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ABSTRACT: In this study, using nonequilibrium molecular dynamics simulation, the flow of water in deformed carbon nanotubes
is studied for two water models TIP4P/200S and simple point charge/FH (SPC/FH). The results demonstrated a nonuniform
dependence of the flow on the tube deformation and the flexibility imposed on the water molecules, leading to an unexpected
increase in the flow in some cases. The effects of the tube diameter and pressure gradient are investigated to explain the abnormal

flow behavior with different degrees of structural deformation.

B INTRODUCTION

Under spatial confinement, water exhibits unusual properties,
and its flow velocity may be a thousand times faster than that
predicted by hydrodynamics.' ™ This characteristic is desirable
for applications such as drug delivery”” and biomimetic
selective ionic transport.” Also, the ionic selectivity for water
desalination”"” and energy storage,'" where the enhanced flow
rates would improve the device efficiency, accuracy, and
throughput.

The large surface area-to-volume ratio inherent to the
nanoscale plays a central role in the water transport
properties.z’12 From the experimental perspective, Qin et al’
observed that water velocity in carbon nanotubes (CNTs)
decreases with increasing tube diameter; therefore, the
obtained values ranged between 46 (1.6 nm) and 928 u m/s
(0.8 nm). Also, Secchi et al." evaluated the fluid flow rate in
nanochannels and observed that the slip length increases
monotonically with the decrease in tube diameter. Compared
to boron nitride tubes with similar diameters, the slip length
observed in CNT's was approximately 100 times higher.

From the molecular modeling perspective, the water
transport in nanotubes'” was investigated with ab initio and
classical molecular dynamics (MD). While the ab initio
approach is limited by the number of atoms in the system,
the classical results depend on reliable molecular models. In
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the case of water, various molecular models are available to
reproduce the competing effects of hydrogen bonding and van
der Waals interactions, which are responsible for water’s
anomalous properties.”> ">’ The literature on more complex
models for water, including polarization is vast and a number
of bulk properties have been explored using them.”~"* Here,
we are looking for a more simplified picture that would help us
understand the minimum mechanism behind the high mobility
of confined water, which we believe can be represented by a
combination of water—water and water—wall interaction,
which preserves the dielectric constant and single file mobility.
The rigid TIP4P/2005"” and the flexible simple point charge/
FH (SPC/FH)'® are the most popular models with reliable
results describing bulk properties.

The high mobility of confined water is relevant for
improving desalination processes. For that purpose, it would
be interesting to work with water models that provide good
results both for the water mobility and dielectric constant.
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Figure 1. Snapshot of the model system composed of two reservoirs, R, and R,, with water at different pressures and limited by graphene
membranes of side lengths L, = L, = 3 nm connected to a CNT with length L, = 10 nm and diameter d.

Even though the four points flexible TIP4P/2005f can be
viewed as an improvement on the atomistic TIP4P/2005,” for
these two quantities, the results are not particularly good.”*
The SPC flexible models, on the other hand, give good results
when compared with the experiments.”

The SPC/FH model has been shown to accurately
reproduce several properties of liquid water and has been
widely used in the study of confined water in nanoscale
environments, particularly with salt,>*’¢ but little is known
about its performance in describing fluid flow in a confined
scenario. However, their transferability to the confined
environment is currently under discussion, and comparative
studies involving different molecular models may guide
performance evaluation.

Most computer-based studies on fluid transport analyzed
perfect cylindrical CNTs, and few works considered a more
realistic description by including structural deformations.”””*
As typical, the synthesis process may result in defective CNT's
with vacancies and structural distortions’”® resulting from
adsorbed functional groups or mechanical compression.
Structural deformations may influence the flow velocity,
shear stress, and effective viscosity.”' ™ Further studies on
this topic may contribute to a more comprehensive under-
standing of mass transport in synthesized CNTs.

Recently, we compared the diffusion coeficient of atomistic,
TIP4P/200S, water and flexible, SPC/H, water models when
confined in carbon nanotubes.** Even though in the bulk, both
models show a similar diffusion coefficient, we found that the
diffusion coeflicient under confinement is higher for the
TIP4P/200S water when compared with that of the SPC/FH
water. This larger diffusion correlates with a greater number of
hydrogen bonds.

We performed a systematic study to investigate the effect of
structurally deformed CNTs on water transport properties
within the classical nonequilibrium molecular dynamics
simulations approach. The water flow rate was related to the
tube chirality, diameter, and deformation level. We compared
the results from rigid and flexible water models to evaluate
their transferability to a confined environment context.

The remainder of this article is organized as follows. In the
Model and Method section, we present the methodology used
in this analysis and define the simulated models. In the Results
and Discussion section, the discussion of the results is exposed.
In the Conclusions section, we present the conclusions.
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B MODEL AND METHOD

Our system setup is similar to the molecular model proposed
by Huang et al,*> where a nanotube connects two fluid
reservoirs and enables the investigation of the fluid transport.
The system is shown in Figure 1, and it is described as follows.
Two reservoirs with water, R; and R,, at different pressures,
limited by two graphene membranes with size L, = L, = 3 nm
are connected to a CNT with size length L, = 10 nm and
diameter d. The pressure at the two reservoirs is determined by
two pistons, P, and P,.

Outer graphene sheets on each reservoir play the role of
pistons 1 and 2. The pressure on each piston is given by

_En
T A (1)

where F is the external force in the z direction applied to each
atom in the graphene sheet, n is the number of carbon atoms,
and A is the surface area. While the pressure in piston 1 ranges
from 200 to 800 bar, piston 2 has a fixed value of 1 bar to
impose a pressure gradient on the system.

Here, we study the armchair and zigzag nanotubes with
diameters shown in Table 1, with armchair and zigzag

P

Table 1. Parameters for the Simulated Perfect Carbon
Nanotubes (e = 0.0) Armchairs and Zigzags

CNT d (nm)
(7,7) 0.95
(12,0) 0.94
(9,9) 122
(16,0) 125
(12,12) 1.63
(21,0) 1.64

displaying similar diameters for comparison. Our study
considers two types of CNTs, i.e., perfect P(n,m) and kneaded
K(n,m), as illustrated in Figure 2. The kneaded nanotubes
K(nm) are produced by uniformly deforming a perfect
nanotube P(n,m) in the radial direction until the nanotube
reaches an elliptical cylindrical shape with eccentricities equal
to 0.4 and 0.8.%%7*

The water molecules are represented by two different
models: the flexible SPC/FH** and the rigid TIP4P/2005."
The parameters considered for the water models were defined
and are shown in Table 2. In this water model, the Lennard-
Jones site is located on the oxygen atom, with parameters ¢
and e. The charges of oxygen and hydrogen are qo and gy,

https://doi.org/10.1021/acs.jpcb.3c02889
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Figure 2. Snapshot of the perfect P(n,m) simulated carbon nanotubes
with eccentricity equal to 0.0, and kneaded K(n,m) with eccentricities
equal to 0.4 and 0.8.

Table 2. Force Field Parameters Used for Each of the Water
Models

TIP4P/200S SPC/FH
£00 (kcal mol™!) 0.1852 0.1553
ey (keal mol™") 0.0 0.0396
600 (A) 3.1589 3.188
oy (A) 0.0 0.65
90 (e) 0.0 —0.8476
qu (e) 0.5564 0.4138
qu (e) —1.1128
doym (A) 0.1546
rou (A) 0.9572 1.0
Onon (deg) 104.52 109.4
koy (kcal mol™ A72) 1108.580
ky (kcal mol™ rad™2) 91.53

respectively. The TIP4P/2005 model places a negative charge
gy at a point M at a distance dgy; from the oxygen along the
H—O-—H bisector. The distance between the oxygen and the
hydrogen sites is roy. The angle formed between hydrogen,
oxygen, and another hydrogen atom is given by 6yoy. For the
flexible model SPC/FH, koy and ky are the potential depth
parameters, and OH and 6 are the reference bond length and
angle, respectively.

The SHAKE™ algorithm is employed to stabilize the
molecule bonds and angles. The nanotube and the graphene
sheets are modeled by the Lennard-Jones potential (L])
considering fixed bond lengths and angles™ with effective
carbon—carbon interaction energy ecc = 0.086 kcal'mol ™" and
an effective diameter of occ = 3.4 A* The carbon—oxygen
energy eco = 0.11831 kcal'mol™ and the effective carbon—
oxygen diameter 6co = 3.28218 A.* The Lorentz—Berteloth
mixing rules provided the L] crossing parameters.

We adopted the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS)'* package to perform the
simulations, with the Particle—Particle Particle-Mesh (PPPM)
method to calculate long-range Coulomb interactions.”"

The system’s dynamics features were evaluated by
considering the flow rate calculations as given by the equation

by o = Av (2)
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where A is the graphene layer area (34 X 34 A?) and v is the

water flow velocity acquired from the least-squares linear

regression line fitted to the data cloud, which relates the

average molecular displacement along the tube axis as a

function of the time as taken from the MD trajectory file.
The simulation protocol involves the following steps:

1. Pre-equilibrium in the NVE ensemble with a 0.5 ns MD
run to minimize system energy keeping the pistons
frozen (net force equal to zero).

2. Forces are applied in the pistons in order to impose 1
bar in each system to reach the water equilibrium
densities at 300 K. Equilibration in the NPT ensemble
during 1.0 ns.

3. Pistons are freezed in the new equilibrium position.
Equilibration in the NVT ensemble at 300 K controlled
via the Nosé—Hoover thermostat’ during 2.0 ns.

4. Nanopores are opened. Different forces are applied in
each piston to mimic the pressure gradient. NPT
ensemble during 10 ns at 300 K and different feed
pressures.

B RESULTS AND DISCUSSION

Water transport in carbon nanotubes is highly dependent on
the diameter of the tubes.”***~***37® Considering the high
resistance to flow in the inlet and outlet regions of small-
diameter CNTs, the flow rate and water molecule flux through
the CNTs will decrease markedly with decreasing CNT
diameters.”” For small-diameter tubes, the size of the fluid
particles becomes crucial and occupies a considerable portion
of the determining mobility. However, for those with a larger
diameter, these effects will diminish.”®*° Some experimental
data significantly suggest that the configuration of water in
nanotubes can vary according to their diameters,*®~%%%%10%101

Recently, Losey et al,'” studied the flow of water in CNTs
for a variety of water models. They observed that the flux of
water through CNTs depends on the diameter of the carbon
nanotube. Although the magnitude of the flow rate depended
on the water model, they were similar qualitatively. In this
work, the same behavior is observed for perfect nanotubes
P(n,m) with e = 0, for P < 600 bar as illustrated in Figures 3, 4,
and 6.

Even though the flow decreases with the decrease of the
diameter, the ratio between the flow obtained in the simulation
and the value classical hydrodynamic predicts for diameters
below 1 nm increases with the decrease of the diameter
because in this regime the water flows in a stressless single line.
This enhancement flow with the decrease of the diameter is
larger for armchair than for the zigzag nanotubes.'”® This
indicates that the spiral-like path of the water at armchair
nanotubes exhibits less stress than the ring-like move of water
at the zigzag nanotube. We test how this is affected by the
deformation and the nature of the water model.

Figure 3a shows the flow rate as a function of pressure for
the armchair (7,7) nanotube for the TIP4P/200S model for
the perfect and two cases of kneaded nanotubes. For perfect
zigzag nanotubes and large pressure gradients, the increase of
pressure increases the flow.'”" In the presence of any
disturbance such as additional ions or asymmetric pressure,
the behavior of the flow rate with pressure is monotonic.'*>'%
This suggests that at small pressure gradients or in the
presence of deformations, the flow rate is the result of a

https://doi.org/10.1021/acs.jpcb.3c02889
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Figure 3. Flow rate as a function of the pressure gradient applied to the carbon nanotubes, (7,7) and (12,0), perfect P(n,m) with e = 0.0 and
kneaded K(n,m) with e = 0.4 and 0.8 for rigid TIP4P/2005 and flexible SPC/FH water models.
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Figure 4. Flow rate as a function of the pressure gradient applied to the carbon nanotubes, (9,9) and (16,0), perfect P(n,m) with e = 0.0 and
kneaded K(n,m) with e = 0.4 and 0.8 for rigid TIP4P/2005 and flexible SPC/FH water models.
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Figure . Density maps in the xy-direction for the carbon nanotubes (9,9) and (16,0) perfect P(n,m), and the comparison of the rigid TIP4P/200S
and flexible SPC/FH water models. Dark blue regions have a low probability of finding water molecules, while red regions have a high probability

of finding water molecules.

competition between the pressure and the local arrangements
that attempt to make the water molecules form a single file.

The behavior with pressure is linear for all three cases. The
nanotube deformation does not change the linear regime but
decreases the flow, particularly for larger pressures. This
decrease can be attributed to the introduction of additional
stress due to deformation. Figure 3b also shows the flow rate
versus pressure, but for the SPC/FH model, the small
deformation increases the flow rate, possibly because the
hydrogen bonds adapt to enhance mobility. Larger deforma-
tions lead to an increase of stress and the mobility decreases.

Figure 3c illustrates the flow rate versus pressure for the
(12,0) zigzag nanotube for the TIP4P/2005 model for the
perfect and two cases of kneaded nanotubes. As observed in
the perfect nanotube case,'” the flow for the water in the
armchair is larger than that in the zigzag nanotubes. The small
deformation does not affect the flow rate. The same behavior is
observed for the flexible SPC/FH shown in Figure 3d.

This result seems to reinforce the assumption that the large
enhancement factor observed for water in armchair nanotubes
is due to the spiral path the water molecules perform. Any

8638

deformation, that disrupts the spiral path, decreases the flow in
the case of armchair nanotubes.

In the case of the (16,0) zigzag nanotube, the flow,
illustrated in Figure 4a,b, shows the water flux versus pressure
for an armchair (9,9) nanotube for the TIP4P/2005 and SPC/
FH models for the perfect and two cases of kneaded
nanotubes. In this diameter, both the diffusion®” and
enhancement factors’ show a decrease when compared with
smaller and larger nanotube diameters, which is attributed to
the transition between a single line of water at smaller
diameters to a single spiral of water molecules. In the case of
flow, both TIP4P/2005 and SPC/FH are strongly affected by
the deformation. SPC/FH due to the flexibility of the
hydrogen bonds shows a larger mobility when compared
with the rigid TIP4P/200S model.

Figure 4¢,d for the TIP4P/2005 and SPC/FH models shows
an increase in water mobility when compared with the
equivalent armchair nanotube. Even though in general water is
more mobile in armchair nanotubes,'” results for diffusion’”
show that the ring-like structure observed in the (16,0) is more
mobile than the spiral-like organization seen in the (9,9) case.

https://doi.org/10.1021/acs.jpcb.3c02889
J. Phys. Chem. B 2023, 127, 8634—8643
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Figure 6. Flow rate as a function of the pressure gradient applied to the carbon nanotubes, (12,12) and (21,0), perfect P(n,m) with e = 0.0 and
kneaded K(n,m) with e = 0.4 and 0.8 for rigid TIP4P/2005 and flexible SPC/FH water models.

The larger mobility observed for the flexible model is not
surprising. It indicates a better accommodation of the
hydrogen bonds.

For the perfect CNT (9,9) and (16,0) illustrated in Figure S,
water forms similar structures regardless of the wall. The two
models of water adapt to the applied pressures, forming the
same structural arrangement in both cases, causing the water to
move with the same structure. An increase in the pressure
applied to the systems would favor the formation process of
hydrogen bonds; therefore, the effect of the nanotube structure
would be predominant in the water flow. This phenomenon
explains the low water flow found for these diameters.

For the CNT(12,12) and CNT(21,0) carbon nanotubes
shown in Figure 6, as the pressure increases, rapid progress of
water flow can be observed for both water models. The
improvement in water flow as a function of the diameter of
carbon nanotubes and the imposition of flexibility on water
molecules is remarkable. By increasing the diameter of the
cylindrical pore section, matching the membranes with the
CNTs (12,12) and (21,0), the increase in water flux notably
increases almost twice for the SPC/FH compared to the
TIP4P/200S, indicating a strong dependence not only on the
membrane diameter but also on the water model. For the
SPC/FH model, this expressive increase in flow is due to the
difference in connection and angle length and to the
characteristic flexibility of the model. Another fact that explains
this phenomenon is the increase in the space available for
water molecules to pass each other. At larger CNT diameters,
fluid—fluid interactions became more important as the CNT
internal surface area to fluid volume ratio decreased.
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B CONCLUSIONS

We investigated the influence of deformations on carbon
nanotubes with different chiralities and subjected to different
pressure gradients for the transport of confined water, which
helped to understand the relevance of the water model and
these defects in improving the flow. We considered the
TIP4P/200S and SPC/FH models for the study.

The simulations showed how deformations on the carbon
nanotube cross section affect the internal flow dynamics. The
inclusion of deformations in tubes of smaller diameters (7,7)
and (12,0) tends to considerably reduce the fluid velocity for
larger deformations. The flow rate is further affected by a
decrease in the overall density of the fluid caused by the
presence of deformations. For large deformations, e = 0.8, the
inclusion of strains disrupts the smooth, continuous potential
energy landscape that a CNT provides, causing greater
pressure losses along it, and reducing the overall fluid velocity.

The overall observation indicates that flow enhancement
factors exhibit a considerable reduction when subjected to
substantial degrees of deformation. However, there are specific
cases in which tubes with diameters measuring 12.2 and 12.4 A
demonstrate an opposite trend, with flow rates tending to
increase as the level of deformation rises. Water transport is
not strongly affected by CNT chirality for different diameters
and strains for both models, except for CNTs (9,9) and (16,0).
This diameter is quite different compared to smaller and larger
nanotubes because only a layer of water close to the wall is
formed. This layer of water behaves quite differently depending
on the chirality. The higher value deformations, in general,
showed much less flow when compared to that of the perfect
nanotube. The number of molecules passing through the pore

https://doi.org/10.1021/acs.jpcb.3c02889
J. Phys. Chem. B 2023, 127, 8634—8643
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gradually decreases with an increase in the degree of
deformation. In some cases, the flow did not show any
significant variation. When the rate at which water molecules
pass through the nanochannels is analyzed, the values found
for the different diameters suggest that carbon nanotube
membranes apparently can be competitive systems with
currently existing water filtration processes.

These results indicate that carbon nanotube membranes are
promising for use as filters for impure water or saline water,
although more studies are needed to categorically affirm their
viability. Furthermore, advances in experimental measurements
of nanoconfined water will lead to more accurate models of
water in carbon nanotube simulations. Currently, atomistic
water models can provide a reasonable range of results for the
flow of water through CNTSs. Understanding the impacts of
simulation choices aids in the analysis of past results and
improves the design of future simulation studies.
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