niques [38], systems with N = 500 identical spherical
particles of mass m, interacting through the potential
eq. (1) and λ= 0.5, 0.6, 1.0 were studied. These particles
were confined into a cubic box with volume V and
periodic boundary conditions. The equilibration and
production times were 500 and 1000, respectively, in units
of σ0

√
m/U0 (time units). The rescaling of the velocities

scheme was used for every 2 time units in order to reach
and keep the desired temperature.
Simulations for locating the anomalies at the pressure-

temperature phase-diagram were initialized with the
system in the fluid phase. This procedure makes possible
to sample the metastable liquid phase inside the solid
phase.
For estimating the melting line the system was initial-

ized with particles in a face-centered cubic configuration.
After 500 time units it was checked if the system remains
solid or if it has melted. This was done by checking the
diffusion coefficient and the shape of the pair distribution
function.
This process gave an estimate of the melting line

in the pressure-temperature phase-diagram in excellent
agreement with the one presented in ref. [37] for the case
in which λ= 0.5.
Pressure, P , was calculated by means of virial [39]

and diffusion, D, was derived from the mean square
displacement [39]. The translational order parameter, t,
was calculated as [4]

t≡
∫ ξc
0

|g(ξ)− 1|dξ, (2)

where ξ ≡ rρ1/3 is the interparticle distance r divided by
the mean separation between pairs of particles ρ−1/3. g(ξ)
is the pair distribution function and ξc is a cut-off distance.
In this work ξc = ρ

1/3L/2 was used, where L= V 1/3. For
a completely uncorrelated system (ideal gas) g= 1 and t
vanishes. In a crystal, a translational long order (g �= 1)
persists over long distances making t large.
The orientational order parameter [40], Q6, was com-

puted using the strategy introduced by Yan et al. [29].
Q6 was calculated as follows. First the spherical harmon-
ics, Y ilm, associated to each particle i and its k neighbors,
were obtained by

〈Y ilm〉=
1

k

k∑
j=1

Ylm(θij , φij). (3)

The 〈. . .〉 stands for the average over k neighbors.
Details on the calculation of Y ilm can be found in [21,29].
The orientational order parameter associated to each
particle i is then given by summing the spherical harmonic
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Fig. 2: Pressure-temperature (P -T ) diagram for each λ case.
Each line in the P -T diagram corresponds to an isochore: in
the upper panel (λ= 0.5), from bottom to top, they are ρ∗ =
0.20, . . . , 0.34, and 0.35. In the middle (λ= 0.6) the isochores
are ρ∗ = 0.19, 0.20, 0.21, 0.22, 0.23, 0.232, 0.24, . . . , 0.33, and
0.34. Finally, in the lower panel (λ= 1.0) they are
ρ∗ = 0.17, . . . , 0.29, and 0.30. The solid bold line connects the
temperature of maximum density (TMD) points and it shrinks
to a small region for λ= 1.0. See the text for details.

over all orders m for a fixed degree � namely

Qil =

[
4π

2�+1

m=�∑
m=−�

∣∣〈Y ilm〉∣∣2
]1/2

. (4)

Then it was chosen �= 6 for characterizing the local
order [21,29,32], so the orientational order parameter
becomes

Q6 =
1

N

N∑
i=1

Qi6, (5)

that is the mean value of Qi6 over all particles of the
system.
The parameter Q6 assumes its maximum value for a

perfect crystal and decreases as the system becomes less
structured. For a completely uncorrelated system (ideal
gas) Qig6 = 1/

√
k. In this work k= 12 neighbors. For a

crystal, the Q6 value depends on the specific crystalline
arrangement and on the number of neighbors taken into
account.
Pressure, diffusion, temperature, and density,
ρ=N/V , are given in reduced units as P ∗ = Pσ30/U0,
D∗ =D(m/U0)1/2/σ0, T ∗ = kBT/U0, and ρ∗ = ρσ30 .

The results. – The potentials with 0.5� λ� 1.0 were
tested for the presence of: a minimum at the isochores
in the pressure-temperature phase diagram; a maximum
and a minimum in the diffusion constant as a function
of density at constant temperature diagram, a maximum
and a minimum in the translational order parameter vs.
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Fig. 3: Diffusion coefficient against density with each line
corresponding to an isotherm. Points are simulated data and
continuous lines are fifth-order polynomial fit from the data.
Dashed lines connect maxima and minima in the D(ρ, T =
constant)-functions and they have the same meaning as in
fig. 6. Between these extrema, diffusion anomalously increases
under increasing density —just like water does [2]. In the
upper panel (λ= 0.5 case) the isotherms (from bottom to top)
are T ∗ = 0.08, 0.09, . . . , 0.14, and 0.15. In the middle panel
(λ= 0.6 case) the isotherms are T ∗ = 0.08, 0.09, . . . , 0.13, and
0.14. Finally, in the lower panel (λ= 1.0 case), the isotherms
are T ∗ = 0.11, 0.12, 0.13, 0.14, and 0.15.

density at constant temperature, and a maximum in the
orientational order parameter against density at constant
temperature. Then the position of the anomalies were
compared with the melting line.
Figure 2 illustrates the pressure-temperature (P -T )

phase diagram for the potential equation (1) with λ= 0.5,
0.6 and 1.0. Each line corresponds to an isochore (see
the figure caption for details). Some isochores have
minima, which define the temperature of maximum
density (TMD). For the pressures and the temperatures
inside the TMD, the system expands upon cooling under
fixed pressure, thus this region is known as the density
anomaly region [37]. As λ increases, the density anomaly
region shrinks and reduces to a very small region that
we identify with a simple point the λ= 1.0 case. This
reduction of the density anomalous region is consistent
with simulations for 0.6<λ< 1.0 (not shown)
Figure 3 shows the diffusion constant vs. density at fixed

temperature for λ= 0.5, 0.6 and 1.0. For the λ< 0.7 cases
(not shown) the diffusion constant vs. density for a fixed
temperature has a local maximum and a local minimum
(represented by a dashed line in fig. 3). Between these local
extrema the diffusion coefficient increases upon increasing
density and this region is known as the diffusion anomaly
region.
Figures 4 and 5 illustrate the translational and the

orientational order parameters vs. density for constant
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Fig. 4: Translational order parameter, t, vs. density for
fixed temperatures. Points are simulated data and lines
connecting the points are fifth-order polynomial fit from
the data. Dotted lines bound the region where t decreases
under increasing density and they have the same meaning
as in fig. 6. In the upper panel (λ= 0.5) we show (from
top to bottom) the temperatures T ∗ = 0.08, 0.09, . . . , 0.14,
0.15, 0.17, 0.19, . . . , 0.33, and 0.35. In the middle panel
(λ= 0.6) temperatures T ∗ = 0.08, 0.09, . . . , 0.21, and 0.22 are
shown. Finally, in the lower panel (λ= 1.0) temperatures T ∗ =
0.11, 0.12, . . . , 0.15, 0.16, 0.18, 0.20, 0.22, and 0.24 are shown.

temperatures for λ= 0.5, 0.6, and 1.0. The translational
order parameter has a local maximum and a local mini-
mum for an interval of temperatures. Between these
local extrema, the parameter t decreases under increasing
density. An anomalous t parameter was observed for all λ
cases in the stable liquid phase, even for λ= 1.0 where no
anomalies were reported before. The t anomalous region
is bounded by the dotted lines in fig. 4.
The orientational order parameter, Q6, has a maximum

in the Q6-ρ plane for each isotherm as shown in fig. 5.
For densities higher than the density of maximum Q6
the orientational order parameter decreases as the density
increases —the same trend seen for t.
For each temperature the density of maximum Q6

lies between between the density of minimum t and the
density of maximum t. Consequently for densities between
the density of maximum Q6 and the minimum t is the
structural anomaly region. This region is illustrated in
fig. 6.
Figure 6 summarizes our findings for λ= 0.5, 0.6, and

1.0. It shows the regions in the P -T phase diagram
where the density, diffusion, and structural anomalies are
located. It also shows the location of the melting line that
bounds the region where the system becomes solid.
For λ= 0.5 —the ramp potential case— the high-

pressure dotted line and the dash-dotted line bound the
region of structural anomalies, where the translational and
orientarional order parameters decrease with density. A
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λ = 0.6
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Fig. 5: Orientational order parameter, Q6, vs. density for fixed
temperatures. Points are simulated data and lines connect-
ing the points are fifth-order polynomial fit from the data.
Dash-dotted lines connect the maximum values for Q6(ρ, T =
constant) and they have the same meaning as in fig. 6. The
temperatures shown in the three panels are the same as in
fig. 4.

Fig. 6: Interparticle potential studied in this work with λ= 0.5,
0.6 and 1.0 (left) and the corresponding results we have found
(right). Dotted lines enclose the region where t decreases upon
increasing density and dash-dotted lines mark the maximum
in the Q6 parameter. The region between the dash-dotted line
and the high-pressure dotted line is known as the structural-
anomaly region (see the text for details). Dashed lines bound
the region of diffusion anomaly, and solid lines determine the
region where density anomaly occurs. For the case with λ= 1.0
the density anomaly line shrinks into a very small region
and the diffusion anomaly region lies inside the solid phase,
becoming inaccessible. The shadowed region is bounded by the
estimate of the melting line.

dashed line encloses the diffusion anomaly region where
particles diffuse faster upon increasing density. The solid
line connects the temperatures of maximum density limit-
ing the density anomaly region. The border of the shad-
owed region estimates the outer limit for the melting
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line. For the ramp potential the region of density, diffu-
sion, and structural anomalies are in the stable region of
the pressure-temperature phase diagram. All these anom-
alies for the ramp case are well documented [32,37] and a
further discussion on these results is unnecessary.
For the potentials with λ= 0.6 and 1.0 shown in fig. 6

the lines and shadowed region have the same meaning
as for the case with λ= 0.5. Comparing our results for
λ= 0.5, 0.6, and 1.0 an interesting trend is observed. Once
the potential becomes “harder” —going from a ramp to a
square-shoulder— three effects are quite evident.
The first effect of the change of λ is related to

the mobility of particles in the system. The diffusion
anomaly region shrinks as λ increases, moving to lower
temperatures becoming inaccessible for the case in which
λ= 1.0. This is in accordance with the results obtained
by Netz et al. [41]. These authors have observed that
as the discretization of the ramp potential becomes
coarser, with a corresponding increasing in the energy
steps, the diffusion anomaly region shrinks and migrates
to lower temperatures into the density anomaly region.
Lattice models exhibit this same effect, since the lattice
structure plays the role of a coarsely discretized energy
barriers ambient [42,43]. In both cases the lines in the
pressure-temperature phase diagram defining the border
between the density and diffusion anomalous regions cross
for a certain choice of parameters what is also observed
for λ= 0.6.
The second effect is related to the melting line. As λ

increases the estimate of the melting line goes towards high
temperatures, engulfing the region of water-like anomalies.
This could explain why no anomalies were reported for the
case with λ= 1.0.
The third effect is related to both the structural and

density anomaly regions. As λ increases the temperature of
these regions is not drastically affected. This is consistent
with the results obtained by Netz et al. [41], where the
authors have observed that the discretization of the ramp
potential does not affect the thermodynamics. In the
current case, as λ increases the potential not only becomes
more discretized but also there is a change in the potential
energy associated with each scale. This leads to a shrink
in the pressure range of the anomalous region.
We can also gain some insight into the relationship

among structure of the system, shape of the effective inter-
particle potential, and presence of anomalies by analyzing
the order map, i.e., the t-Q6 plane [4,21,29,32]. Figure 7
shows our results.
The paths formed by the points in the order map

for water collapse into a single line inside the structural
anomaly region. This means that in the water case the
order parameters are strongly coupled. For silica [10] and
beryllium fluoride [17], also anomalous tetrahedral liquids,
the orientational and translational order parameters are
weakly coupled, since they develop a two-dimensional
region in the order map of such liquids. For all λ’s
considered in this work we have a silica- and beryllium

0.8
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0.8

1.2

1.6

t rete
marap redro lanoitalsnart

0.28 0.3 0.32 0.34 0.36
orientational order parameter Q
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λ = 0.5

λ = 0.6

λ = 1.0

noiger elbisseccanI

noiger elbisseccanI

noiger elbisseccanI

Fig. 7: Order map for the potential equation (1) with
λ= 0.5, 0.6, and 1.0. The arrows indicate the direction
of increasing density for fixed temperatures. In the upper
panel, the temperatures are (from top to bottom) T ∗ =
0.08, . . . , 0.14, 0.15, 0.27, 0.33, and 0.35. In the middle panel,
T ∗ = 0.08, . . . , 0.13, 0.14, 0.18, and 0.22. Finally, in the lower
panel, T ∗ = 0.11, . . . , 0.14, 0.15, 0.18, 0.20, and 0.22.

fluoride-like behavior for the paths in the order map or
our model. This means that the two-scales potentials
are hybrid models, in the sense that they can exhibit
water-like hierarchy of anomalies [21,32] but reproduce
the order map of silica and beryllium fluoride instead of
water. The understanding of the coupling mechanism of
the order parameters is not clear in the literature, and we
believe this could shed some light on important aspects of
anomalous fluids.
Next, a remarkable feature of the order map shown

in fig. 7 is that the inaccessible region is virtually λ-
independent. In all panels, the inaccessible region is
bounded by a straight line given by t= aλQ6+ bλ, with
a0.5 = 12.05, a0.6 = 12.20, and a1.0 = 12.92; b0.5 =−2.70,
b0.6 =−2.72, and b1.0 =−2.84. The difference between the
extreme values of aλ and bλ quantities is less than 7.5%.
This means that the order in all λ systems respond roughly
constant upon compression. In this sense we are lead to
believe that the two scales feature, which is present in all
λ cases considered here, is most important than energetic
barriers differences between them towards the appearance
of anomalies. Indeed, it was shown that structure and
water-like anomalies can be linked by means of the excess
entropy [44], stressing the importance of the role played
by structural parameters into the understanding of the
water-like anomalies.
In résumé, the three anomalous regions respond differ-

ently to the change in the potential. The diffusion anom-
alous region shrinks in the pressure-temperature phase
diagram and disappears in T ∗ < 0.08 for λ= 0.65 (not
shown); the density anomalous region shrinks in pressure
and reduces to a small region in λ= 1.0; the structural
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anomalous region also shrinks in pressure but it is still
in the stable region of the pressure-temperature phase-
diagram for λ= 1.0. The order map analysis show that
the inaccessible region in the t-Q6 plane is virtually inde-
pendent of λ and the order parameters are uncoupled,
differently from water but similar to silica and beryllium
fluoride.

Conclusions. – In this paper we have shown that
two-scales effective potentials always reproduce water-like
anomalies. In this sense, any liquid material in which this
kind of effective interaction is present is able to be an
anomalous liquid. In some cases the anomalous regions are
located in the pressure-temperature phase diagram inside
the region where the solid phase is the most stable, being
inaccessible either with experiments or with equilibrium
simulations.
In water the two scales distances —two energetic-

competing preferable distances— clearly arise from the
formation and breaking of hydrogen bonds. In other anom-
alous liquids this process comes from different competing
interactions but the effective final interparticle potential
must be a two-scales potential.
We believe that the knowledge of this mechanism can

be of great interest for industries. The domain of this
mechanism could lead to the development of new materials
—polymers, for example— in which some anomalous
properties could be used in the manufacture of substances
close to its supercooled region. A polymer in which its
molecules diffuses faster upon compression is an example
of a possible application of these findings.
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