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Abstract

A theory is presented which quantitatively accounts for the cooperative adsorption of cationic

surfactants to anionic polyelectrolytes. For high salt concentration we find that the critical adsorp-

tion concentration (CAC) is a bilinear function of the polyion monomer and salt concentrations,

with the coefficients dependent only on the type of surfactant used. The results presented in the

paper might be useful for designing more efficient gene delivery systems.

PACS numbers:
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I. INTRODUCTION

Polyelectrolyte solutions are ubiquitous. Over the years they have attracted attention of

Chemists, Physicists, and Biologists. These complex systems have also found many indus-

trial applications ranging from water treatment to superabsorbants. Besides the charged

polymers (polyions), a polyelectrolyte solution can contain salt and other molecules which

may strongly interact with the polyions resulting in a plethora of interesting behavior. The

complexity of polyelectrolyte solutions and the long range of the Coulomb interaction makes

study of these systems particularly challenging 1–22.

In this work we will explore polyelectrolyte solutions containing salt and ionic surfactants.

These systems have attracted particular attention because the polyelectrolyte-surfactant, or

more realistically, polyelectrolyte-lipid adsorption can be used to neutralize the DNA charge,

facilitating the transfection of the DNA across a phospholipid cell membrane. Since the

polyions which are of particular interest to us, such as the DNA, are quite rigid (persistence

length 50nm) one can model them as rigid cylinders with the monomeric charge uniformly

distributed along the main axis. This provides a significant simplification, since for such

rigid molecules the internal degrees of freedom can be ignored.

Association between the cationic surfactants and the anionic polyions is driven by the

electrostatic and the hydrophobic interactions. The hydrophobicity of the surfactant tails

is responsible for the cooperative nature of the surfactant adsorption23,24,31. When the con-

centration of surfactant inside the solution is low, most of the molecules remain free, unas-

sociated. As the concentration of surfactant is increased, a density is reached at which the

number of adsorbed surfactants rises sharply. We will denote this as the critical adsorp-

tion concentration (CAC). The goal of the theory is to predict the value of the CAC as a

function of the polyelectrolyte and the salt concentrations for different kinds of polyion and

surfactant molecules.

All the information about the thermodynamics of the system is contained in its free

energy. The Helmholtz free energy for the polyelectrolyte-surfactant solution can be con-

structed based on the fundamental ideas of Debye, Hückel and Bjerrum25–28. The resulting

Debye-Hückel-Bjerrum theory corrects for the linearization of the Boltzmann factor by ex-

plicitly introducing into the theory the non-linear configurations in the form of clusters

composed of associated anionic and cationic entities. The concentration of clusters is de-
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FIG. 1: The model.

termined by the law of mass action. It can be shown that in the infinite dilution limit this

theory yields the exact Manning limiting laws for rigid polyelectrolyte solutions30.

To model the hydrophobic interaction of surfactant tails, we will introduce a hydropho-

bicity parameter χ. The basic theory has been presented elsewhere24,31, and in this paper

we will review it only briefly, referring the interested reader to the original publications. The

goal of the present work is to compare the predictions of the theory with the experimental

data on the association of undecyl-, dodecyl, tridecyl-, and tetradeculpyridinium cations

with the anionic polyelectrolyte sodium dextran sulfate in an aqueous solutions33. We will

also derive a simple asymptotic law for the behavior of the CAC at high salt concentrations,

which we expect to be valid for all rigid polyelectrolyte-surfactant systems. Although dex-

tran sulfate is not nearly as rigid as the DNA for which the original theory was developed,

nevertheless, if we restrict ourselves to sufficiently large salt concentration for which the

Debye length is shorter than the polyelectrolyte persistence length, the polyion flexibility

can be neglected. We should also note that the present theory is only valid for sufficiently

dilute polyelectrolyte solutions prior to a phase separation which can occur following addi-

tion of cationic surfactants. The high density phases will have to be described by a different

theory35.

In the next section we will briefly review the thermodynamic model used to perform the

calculations.
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II. THE THEORY

The polyelectrolyte solution, illustrated in Fig. 1, consists of Np cylindrical anionic

polyions of length L and diameter ap, Na monovalent amphiphiles, and Ns “molecules” of

salt. In an aqueous solution, the anionic polyions are ionized resulting in Z monomers,

each of charge −q, distributed uniformly with separation b = L/Z along the main axis.

As a result of ionization, Z monovalent counterions are liberated into the solution for each

polyion. We will suppose that salt is a strong electrolyte which is fully dissociated in an

aqueous environment resulting in an equal number of positively and negatively charged

monovalent ions. Similarly, we will assume that the head group of each surfactant molecule

is fully dissociated, producing a negative monovalent coion (charge −q) and a polymeric

chain with a cationic head group of charge +q. For simplicity, all the counterions and coions

will be treated as identical, independent of the molecules from which they were derived. The

ions will be idealized as hard spheres of diameter ac and charge ±q located at the center.

The surfactant molecules will be modeled as polymers of za spherical monomers (each of

a diameter ac) with the head monomer carrying a charge +q. The solvent, water, will be

treated as a continuum of dielectric constant D. The hydrophobic interaction between the

surfactant tails is short ranged and will be characterized by a parameter χ.

Inside the polyelectrolyte solution, the concentration of polyions is ρp = Np/V , the con-

centration of monovalent salt is Cs = Ns/V , and the concentration of monovalent amphiphile

(surfactants) is Ca = Na/V . The strong electrostatic interactions between the polyions the

microions and the cationic surfactants leads to formation of complexes which — in thermo-

dynamic equilibrium — will be made of one polyion, nc associated monovalent counterions,

and na associated amphiphiles. Particle conservation requires that

ρc = (Z − nc) ρp + Cs ,

ρa = Ca − na ρp , (1)

where ρc is the concentration of free monovalent counterions and ρa is the concentration

of free amphiphiles. The concentration of coion ρ− inside the solution is unaffected by the

association,

ρ− = Cs + Ca , (2)
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The total concentration of free monovalent charges is then

ρf = ρc + ρa + ρ− . (3)

The goal of the theory is to determine the number of condensed counterions nc and the

condensed surfactants na. In order to achieve this, the Helmholtz free energy of the poly-

electrolyte solution is constructed and minimized. The details of the calculation can be

found elsewhere24,31 here we just give the few main steps.

The largest contributions to the Helmholtz free energy of a dilute polyelectrolyte solution

are electrostatic and entropic,

F = Fel + Fent . (4)

The electrostatic free energy density fel = Fel/V is the result of the interaction between the

complexes and the free charges inside the solution. It can be obtained using the framework

of the Debye-Hückel-Bjerrum (DHBj) theory1,29 and has been calculated in our previous

work to be24,31:

β f el = −
ρp Z

2
c (a/L)

T ∗(κa)2

[

2 ln [κ aK1(κ a)] − I0(κa) +
(κ a)2

2

]

, (5)

where β = 1/kB T , f = F/Np and

I0(κa) ≡

∫ κ a

0

xK2
0 (x)

K2
1 (x)

dx . (6)

Here Kn(x) is the modified Bessel function of order n, κ in (κ a)2 = 4 π ρ∗f/T
∗ is the inverse

of the Debye screening length, ρ∗f = ρf a
3 is the reduced density, and T ∗ = DkB T a/q

2

is the reduced temperature. We have defined a = (ac + ap)/2 as the effective radius and

Zc = Z − na − nc as the effective charge of the polyion-amphiphile complex. The entropic

free energy density is given by32

βf ent =
∑

i

[

ρi − ρi ln

(

φi

ζi

)]

, (7)

where i ∈ {p, c, a,−} represents the different species and ζi is the internal partition of the

specie i. For structureless particles, the internal partition function is ζ− = ζc = 1. For

surfactants, the Flory theory gives ζa+ = za. The respective volume fractions φi are:
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φp =
π ρ∗p

4 (a/L)

(ap

a

)2

+
Z π ρ∗p

6
(zama +mc)

(ac

a

)3

,

φc = ρ∗c
π

6

(ac

a

)3

,

φa =
za π ρ

∗

a

6

(ac

a

)3

,

φ− =
π ρ∗

−

6

(ac

a

)3

. (8)

Here we have introduced the fractions of the polyion monomers associated with the con-

densed counterions mc = nc/Z and with the condensed surfactants ma = na/Z. The internal

partition function of a complex ζp can be calculated by modeling the polyion as a one di-

mensional lattice of Z adsorption sites. The number of associated counterions/surfactants

at each site can be either zero or one. The problem of calculating the internal partition

function of the polyion-amphiphile complex then reduces to finding the free energy of a one

dimensional lattice gas of three different states: empty, associated with a counterion, and

associated with a surfactant. This free energy can be calculated approximately31 to be

−ln ζp [mc, ma] = ξ K

[

Zc

Z2

2

− 1

]

+ β χ (Z − 1) m2
a

+ Z mc ln mc + Z ma ln ma

+ Z (1 −mc −ma) ln (1 −mc −ma) , (9)

where ξ ≡ β q2/D a is the Manning parameter, K = Z [ψ (Z) − ψ (1)] − Z + 1, and ψ (n) is

the digamma function. The first term of Eq. (9) accounts for the electrostatic interaction

between the polyion and the condensed counterions and surfactants, the second term is due

to the gain in the hydrophobic free energy when two surfactant tails are in a vicinity of each

other, the other terms are entropic – resulting from the thermal diffusion of the condensed

particles along the polyion chain. The characteristic energy of the interaction between the

condensed surfactants is measured by a phenomenological parameter χ. For each type of

surfactant molecule, the value of χ will be determined by the best fit to the experimental

data.

The equilibrium configuration of the system is found by minimizing the total Helmholtz
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za χ

12 −5.5

13 −6.8

14 −7.9

15 −9.3

TABLE I: Relation between the fitted χ and za.

free energy with respect to the number of associated counterions and surfactants,

∂ F

∂ mc

= 0 ,

∂ F

∂ ma

= 0 . (10)

Solving this system of equations, the number of condensed counterions and surfactants can

be determined as a function of the concentration of polyelectrolyte, salt, and surfactant.

III. RESULTS

We will define a surfoplex as a complex in which almost all the polyion monomers are

neutralized by the cationic amphiphiles. Surfoplexes are formed when the concentration of

the amphiphile inside the solution reaches the CAC, Cc
a. For practical applications in gene

therapy, the CAC is of particular importance since it gives the minimum amount of surfactant

needed to neutralize the DNA charge for the transfection across the cell membrane36. Since

the cationic surfactants and lipids are quite toxic, in vivo applications require that the

amount of amphiphile used in a transfection be as low as possible36.

The CAC depends on the amount of salt inside the solution and on the specifics of

the polyelectrolyte and the surfactant to be used. To calculate it, we first obtain the full

adsorption isotherm, from which the surfoplex formation and the CAC are identified as the

point of the cooperative binding transition characterized by a sharp rise in the adsorbed

fraction of the amphiphile. We note that in general this can be either a first or a second

order phase transition, or simply a sharp crossover.
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FIG. 2: Density of free surfactant at the transition as a function of salt concentration, log10 ρc
a (M)×

Cs (M) for za = 12, 13, 14, 15. The filled symbols are the experimental results33 and the empty

symbols are the present theory. The dashed lines are only a guide to the eyes.

The theory was compared with the experiments of Malovikova et al.33. who measured

the adsorption isotherms for sodium dextran sulfate for various concentrations of sodium

chloride and four different kinds of cationic surfactant: undecyl-, dodecyl-, tridecyl-, and

tetradeculpyridinium. The four surfactants studied differ by the length of their hydrocarbon

tail (za−1 = 11, 12, 13 and 14) and, consequently, have different values of the hydrophobicity

parameter χ. Theoretically24, we expect χ to be a linear function of za. The experiments

were performed at 30oC. The diameter of sodium dextran sulfate is ap = 7 Å and the

distance between the consecutive charged monomers is b = 2.5 Å (ξ ≈ 2.8). The binding

isotherms obtained experimentally show the formation of surfoplexes when the surfactant

concentration reaches the CAC, Cc
a (za, Cs, Z, ρp), which is strongly dependent on the con-

centration of all the species and on the type of surfactant used. The CAC was found to

increase with the salt concentration. The experimental data also showed that the CAC de-

creased rapidly with the length of the surfactant hydrophobic tail, see Figure 2. To compare

with the experiment, the theoretical binding isotherms were computed by the procedure de-

scribed in the previous section. The number density of polyelectrolyte monomers was taken
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FIG. 3: The hydrophobicity parameter χ versus za obtained by fitting the experimental data of

Malovikova et al.33. The dashed line is the linear fit.

to be the same as in the reference33 . The diameter of the polyion counterions, of salt ions,

and of the surfactant monomers were all taken to be ac = 9 Å. This was done in order to

simplify the calculations and to minimize the number of adjustable parameters. The final

results were only weakly dependent on the precise value of ac. Each polyion was (arbitrarily)

taken to have Z = 3 000 charged monomers (experiments do not provide the length of the

polyions, but only the number density of the polyion monomers Zρp). The hydrophobicity

parameter χ was obtained by performing a fit of the theoretically calculated CACs to the

experimental data. For each amphiphile type, a unique value of χ was used to obtain the

dependence of the CAC on the concentration of salt. Figure 2 shows that the theory agrees

quite well with the experimental data of Malovikova et al. for all 4 surfactants. Table 1

provides the best fit value of the hydrophobicity parameter χ, and Figure 3 shows that χ is,

indeed, a linear function of the surfactant length, as was expected theoretically24. The best

fit of χ yields

χ = −1.25 za + 9.5 , (11)

in units of kBT .

The dependence of the CAC on Cs for various polyion lengths Z at fixed monomer

9



0 0.05 0.1 0.15 0.2 0.25
Cs(M)

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

C
ac (M

)
0 0.01 0.02 0.03 0.04 0.05 0.06

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

C
ac (M

)

0 0.1 0.2 0.3 0.4 0.5
Cs(M)

0 0.02 0.04 0.06 0.08 0.1 0.12

za=12
χ=−5.5

za=13
χ=−6.8

za=14
χ=−7.9

za=15
χ=−9.3

FIG. 4: Total density of surfactant at the transition (CAC) as function of salt concentration,

Cc
a (M) × Cs (M) for ρm = Z ρp = 5 × 10−4 M kept fixed and Z = 1000 (solid line), Z = 2000

(dashed line), Z = 3000 (dotted line).

concentration ρm = Z ρp is illustrated in Figure 4. We see that that, as expected, the CAC

does not depend individually on Z and ρp, but only on the product of the two — the total

number density of the polyion monomers ρm. Furthermore, from Figures 4 and 5 we see

that the CAC becomes a linear function of Cs for sufficiently large salt concentrations and

sufficiently low monomer density,

Cc
a = b0 (za, Zρp) + b1 (za, Zρp)Cs . (12)

The amount of salt needed to reach the linear regime depends on the type of surfactant

used — more salt is needed for surfactants with longer hydrocarbon tails. We now explore

the dependence of the CAC on the concentration of polyion monomers ρm inside the linear

regime. Figure 5 show that while the absolute values of the CAC in the linear regime de-

pend on ρm, the slope is insensitive to the precise concentration of the polyion monomers.

This implies that b1 (za, Zρp) is independent of Zρp so that for a given polyelectrolyte solu-

tion b1 (za, Zρp) = a1(za). Furthermore, we note that the CAC lines for uniformly spaced

monomer concentrations are equidistant, see Figure 5. This implies that the coefficient

b0(za, Zρp) must be a linear function of Zρp, so that b0(za, Zρp) = c(za) + a0(za)Zρp. The

coefficients b0 and b1 obtained using the list square fits of the linear regime shown in the Ta-
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FIG. 5: The total density of surfactant at the transition as a function of the salt concentration,

Cc
a (M)×Cs (M) for Z = 1000 kept fixed and ρm = 1×10−4 M , 2×10−4 M , 3×10−4 M , 4×10−4 M ,

5 × 10−4 M from bottom to top. The dashed lines are the linear adjust, eqs. (13) and (14).

ble 2, clearly support these observations. We thus conclude that for a given polyelectrolyte

solution, at sufficiently high salt concentrations and sufficiently low monomer densities, the

CAC is a bilinear function of Z ρp and Cs,

Cc
a = c(za) + a0(za)Zρp + a1(za)Cs , (13)

with the coefficients dependent only on the length of surfactant used. This is the fundamental

result of the present paper. Equation (13) should be valid for all rigid polyelectrolyte surfac-

tant systems at sufficiently high salt concentrations and sufficiently low monomer densities.

For the specific case of the association of undecyl-, dodecyl, tridecyl-, and tetradeculpyri-

dinium surfactants with anionic polyelectrolyte sodium dextran sulfate, the coefficients c(za),

a0(za), and a1(za) can be obtained by interpolating the data presented in the Tables 2.

We find

a1 (za) = 46 012.89 e−1.32za ,

a0 (za) = 0.25 + 0.028 za ,

c (za) = −7.47 × 10−5 + 6.57 × 10−6 za . (14)

11



ρm (×10−4 M) za b0 b1

1 12 0.000074 0.0067

13 0.000069 0.0017

14 0.000067 0.00052

15 0.000073 0.0001

2 12 0.00011 0.0069

13 0.00013 0.0016

14 0.00014 0.00044

15 0.00017 0.000073

3 12 0.00016 0.0071

13 0.00021 0.0014

14 0.00026 0.00023

15 0.00025 0.000062

4 12 0.00022 0.007

13 0.00028 0.0014

14 0.00027 0.00058

15 0.00028 0.00017

5 12 0.00029 0.0067

13 0.00033 0.0016

14 0.00036 0.00048

15 0.00032 0.00024

TABLE II: Values of b0, b1 in Cc
a = b0 + b1 Cs with Z = 1000.

The results for the CAC obtained with the eqs.(13) and (14) are shown as the dashed

lines in the Figure 5.

IV. THE CONCLUSIONS

We have presented a theory which quantitatively accounts for the cooperative adsorption

of charged surfactants to rigid polyelectrolytes. The theory is based on the fundamental

ideas of Debye, Hückel and Bjerrum1. The only free parameter is the magnitude of the
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hydrophobic interaction between the condensed surfactants χ. In agreement with the theo-

retical expectations, this parameter is found to be a linear function of the surfactant length

za. For high salt concentrations and sufficiently low monomer densities, we find that the

CAC is a bilinear function of the monomer Zρp and salt Cs concentrations, with the co-

efficients dependent only on the length of surfactants used. For the specific case of the

association of the undecyl-, dodecyl, tridecyl-, and tetradeculpyridinium surfactants with

the anionic polyelectrolyte sodium dextran sulfate, the coefficients of the bilinear form are

calculated explicitly and presented in eqs. (13) and (14).

We note that the present theory does not take into account the non-electrostatic specific

interactions between the polyions and surfactants. In view of a good agreement between

the theory and the experiment, however, we conclude that such interactions are not very

significant, at least for the present polyelectrolyte surfactant system. It would be of great

interest to test the the predictions of the theory, in particular the bilinear dependence of

the CAC on the salt and the monomer concentrations, on other polyelectrolyte-surfactant

systems.
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