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ABSTRACT

In this work, a two dimensional system of polymer-grafted nanoparticles is analyzed using large-scale Langevin dynamics simulations.
Effective core-softened potentials were obtained for two cases: one where the polymers are free to rotate around the nanoparticle core and a
second where the polymers are fixed, with a 45� angle between them. The use of effective core-softened potentials allows us to explore the
complete system phase space. In this way, the PT , Tρ, and Pρ phase diagrams for each potential were obtained, with all fluid and solid
phases. The phase boundaries were defined analyzing the specific heat at constant pressure, system mean square displacement, radial distri-
bution function, and discontinuities in the density–pressure phase diagram. Also, due to the competition in the system, we have observed
the presence of waterlike anomalies, such as the temperature of maximum density (TMD)—in addition with a tendency of the TMD to
move to lower temperatures (negative slope)—and the diffusion anomaly. Different morphologies (stripes, honeycomb, and amorphous) for
each nanoparticle were observed. We observed that for the fixed polymer case, the waterlike anomalies are originated from the competition
between the potential characteristic length scales, while for the free to rotate case, the anomalies arise due to a smaller region of stability in
the phase diagram, and no competition between the scales was observed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5128938

I. INTRODUCTION

Coarse-grained (CG) representations of macromolecular liquids
have gained widespread interest because of their ability to represent
large-scale properties of systems that cannot be investigated by
atomistic scale simulations because of their large size and long
time scales.1,2

Among coarse-grained models, core-softened (CS) potentials
(characterized by having two preferred particle–particle separations)
have been attracting attention due to their connections with the

anomalous behavior of liquid systems including water. They show a
variety of shapes: they can be ramplike3 or continuous shoulderlike.4–7

Despite their simplicity, these models originate from the desire of
constructing a simple two-body isotropic potential capable of
describing the complicated features of systems interacting via aniso-
tropic potentials8,9 and are able to reproduce waterlike anomalies in
a qualitative way if competition exists between two characteristic
distances.10,11 If the energy penalty to the particle moves from one
scale to another is higher than the particle kinetic energy, then the
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particle will get trapped in one length scale, and there will be no
competition. As a consequence, there will be no anomalous behav-
ior. This procedure generates models that are analytically tractable
and computationally less expensive than the atomistic models.
Moreover, they lead to conclusions that are more universal and are
related to families of atomistic systems.12

The study of chemical building blocks as amphiphilic mole-
cules, colloids, and nanoparticles has attracted much attention in
soft matter physical chemistry in recent years due to their proper-
ties of self-assembly.13–16 When in water solution, these large mole-
cules agglomerate. In order to circumvent this phase separation,
one of the most important practical methods for stabilizing colloids
is by coating the particle with a polymer layer.17,18 These polymer-
grafted nanoparticles (GNPs), composed of an inorganic core and a
grafted layer of polymer chains, possess new intriguing electrical
conductivity and optical and viscoelastic properties19–23 not present
in the noncoated system. The generated self-assembled structures
have applications in medicine, self-driven molecules, catalysis, pho-
tonic crystals, stable emulsions, biomolecules, and self-healing
materials.24 Experiments25 and simulations26,27 showed that in the
case of spherical colloids, the mechanism behind the formation of
these distinct patterns is the presence of competitive interactions.
These competing forces can appear from the combination of a
short-range attraction of the core and a long-range repulsion28 of
the grafted polymers.29–34

The objective of our work is to analyze the structural, thermo-
dynamic, and dynamic behavior of 2D polymer-grafted nanopar-
ticle (NP) systems through effective potentials in light of
molecular dynamics. Particularly, we are interested in how the
specificity of the grafted polymer structure can affect the macro-
scopic morphology and dynamical behavior of these systems
when absorbed in large surfaces or when assembled in quasi-2D
solid–liquid interfaces.35

One of the characteristics of grafted nanoparticles is that by
adding appropriated reactive groups in their surface, it is possible
to design new materials. In particular, polymers can be adsorbed to
the nanoparticle core by fully or partially coating the surface. In the
case of partially coated, the polymers are free to rotate at the nano-
particle surface. If the polymers are grafted to the surface by a reac-
tive group or by polymerization, they cannot rotate.36

Here, we address the question of how the two types of attach-
ments affect the phase behavior of the nanoparticle solution. We
adopt two complementary strategies. We model the systems using a
CG approach in which the chemical interactions are represented by
classical interactions. Based on this CG model, we derive effective
potentials for the two cases: polymers are pinned to a reactive
group and polymers are grafted to the surface. CG models have
been used as a powerful tool to explore rather complex systems.37,38

Additional simplification of using effective potentials not only
allows for exploring the complete pressure vs temperature phase
diagram with a low computational cost but is also able to focus on
the physical mechanism behind the different degrees of freedom of
free and nonfree cases.

The rest of the paper is organized as follows: in Sec. II, we
discuss the model and details of the simulation. In Sec. III, the
results and main discussions are given. In Sec. IV, the conclusions
are listed.

II. THE MODEL AND SIMULATION DETAILS

Here, we employ two complementary approximations to
describe the polymer-grafted nanoparticle phase diagram: a coarse-
grained model and an effective core-softened potential.

A. The coarse-grained (CG) model

We employ a two dimensional coarse-grained model proposed
in previous works37,39,40 to describe polymer-grafted nanoparticle
interactions. Each core-shell nanoparticle is composed of a central
disk with the diameter σcore and with four linear oligomer attached
chains. Each chain consists of three beads with the diameter σbead ,
connected by a harmonic bond,

Ubond(rij) ¼ k rij � σbead
� �2

, (1)

with k ¼ 5000 in reduced Lennard-Jones (LJ) units. The bead–bead
(bb) interaction is modeled by the standard Lennard-Jones (LJ)
potential,

Ubb(rij) ¼ 4ϵ
σ

rij

� �12

� σ

rij

� �6
" #

� ULJ (rcut), (2)

where rcut ¼ 2:5σmon and ϵ ¼ ϵcore=9:0. For the core–core (cc)
interaction, a 14-7 LJ potential was used,

Ucc(rij) ¼ 4ϵc
σcore

rij

� �14

� σcore

rij

� �7
" #

� Ucc(rcut), (3)

where rcut ¼ 2:5σcore. Finally, the core–bead (cp) interaction is
given by a 13.5–6.5 LJ potential,

Ucp(rij) ¼ 4ϵcp
σcp

rij

� �13:5

� σcp

rij

� �6:5
" #

� Ucp(rcut), (4)

where σcp and ϵcp are obtained by the well-known Lorentz–
Berthelot combining rules.

The first bead in the polymer chain is connected to the central
core by a rigid bond.41 Two cases of grafted NPs were considered.
In the first one, the polymers are held fixed in the core surface with
a separation of 45� by the bend cosine square bond angle potential,

Ubend ¼ kbend
2

[cos(f)� cos(f0)]
2, (5)

with kbond ¼ 50 and f0 ¼ π=4. “f” is the angle between two linear
oligomer attached chains (the stretched polymer case) or the angle
between two consecutive beads both in contact with the nanoparti-
cle (the curved polymer case); its vertex is the nanoparticle’s center.
In the second case, no bending potential was applied, and the poly-
mers are free to rotate around the central colloid. Both structures
are illustrated in Fig. 1.

In order to simulate a small silica core, we use in this work
σcore ¼ 1:4 nm and ϵcore=kb ¼ 10179 K, as proposed by Lafitte and
coauthors.37 The polymer beads have a diameter of σbead ¼ 0:4 nm
and ϵbead ¼ ϵcore=9:0 and correspond to an ethoxy repeat unit.40
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For simplicity, from now on, all the physical quantities in this paper
will be displayed in the standard LJ units. Distance, density of parti-
cles, time, pressure, and temperature are given, respectively, by

r* ;
r

σcore
, ρ* ; ρσ3

core, t* ; t
ϵcore
mσ2

core

� �1=2

,

p* ;
pσ3

core

ϵcore
, and T* ;

kBT
ϵcore

: (6)

B. The effective core-softened potential

The effective core-softened (CS) potentials for the two polymer-
grafted nanoparticle systems analyzed here were obtained as follows.
Langevin dynamics simulations using the ESPResSo package42,43

were performed for the coarse-grained models (fixed and free
beads). The Langevin dynamics included local hydrodynamics effects
in the system.44 A drag force, �γ~vi, with a damping parameter
γ ¼ 1:0, acts in each ith particle and is proportional to the particle
velocity ~vi, and a random white noise acts as the Brownian force
to mimic the collisions with the implicit solvent. As obtained from
the fluctuation–dissipation theorem, this force is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γkBT

p
R(t), where

kB is the Boltzmann constant, T is the system temperature, and R(t)
is a delta-correlated stationary Gaussian process with a zero mean.
Once the system is in an equilibrium state, we do not expect that
long-range hydrodynamic effects should be relevant. The two
systems were analyzed in the NVT ensemble for a density of ρ* ¼
0:25 and a temperature of T* ¼ 0:5. These values were chosen to
ensure that the coarse-grained models were both in the fluid state.

Then, the core–core radial distribution functions (RDFs) for
this state point for each fixed and free bead systems were com-
puted, as illustrated in Fig. 2. As we can see, the RDFs indicate a
significant difference in the length scale occupancy. For the case of
fixed polymers, the black curve in Fig. 2, it is harder for the cores
to remain close to each other. As a consequence, this NP has a
higher occupancy in the second length scale (the polymer corona)
and a smaller in the first length scale—the hard core. The opposite
is observed in the red curve of Fig. 2, corresponding to NP with the
polymers free to rotate, where the cores can approximate easily,

increasing the occupancy in the first length scale and decreasing in
the second length scale.

From these RDF curves, using the solution of the Ornstein–
Zernike (OZ) equation with the integral equation approximation, the
effective potentials for polymer-grafted nanoparticles with fixed and
free beads were obtained.37,45,46 To state briefly, the OZ equation,

h(r) ¼ c(r)þ ρ

ð
c(r� r0)h(r0)dr0, (7)

averaged over the orientational degrees of freedom, can lead to an
exact relation between the translationally invariant radial distribution
function, h(r) ¼ g(r)� 1; the direct correlation function, c(r); and
the system density ρ.45 To obtain proper relations between the effec-
tive potential and pair correlation functions, an appropriate closure
has to be chosen. Here, the hypernetted chain (HNC) approximation
was employed for the closure. The potentials were also obtained
using the inverse-Boltzmann procedure.47 In this method, the

FIG. 1. Schematic depiction of the CG nanoparticles. (a) Nanoparticles with a
bend potential that prevent the polymers to slide along the core surface and (b)
nanoparticles without a bend potential whose polymers are free to rotate along
the core surface.

FIG. 2. Radial distribution functions employed to obtain the effective interaction
potential between NPs with polymers fixed (black squares) or free (red circles)
to rotate. Both RDFs were obtained at a density of ρ� ¼ 0:25 and a tempera-
ture of T� ¼ 0:5.

FIG. 3. Schematic depiction of the effective nanoparticles. It has a central hard
core (the red sphere) and a soft corona (the lighter red sphere).
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effective pair interaction Ueff is iteratively updated to match the
pair correlation functions of a targeting system,

Uiþ1
eff ¼ Ui

eff þ kBT ln
gi(r)

gtarget(r)

� �
: (8)

Here, gtarget(r) is the core–core RDF obtained from the CG simu-
lations and gi(r) is the RDF obtained in the ith iteration. 50 itera-
tions were sufficient to obtain the convergence. Essentially, the
same potentials were obtained by both methods.

The polymer-grafted nanoparticles are represented by
spherical particles interacting through these effective core-softened
potentials, as illustrated in Fig. 3.

Based on previous works,6,45,46 our effective potentials are
composed by a short-range attractive Lennard-Jones potential and
three Gaussian terms, each one centered in cj, with depth hj and
width wj,

U(rij) ¼ 4ϵcore
σcore

rij

� �12

� σcore

rij

� �6
" #

þ
X3
j¼1

hjexp � rij � cj
wj

� �2
" #

:

(9)

Here, rij ¼ j~ri �~rjj is the distance between two cores i and j.
The resulting potentials and fittings are shown in Fig. 4 for the case
of NP with polymers fixed (Ufixed) or free (Ufree) to rotate. The
parameters corresponding to each case are given in Table I.

The effect of the mobility of the polymers is also clear in the
effective potentials. When they are held fixed, the energetic penalty
for two NPs that move from the further (or second) scale to the
closer (or first) scale is higher than in the case when the polymers
can rotate and expose one core to another. As well, this behavior is
a consequence of the model, where the bead–bead potential is not
intrinsically repulsive at all distances but has a short-range attrac-
tion. As a consequence, the Ufixed potential has a ramplike shape,
while the Ufree has a short-range attraction and a long-range repul-
sion (SALR) shape.

C. Simulation details for the effective potential

The system consists of 800 disks with the diameter σ ¼ σcore.
Langevin dynamics simulations were performed with a time step of
δt ¼ 0:001. Periodic boundary conditions were applied in both
directions. We performed 5� 105 steps to equilibrate the system.
These steps were then followed by 2� 106 timesteps at the produc-
tion stage. To ensure that the system was thermalized, the pressure,
kinetic, and potential energy were analyzed as a function of time.
The velocity-Verlet algorithm was employed to integrate the equa-
tions of motion. First, MD simulations in the NVE ensemble were
employed to equilibration, followed by Langevin dynamics simula-
tions with controlled pressure (NPT ensemble) for the production
runs. The pressure was held fixed by the Nosè–Hoover barostat with
a damping parameter of 10δt. The simulations of the effective model
were performed using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) package,48 and the PT, Tρ, and Pρ
phase diagrams for each potential were obtained.

The dynamic anomaly was analyzed by the relation between
the mean square displacement (MSD) and time, namely,

[r(t)� r(t0)]
2� � ¼ Δr2(t)

� �
, (10)

FIG. 4. Core-softened potential for polymer-grafted nanoparticles with four monomers (a) fixed and (b) free to rotate around the nanoparticle core. The red curve is the
potential obtained by solving the Ornstein–Zernike equation, and the black curve is the LJ plus Gaussian fit.

TABLE I. Parameters of the particle–particle potentials in reduced units.

Ufixed potential
Ufree potential

Parameter Value Parameter Value

h1 2.1895 h1 −3.800 84
c1 0.8199 c1 1.111 92
w1 0.042 w1 0.313 324
h2 9.624 h2 46.132 4
c2 0.7947 c2 0.774 361
w2 0.7197 w2 0.191 852
h3 −3.8685 h3 6.376 21
c3 1.1684 c3 0.192 937
w3 0.2400 w3 1.236 15
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FIG. 5. (a) Specific heat vs temperature at P� ¼ 1:20 for the Urigid potential. (b) Specific heat vs temperature at P� ¼ 0:60 in potential with polymers that are free to
rotate. In both, it is possible to see divergences.

FIG. 6. Left panel: Pressure vs temperature phase diagram of the system with fixed polymers. The gray lines are the isochores, the black lines divide into distinct phases,
I represents the hexagonal solid phase, the blue line indicates the TMD, and the green and red lines are the maxima and minima in a diffusion coefficient. Right panel:
System snapshots of the (a) hexagonal solid (P� ¼ 0:40 and T� ¼ 0:05), (b) amorphous solid (P� ¼ 2:80 and T� ¼ 0:10), (c) honeycomb solid (P� ¼ 5:00 and
T� ¼ 0:20), and (d) fluid (P� ¼ 5:00 and T� ¼ 0:80).
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where r(t0) ¼ (x2(t0)þ y2(t0))
1=2 and r(t) ¼ (x2(t)þ y2(t))1=2

denote the coordinate of the particle at a time t0 and at a later
time t, respectively. The MSD is related to the diffusion coeffi-
cient D by Ref. 49,

D ¼ lim
t!1

Δr2(t)h i
4t

: (11)

The structure of the fluid was analyzed using the radial distribu-
tion function (RDF) g(rij). In order to check if the system exhibits
the density anomaly, the temperature of maximum density
(TMD) was computed for different isobars in the Tρ diagram.

The phase boundaries here were estimated by analyzing the
specific heat at a constant pressure, (Fig. 5), CP ,

49 system mean
square displacement, radial distribution function, and discontinui-
ties in the density–pressure phase diagram. This approach provides
a qualitative depiction of the system melting scenario. Since our
focus in this work is the existence of waterlike anomalies, we
recommend for the reader the references50–53 for a more detailed
discussion about the three possible melting scenarios in 2D core-
softened systems.

III. RESULTS AND DISCUSSION

Here, we analyze the thermodynamic and dynamic behavior
of the system of polymer-grafted nanoparticles represented by
the effective core-softened potentials generated for fixed and free
bead systems.

A. Polymer-grafted nanoparticles with fixed polymers

The pressure vs temperature phase diagram obtained using the
effective potential for the grafted nanoparticles with fixed polymers
[see the potential in Fig. 4(a)] is illustrated in Fig. 6. Three solid
structures were observed. At lower pressures, a hexagonal solid was
obtained, as shown in the snapshot [right panel, 6(a)]. Increasing
the pressure, the system enters in the region where the anomalous
behavior is observed—the waterlike anomalies, which will be dis-
cussed next. A consequence of the anomalies in the phase diagram
is the presence of a re-entrant liquid phase and a transition from
the well-defined hexagonal lattice to an amorphous stripelike struc-
ture. This ordered–disordered transition was observed in previous
works where particles interact through two length potentials also
known as the ramplike potentials.30,33,54 In the previous works as here,
the anomalies arise from the competition between the two length
scales. Figure 7 illustrates density vs temperature for a fixed pressure,
showing the maximum density, which is a waterlike anomaly.

The effective model is obtained from the coarse-grained system
using a radial distribution function for one specific temperature and
pressure. This raises the question of how reliable is this approach to
describe the system for many pressures and temperatures. In order
to test how robust is the effective model, we performed additional
simulations for the coarse-grained description of the polymer-grafted
colloidal system in the region where the anomalous behavior in the
effective model was observed. Then, new NPT simulations of the CG
system were composed of 1000 NPs. Four points in the phase
diagram were selected: (I) T* ¼ 0:10 and P* ¼ 1:0 (inside the
hexagonal solid region of the effective model phase diagram),

(II) T* ¼ 0:10 and P* ¼ 3:0 (inside the stripe solid region of the
effective model phase diagram), (III) T* ¼ 0:10 and P* ¼ 4:0
(inside the honeycomb solid region of the effective model phase
diagram), and (IV) T* ¼ 0:20 and P* ¼ 2:0(inside the re-entrant
fluid phase of the effective model phase diagram). Figure 8 illus-
trates these state points. The structures are similar to the obtained
using the effective model (Fig. 6). This indicates that the effective
model was able to capture the proper behavior of the CG model
phase diagram.

FIG. 8. Comparison between the patterns observed in the CG model and effec-
tive model.

FIG. 7. Temperature of the maxima density for isobars between P� ¼ 1:10 and
P� ¼ 2:30 from bottom to top.
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One of the characteristics of systems interacting through two
length scale potential as the potentials illustrated in Fig. 4 is the pres-
ence of thermodynamic anomalies. The density anomaly is character-
ized by a maximum in the ρ(T) curve along an isobar. For constant
pressure, as the temperature increases, the density increases by
making particles to rearrange from one length scale to the other. This
can also be observed in the radial distribution function g(rij), which
presents two peaks: one at the closest scale, r1, and another at the fur-
thest scale, r2. Recently, it has been suggested that a signature of the
presence of the TMD line will be given by the radial distribution
function as follows: at fixed temperature, as the density is increased,
the radial distribution function of the closest scale, g(r1), will increase
its value, while the radial distribution function of the furthest scale, g
(r2), will decrease.

55 This can also be represented by the rule,56,57

Π12 ¼ @g(r)
@ρ

jr1 �
@g(r)
@ρ

jr2, 0: (12)

The physical picture behind this condition is that, for a fixed
pressure, as the temperature increases, particles that are located at the

attractive scale, r2, move to the repulsive scale, r1—the thermal
effects, which occur up to a certain pressure threshold P*

min ¼ 0:90.
For pressures in the range 0:90 , P* , 3:00, for a fixed temperature,
as the pressure increases, particles exhibit the same offset between the
potential length scales r1 and r2—the pressure effects. Figure 9 illus-
trates typical radial distribution functions at fixed T* as P* is varied
[(a) and (b)] and vice versa [(c) and (d)].

The regions identified by the radial distribution function fulfilling
the condition Eq. (12) are illustrated by red circles in Fig. 11(a).
The solid curve shows the TMD line. All the stable state points
with the density equal or higher the minimum density at the
TMD line verify the relation Π12(ρ, T) , 0. This result gives
support to our assumption that the presence of anomalies is related
to the particles moving from the furthest scale, r2, to the closest
length scale r1. In addition, it indicates that the two length scales in
the effective potential are related to the core–core repulsion com-
peting with the polymer–polymer attraction present in the coarse-
grained potential.

Another signature of anomalous fluids is the behavior of the
diffusion coefficient, which increases with density. Figure 10

FIG. 9. Radial distribution function behavior for pressure two values below the threshold and temperature variation [P� ¼ 0:40 in (a) and P� ¼ 0:80 in (b)], indicating
thermal effects in this region. Bottom figures: RDFs for two fixed temperatures [T� ¼ 0:40 in (c) and T� ¼ 0:80 in (d)] and pressure variation inside the range
0:90 , P� , 3:00, indicating pressure effects in the TMD region.
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represents the diffusion coefficient vs pressure for different iso-
therms, showing that D in a certain range of temperature and pres-
sure increases with pressure. The minimum in the diffusion
coincides with the melting line. This behavior of the diffusion and
melting line is related to ordered–disordered transition, and it was
previously observed for ramplike potentials in two dimensions.33

Finally, in order to check if the CG model also shows anomaly,
we run simulations along the isobar P* ¼ 2:0. Figure 11(b) illustrates
the density vs temperature for P* ¼ 2:0 for both CG (red squares)
and effective (black circles) potentials. The two behaviors are quite
similar. This result indicates that our strategy to derive simpler two
length scale potential to describe a more sophisticated system obtain-
ing some information about the origin of the anomaly is valid.

B. Polymer-grafted nanoparticles with free
nanoparticles

The pressure vs temperature phase diagram obtained using the
effective potential for the grafted nanoparticles with free polymers
is illustrated in Fig. 12. The phase behavior of the system is quite
distinct when compared with the phase diagram for the system
with fixed polymers.

At low temperatures (T* � 0:10), and for pressures up to
P* ¼ 1:40, the system is in a hexagonal solid phase. Increasing the
temperature for P* , 0:12, the system melts to a fluid phase, while
in the range 0:12 , P* , 1:4, there is an ordered–disordered tran-
sition in the solid structure, which changes from hexagonal to
amorphous.

FIG. 10. Diffusion coefficient vs pressure for (a) T� ¼ 0:05 (black line), T� ¼ 0:10 (red line), T� ¼ 0:15 (blue line), T� ¼ 0:20 (green line) and (b) T� ¼ 0:30 (gray
line), T� ¼ 0:40 (magenta line), T� ¼ 0:50 (orange line), T� ¼ 0:60 (green line), and T� ¼ 0:70 (brown line).

FIG. 11. (a) TMD line (red line) for distinct isobars in the effective model. (b) Comparison of one ρ(T ) curve along the isobar P� ¼ 2:0 between effective (black circles)
potentials and the CG model (red squares).
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Both free and fixed polymer systems show a number of simi-
larities in the phase space; here, however, we do not observe a
re-entrant fluid phase or the honeycomb solid phase. Also, the
solid–liquid separation line moves to higher temperatures. As a

consequence, the TMD line is smaller, and no diffusion anomaly
is present.

The absence of the diffusion anomaly when the system exhibits
a TMD is not new. It arises in lattice systems in the presence of two

FIG. 12. Left panel: Pressure–temperature phase diagram of the system in which polymers are free to rotate. The gray dots are the simulated points. The lines divide into
distinct phases, I is the hexagonal phase, II is the amorphous solid, and the blue line is the TMD. Right panel: System snapshots for (a) hexagonal solid (P� ¼ 0:40 and
T� ¼ 0:05), (b) amorphous solid (P� ¼ 1:10 and T� ¼ 0:10), and (c) fluid (P� ¼ 1:10 and T� ¼ 0:70).

FIG. 13. Density–temperature phase diagrams. (a) The color lines are the isobars from P� ¼ 0:10 (bottom) to P� ¼ 1:70 (top). (b) The same diagram explaining the
maximum density temperature (TMD).
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length scale interactions depending on the balance between the two
length scales58 and in confinement due to the competition between
the length scales and confinement.59 In this case, it may be related to
the fact that there is no re-entrant fluid region—as we saw here, and
these two phenomena were correlated with the Ufixed potential.

Usually, the presence of the TMD, as shown in Fig. 13, is
related to the competition between the two length scales, as dis-
cussed earlier. However, some studies have shown that the same
phenomena can occur in fluids without competitive scales, but just
weak softening of the interparticle repulsion can lead to anomalous
behavior.60,61

Therefore, unlike the previous case (Ufixed), it is not possible
to establish the connection between the structure and anomaly in the
density, as we can see in Fig. 14, which shows behavior of RDFs by
varying temperature (at fixed P*) and pressure (at fixed T*). This dis-
connection can also be analyzed taking into account that the unfilled
points of the graph obey the relation between the migration of scales
and that, in turn, the TMD reaches all points (filled or not). It is
concluded that, for this potential, it will not be the competition
between the scales responsible for the density anomaly, as may be
seen in Fig. 15. Still, because the potential has a short-range attrac-
tion and a long-range repulsion (SALR) shape, it was possible to
capture some structural patterns (as a stripe phase) that had already
been observed in potentials of two more abrupt scales.62,63

IV. SUMMARY AND CONCLUSIONS

In this work, a two-dimensional system of polymer-grafted
nanoparticles is analyzed using large-scale Langevin dynamics sim-
ulations. The use of effective core-softened potentials allow us to

FIG. 14. Radial distribution function behavior for maintaining fixed temperature and varying pressure and vice versa in order to verify the relation between competition and
structure. (a) P� ¼ 0:40, and each curve is from one temperature. (b) P� ¼ 0:80 analogously. (c) T� is fixed at T� ¼ 0:20, and pressure is varying. (d) T� is fixed at
T� ¼ 0:60, analogously.

FIG. 15. Density–temperature phase diagram confirming its relation between
the competition and structure. Filled symbols are dominated by thermal effects,
and empty are those dominated by pressure effects.
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explore the complete system phase space. In this way, the PT , Tρ,
and Pρ phase diagrams for each potential were obtained The phase
boundaries were defined analyzing the specific heat at constant
pressure, system mean square displacement, radial distribution
function, and discontinuities in the density–pressure phase diagram.
Also, due to the competition in the system, we have observed the
presence of waterlike anomalies, such as the temperature of
maximum density—in addition with a tendency of the TMD to
move to lower temperatures (negative slope)—and the diffusion
anomaly. Different structural morphologies for each nanoparticle
case were observed. We observed that for the fixed polymer case, the
waterlike anomalies originated from the competition between the
potential characteristic length scales, while for the free to rotate case,
the anomalies arise due to a smaller region of stability in the phase
diagram, and no competition between the scales was observed.

The main driving force for the different morphologies obtained
is the competition between strong short-range attractions of the par-
ticle cores (the enthalpic gain upon the core–core aggregation) and
long-range entropic repulsions of the grafted chains.
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