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PACS. 05.70Ce – Thermodynamic functions and equations of state.
PACS. 61.20Qg – Structure of associated liquids: electrolytes, molten salts, etc.
PACS. 61.25Hq – Macromolecular and polymer solutions; polymer melts; swelling.

Abstract. – A simple theory of the fluid state of a charged colloidal suspension is proposed.
The full free energy of a polyelectrolyte solution is calculated. It is found that the counterions
condense onto the polyions forming clusters composed of one polyion and n counterions. The
distribution of cluster sizes is determined explicitly. In agreement with the current experimental
and Monte Carlo results, no liquid-gas phase separation was encountered.

The thermodynamic properties of systems in which the predominant interactions are due
to the long-ranged Coulomb potential still remain largely not understood in spite of the
tremendous effort that has been invested over the span of this century. Nevertheless, it would
be unfair to say that no great progress has been done. The pioneering work of Debye and
Hückel [1] has lead to our understanding of dilute electrolyte solutions. The subsequent
improvements by Bjerrum extended the validity of the limiting laws to larger densities [2].
These developments were followed by the introduction of powerful integral equations and
by the computational methods such as Monte Carlo (MC) simulations [3]. Surprisingly, the
theoretically obtained coexistence curve [4], that is in closest agreement with MC, is based on
the fundamental ideas advanced by Debye, Hückel and Bjerrum more than 70 years ago [1]. The
simplicity and the transparency of the ideas forming the basis of the Debye-Hückel-Bjerrum
(DHBj) theory makes it easy to apply to other Coulombic systems [5].

The charged colloidal suspensions present a severe challenge to any statistical-mechanics
theory. The asymmetry between the charge on a polyion and a counterion, which can be as
high as 10000:1, makes the usual integral equations of the liquid-state theory impossible to
solve. For low charge asymmetry, less than 20:1, it was found that there exists a region in
the temperature density plane where the Hypernetted Chain equation (HNC) ceases to have
solutions [6]. This could be interpreted as a region of instability, in which the sample phase
separates into the coexisting liquid and gas. It is, however, still unknown to what extent the
break down in HNC equation can be attributed to the underlying phase separation, since the
region of instability of HNC does not coincide with the true spinodal line [7]. Furthermore, the
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extensive experimental and simulation search for this gas-liquid transition for polyelectrolytes
has, so far, proven to be futile [3] [8].

At high volume fractions the strongly charged polyions form a lattice (bcc or fcc). This
“solid state” provides us with a major simplification in that each polyion can be studied
individually inclosed in its own Wigner-Seitz cell and surrounded by its own counterions [9].
Unfortunately, once the lattice melts the cell picture is no longer valid [10]. As is usual, the
liquid state is significantly more complex than the solid state.

In this letter we shall attempt to construct a theory for the fluid state of a polyelectrolyte
solution. We shall work in the context of the Primitive Model of Polyelectrolyte (PMP) [5].
Our system will consist of Np polyions inside a volume V . The polyions will be idealized
as hard spheres of radius a, each carrying Z ionized groups of charge −q uniformly spaced
along the surface. A total of ZNp counterions will be present to preserve the overall charge
neutrality of the system. For simplicity, we shall take the counterions to be point-like and
to carry charge +q. The solvent will be represented as a uniform medium of a dielectric
constant D. As was pointed out by Onsager [11], the full non-linear Poisson-Boltzmann (PB)
equation is electrostatically inconsistent for the asymmetric systems, linearization then, besides
simplifying the calculations, is an important step in restoring the self-consistency of the theory.
The fundamental assumption behind the DHBj theory is that the non-linearities omitted in
the process of linearization of the PB equation can be reintroduced into the theory through
the allowance for ion association. In general, we expect that the fluid state of the asymmetric
electrolyte will be composed of free unassociated polyions of density ρ0, free counterions of
density ρf , and of clusters consisting of one polyion and 0 < n ≤ Z associated counterions.
The density of clusters with n counterions is ρn. In the discussion that will follow we shall
suppose that the condensed counterion neutralizes one of the polyion charges, in such a way
that the effective surface charge of a n-cluster is σn = −q(Z − n)/(4πa2). It is evident that

ρp =
∑Z
n=0 ρn and Zρp = ρf +

∑Z
n=0 nρn, where ρp = Np/V is the total density of polyions

(associated or not). All the thermodynamic properties of the polyelectrolyte solution can be
determined once the free energy is known. In particular, the osmotic pressure is a Legendre
transform of the Helmholtz free-energy density, f = −F/V , p = f(T, {ρs}) +

∑
s µsρs, where

the chemical potential of a specie s ∈ {f, n} is µs = −∂f/∂ρs. The free energy can be expressed
as a sum of electrostatic and entropic contributions. The electrostatic free energy is due to
the polyion-counterion, the polyion-polyion, and the counterion-counterion interactions. The
polyion-counterion contribution can be obtained in the framework of the usual DH theory.

Let us concentrate our attention on one cluster of size n fixed at r = 0. Due to the excluded
volume, no counterions will be found inside r < a. Therefore the electrostatic potential
Ψn in this region satisfies the Laplace equation ∇2Ψn = 0. Outside r > a − ε, the mean
charge distribution will be specified by the cluster-counterion correlation function. Within
the DH theory this is approximated by a Boltzmann factor leading to the charge density
ρq(r) = −

∑Z
n=0 q(Z − n)ρn + qρfe

−βqΨn(r) + σnδ(|r| − a). Notice that only free unassociated
counterions get polarized; the free unassociated polyions and clusters are too massive to be
affected by the electrostatic fluctuations and only contribute to the neutralizing background.
Substituting this expression into the Poisson equation, ∇2Ψn = −4πρq/D, one obtains the
non-linear Poisson-Boltzmann equation. After the linearization of the exponential factor, we
are led to the Helmholtz equation, ∇2Ψn = κ2Ψn, where κa =

√
4πρ∗f /T

∗ and the reduced
temperature and density are, respectively, T ∗ ≡ aDkBT/q

2 and ρ∗ = ρa3. In principle the
linearization is valid only in the limit βqψn < 1, however, when the formation of clusters is
properly taken into account the validity of the theory extends far into the non-linear regime [4].

Both the Laplace and the Helmholtz equations can now be solved, supplemented by the
boundary condition of continuity of the electrostatic potential, and discontinuity in the normal
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component of the electric field related to the presence of surface charge at r = a [12]. Under
these conditions, it is easily found that the electrostatic potential of a n-cluster is Ψ in

n (qn, qZ) =
−(Z − n)q/(Da(1 + κa)) for r < a, and Ψout

n (qn, qZ) = −(Z − n)qeκ(a−r)/(Dr(1 + κa)) for
r ≥ a. The electrostatic energy of a n-cluster is

βUn(qn, qZ) = 2πβ

∫ ∞
a

ρq(r)Ψn(qn, qZ)r2dr, (1)

where β = 1/(kBT ). The electrostatic free-energy density for the polyion-counterion interac-
tion is obtained through the Debye charging process, where all the particles are charged from
0 to their final charge [1], [13],

βfDH = −
Z∑
n=0

ρn

∫ 1

0

2βUn(λqn, λqZ)

λ
dλ = −

Z∑
n=0

(Z − n)2

2T ∗(1 + κa)
ρn. (2)

The polyion-polyion contribution to the free energy can be calculated in the spirit of the
usual Van-der-Waals (VdW) theory [4]. In particular, the tremendous difference in mass
between the polyion and the counterion, mc/mp � 1, leads to the effective separation in
characteristic time scales τc � τp. Thus, any change in the configuration of one polyion will be
accompanied by an almost instantaneous rearrangement of the counterion cloud. Under these
conditions, the degrees of freedom associated with the motion of counterions can be effectively
integrated out, resulting in a short-ranged effective pair potential of a DLVO form [14],
V eff
n,m = q2(Z−n)(Z−m)θ(κa)2e−κr/(Dr), where the enhancement factor θ(κa) = eκa/(1+κa)

is the result of the absence of screening inside the volume occupied by two polyions. Within
the VdW theory

βfPP = −
Z,Z∑

n=0,m=0

βρnρm

2

∫
V eff
n,m(r)d3r

= −
Z,Z∑

n=0,m=0

2πa3(Z − n)(Z −m)ρnρm
T ∗

1 + 2κa

(κa+ (κa)2)2
. (3)

Now, the electrostatic free energy due to the interactions between free ions can be estimated
as that of a One-Component Plasma (OCP) [15]. In particular, although within our treatment
the counterions are taken to be point particles, the electrostatic repulsion between the two
equally charged counterions will keep them from approaching each other closer than a distance
d. This can be calculated using the OCP theory to be d = [(1 + 3κa/T ∗)1/3 − 1]/κ [16a]. As
one might have expected, in the limit of small densities this reduces to the Bjerrum length,
d ≈ a/T ∗ ≡ λB. The electrostatic free energy is found through the Debye charging process and
an analytic expression valid over a wide range of coupling strengths is presented in ref. [16b].

Finally, the entropic (mixing) contribution to the free energy is expressed using the Flory
theory as βfEN =

∑
s[ρs−ρs ln(φs/ζs)], where φs is the volume fraction occupied by each specie

s; φn = 4πρ∗n/3, φf ≡ 4πρfd
3/3, and ζs is the internal partition function of s, ζ0 = ζf = 1, and

ζn = [Z!/((Z − n)!n!)]e−βEn . Here En is the electrostatic energy of n counterions condensed
onto the surface of a polyion and can be obtained through the charging process

βEn = −βq2n

∫ 1

0

Z − nλ

Da
dλ (4)

= −
Zn− n2/2

T ∗
.
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Fig. 1. – Effective charge, 〈Zeff 〉 as a function of the bare charge Z for a temperature T ∗ = 100 and
density of polyions ρ∗p = 3/(32π). The solid line is calculated using the full theory (distribution of
cluster sizes), while the circles were obtained within one-size cluster approximation. The inset depicts
the distribution of cluster sizes for Z = 1000. The dashed line is the bare charge.

Fig. 2. – Dependence of the renormalized dimensionless pressure βpa3/Z on the density of macroions
ρ∗p for several values of Z (100, 1000, 10000). The solid lines were calculated using the full theory
(distribution), while the circles were obtained using one-size cluster approximation.

The minimization of the total free energy f = fEN + fPC + fPP + fCC leads to the law
of mass action µ0 + nµf = µn. This is a set of Z coupled non-linear algebraic equations.
We were able to solve these iteratively, starting with a uniform distribution of clusters. A
sample of the distribution obtained is presented in the inset of fig. 1. The average cluster size
is 〈n〉 =

∑
nρn/ρp, and the average cluster charge is 〈Zeff〉 = Z − 〈n〉. We note that the

width of the distribution remains quite narrow and is not very sensitive to the variations in
density or temperature. This suggests that the polydispersivity in cluster sizes is not very
important and can be replaced by one characteristic cluster size, n∗. In this case the theory
becomes extremely simple, since the free energy will be an explicit function of the number of
bound counterions nB. The thermodynamically stable cluster, n∗, will be the one for which
the free energy, f(Z, nB), attains a minimum, f(Z, n∗) = minnB f(Z, nB). Thus, we must solve
only one algebraic equation, instead of Z coupled ones. Indeed, as expected, the one-cluster
approximation is in excellent agreement with the full theory. In fig. 1 we present the effective
charge as a function of the polyion bare charge, while in fig. 2 the osmotic pressure inside the
polyelectrolyte solution is computed.

An interesting question that arises is, what happened to the phase transition, so successfully
predicted by the DHBj theory in the case of symmetric electrolyte [4]? The answer to this
question is far from clear. However, our derivation does shed some light on the mechanism
of the disappearance of the phase transition. The fundamental postulate that only the
counterions are polarized by the electric-field fluctuations, can be seen to lie behind the
disappearance of the transition. Indeed if this postulate is waved aside, so that both polyions
and counterions can be polarized [17], it is a simple matter to show that the pure DH theory
predicts that the suspension will undergo a phase separation when the temperature is reduced
below T ∗C = Z/16. The fundamental question of what is the maximum charge asymmetry
above which the polyelectrolyte solution will remain stable still needs to be answered.
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