Downloaded via UNIV FED DO RIO GRANDE DO SUL on October 24, 2023 at 22:57:27 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Macromolecules 1998, 31, 8347—8355 8347

Rodlike Polyelectrolytes in the Presence of Monovalent Salt

Paulo S. Kuhn,’ Yan Levin,** and Marcia C. Barbosa$
Instituto de F'sica, Universidade Federal, do Rio Grande do Sul, Caixa Postal 15051,

CEP 91501-970, Porto Alegre, RS, Brazil

Received January 21, 1998; Revised Manuscript Received August 18, 1998

ABSTRACT: We investigate the properties of rigid polyelectrolyte solutions in the presence of monovalent
salt. The free energy within the Debye—Huckel-Bjerrum (DHB]j) theory (Fisher, M. E.; Levin, Y. Phys.
Rev. Lett. 1993, 71, 3826) is constructed. It is found that at thermodynamic equilibrium the polyelectrolyte
solution consists of clusters composed of one polyion and various counterions. The distribution of the
cluster densities is determined by finding the minimum of the Helmholtz free energy. The osmotic pressure
and the average charge of the cluster are found and their dependence on Manning parameter & is
elucidated. A good agreement with the experimental results is obtained.

I. Introduction

Over the last 3 decades polyelectrolyte solutions have
found a number of practical applications ranging from
superabsorbents and hair conditioners to water treat-
ment. Many biologically important molecules, such as
DNA, are also polyelectrolytes. Not withstanding their
practical importance, our theoretical understanding of
the behavior of these complex molecules is still quite
rudimentary.! The fundamental problem which makes
the study of polyelectrolytes so much more difficult than
that of regular polymers is the long-range nature of the
Coulomb force. The scaling theories, which have proven
so useful for simple polymers, have, so far, failed in the
case of polyelectrolyte solutions. Even the mean-field
theories are extremely hard to construct, as one tries
to take a realistic account of the long-range electrostatic
interactions.

In general, a polyion is a polymer, some of whose
monomers are ionized (all of the ionized monomers have
the same sign of charge). In most practical applications
the polyions are dissolved in some solvent, usually
water, causing a strong interaction between the charged
monomers and the counterions. Besides this already
very complex interaction, in the case of a flexible chain,
one must also take into account the conformational
degrees of freedom of the polymer, as well as the
interactions between the macromolecules inside the
solution. The full problem is extremely difficult to
study; however, some simulations have been attempted.?
A somewhat simpler problem, an answer to which we
shall attempt to elucidate in this paper, is the deter-
mination of the properties of rigid polyelectrolytes. An
example of a rigid polyelectrolyte is a solution of DNA
segments. A major simplification resulting from re-
stricting our attention to rigid polyions is that these can
be modeled as cylinders, thus allowing us to bypass the
complication of taking full account of the conformational
degrees of freedom. At high densities the rigid mol-
ecules tend to align, forming a smectic phase. The
periodic structure of the smetic phase allows us a major
simplification of studying one polyion inside a Wigner—
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Seitz cell, since all of the cells are identical.? At low
volume fractions, when the solution is isotropic, the
Wigner—Seitz picture is no longer valid, and a new
approach must be found. On the other hand, it is well-
known that at infinite dilution the polyelectrolyte solu-
tions obey the Manning limiting laws.* Although
derived in a somewhat ad hoc manner, the limiting laws
have proven extremely successful and provide a “bound-
ary condition” that any theory of rigid polyelectrolytes
must satisfy. Recently we have extended the Debye—
Huckel—Bjerrum (DHBj) theory® to rigid polyelectrolyte
solutions and found that at infinite dilution it, indeed,
reduces to the Manning limiting laws.® However,
considering the higher density corrections, we have
found that the limiting laws should apply only at
extremely low densities, since the corrections scale as
1/(In p), where p is the density of polyions.® What can
then account for the success of limiting laws at densities
which are not so small? In this paper we shall extend
the DHBj theory to realistic concentrations encountered
in most applications.

DHBj theory has proven to be successful in a variety
of systems whose dominant interactions are due to the
long-ranged Coulomb potential.” The fundamental idea
behind the theory is that the nonlinearities which are
omitted in the process of linearization of the Poisson—
Boltzmann equation can be reintroduced into the theory
through a thermodynamic assumption that the op-
positely charged particles can associate, forming clus-
ters. The density of these clusters will, then, be
determined by the condition that at equilibrium the
total free energy of the system must be minimum. In
this sense, the DHBj theory provides a kind of varia-
tional approximation to the complete, yet unknown,
theory. By virtue of being linear, DHBj theory bypasses
the internal inconsistencies which complicate many of
the nonlinear theories of ionic solutions.®

In the case of symmetric electrolytes, the clusters
correspond to the dipolar pairs formed when two op-
positely charged ions come into a close contact.® These
are exactly the kind of configurations which become
“undervalued” when one linearizes the Boltzmann fac-
tor. For the polyelectrolyte, the polyions of which can
carry a charge which can be many thousands units (unit
= electron charge), there can be a large variety of
clusters. In general we expect that there will be clusters
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Figure 1. Polyion of (cylindric) diameter a, and length L >
a surrounded by spherical counterions and coions of diameter
a.. The charge spacing is b = L/Z, and the radius of the
exclusion cylinder is a = (ap + aJ)/2.

consisting of one polyion and one counterion, one polyion
and two counterions, one polyion and three counterions,
etc. The successful theory should allow us to calculate
the full distribution of cluster densities. In the previous
work we have demonstrated that in the limit of infinite
dilution only one characteristic cluster size is thermo-
dynamically stable.6 This is the same as was previously
postulated by Manning.# However, as one moves away
from infinite dilution, one must consider the full dis-
tribution of cluster sizes,® and this will be the objective
of this paper.

II. The Model

We shall first define the primitive model of polyelec-
trolyte (PMP).5 Our system will consist of long cylindri-
cal polyions, the spherical counterions, and salt, inside
a volume V. The polyions, of length L and density pp,
have diameter ap, and charge —Zq uniformly distributed
along the length of the cylinder. The distance between
charged groups is b = L/Z. The counterions will be
modeled as rigid spheres of diameter a; and charge +q
located at the center. The overall charge neutrality
requires that the density of counterions be Zp,. In
addition to the polyions and the counterions we shall
allow for the presence of salt of density psai. In this
work we shall consider a simple monovalent salt and,
in particular, treat the positive ions of salt as identical
to the counterions. We shall, therefore, consider only
two species of small ions, the ones with charge +q,
which we shall denote counterions indiscriminant of
whether they are derived from the polymer or the salt,
and the coions with charge —¢, derived from dissociation
of salt molecules. The solvent will be modeled as a
continuum medium of dielectric constant D. The dis-
tance of closest approach, a, between a polyion and a
counterion is a = (ap + a¢)/2. This represents an
“exclusion cylinder” due to the hard-core repulsion (see
Figure 1).

The strong electrostatic attraction between the poly-
ions and the counterions will result in some counterions
becoming associated with the polyion molecules, produc-
ing clusters consisting of one polyion molecule and n
counterions. Just as in the process of micellization,
which is commonly observed in amphiphilic systems, we
expect that there will be a distribution of cluster sizes.
Thus, inside the polyelectrolyte solution, we shall
encounter some free polyions with no attached counte-
rions. We denote these zero-clusters of density po. We
shall also encounter clusters consisting of one polyion
and one counterion, one polyion and two counterions,
etc. The density of n-clusters is pp, with n ranging from
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1 to Z. Since not all of the counterions condense onto
the polyions, for any nonzero temperature some free,
unassociated, counterions remain in the solution. We
denote the density of unassociated counterions p+. The
conservation of the total number of particles leads to
two equations, namely

Z
Py = .Pn 1)
n=0
and
Z
ps = psar + Z p, = ) Npy (2)
n=0

Since the coions do not participate in the association,
their density remains unchanged, p- = psait.

The goal of the theory is, therefore, to determine the
distribution of cluster sizes. The complete thermody-
namic information about the system is contained in the
Helmholtz free energy. The condition that the free
energy must be minimum will allow us to determine the
distribution of cluster densities. Once the distribution
is ascertained, all the thermodynamic functions of the
system can be found through the appropriate operations
on the free energy. For example, the pressure inside
the polyelectrolyte solution is a Legendre transform of
the Helmholtz free energy density f = —F/V

p(T.(p)) = AT, py)) + Y e p (3)

where the chemical potential of a species of type t
(clusters, bare polyions, counterions, and coions) is ut
= —of] dpt.

Unfortunately, there does not exist a way of calculat-
ing the free energy exactly. We shall, therefore, attempt
to construct the approximate free energy as a sum of
the most relevant contributions. These can be divided
into an electrostatic and an entropic. The electrostatic
contribution arises as the result of the polyion—coun-
terion interaction, polyion—polyion interaction, and the
counterion—coion interaction. The entropic contribution
is the result of mixing of the various species.®

II1. The Polyion-Counterion Interaction

We calculate the polyion—counterion contribution to
the free energy in the framework of the Debye—Htickel
(DH) theory.1® Consider a n-cluster fixed at the origin.
We shall assume that as a counterion condenses onto a
polyion it neutralizes one of its charged groups. Thus,
the effective charge per unit length of a n-cluster is o,
= 00(Z — n)/Z, where oy is the “bare” charge per length,
00 = —Zq/L = —q/b. The electrostatic potential around
the cluster satisfies the Poisson equation:

4npq(r)

2 — _
\Va() D

4)
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As a closure, we shall assume that the charge distribu-
tion is

0, o(r)
py(r) = ZHTT r<a (5)
V4
pq() = =Y (Z — n)qp, + qp,e "1 —
n=0
qp_eP®"0 > q (6)

where g = (kgT)~L.

Note that only the counterions and the coions are
assumed to become polarized, while the polyions and
clusters are unaffected by the electrostatic fluctuations
and contribute only to the neutralizing background. The
separate treatment afforded to the polyions and the free
counterions can be justified by appealing to the Mc-
Millan—Mayer theory.!! In this context one of the ionic
species could be thought of as a solvent for the other,
the entities of which now interact by a solvent-induced
effective potential. In the case of eq 6, we treat the
polyions and clusters as a uniform solvent. At this level
of presentation this must be taken as a postulate, the
virtue of which should be judged by the predictions of
the theory. There are, however, two limiting cases on
which the postulate can be tested. It is possible to show
that in the limit of infinite dilution the theory based on
eq 6 leads directly to the Manning limiting laws.5
Furthermore, for sufficiently large separations, the
effective pair-potential for two colloidal particles, based
on eq 6, takes the well-known DLVO form.” Satisfied
with the validity of the limiting cases, we can now
proceed to explore further ramifications of the theory.
The next step is to linearize the exponential function.
With the help of eqs 1 and 2, the charge density eq 6
becomes pq(r) = —p1 fqP")(r), where p1 = p+ + p—. The
nonlinear Poisson—Boltzmann equation reduces to a
linear Helmholtz equation

20
Vo = — F" @ r<a (7)

v'o" =™, r>a (®)

where (ka)? = 4mp1*/T* and the reduced density and
temperature are respectively p* = pra3 and T* = DakgT/
2

Although the electrostatic energy close to a polyion
is not small, the linearization is still valid if the bare
charge is replaced by a renormalized charge,!? which is
exactly the idea behind the formation of clusters. Equa-
tions 7 and 8 reduce to a one-dimensional problem, since
they are symmetric in the angle ¢, and the z dependence
is suppressed due to the large extent of the polyion. The
only cylindrical variable left is the radial distance r from
the polyion. The appropriate boundary conditions are:
the vanishing of the potential for large values of r and
continuity of the potential and the electric field at r =
a. With these conditions we find$

oM (r) = — %m (rla) + @@(m)K (ka), r<a (9)
in D D 0 ’

On

D

O (r) = —="O(ka)K,y(k1), T>a (10)
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where

_ 1
~ xK;(x)

Ox) (11)

and K, is the modified Bessel function of order n. The
geometric factor ©(ka) arises from the absence of
screening inside r < a.!3 If instead of a cylinder a
polyion would be a line of charge, i.e., a = 0, then the
geometrical factor would become ©(0) = 1.

The first term in eq 9 is the potential of an infinite
line of charge, while the second is the potential of the
polyion due to the presence of other polyions and
counterions. The electrostatic energy of a particular
cluster of size n may now be calculated through

U =2 [p A0 d'r (12)

where A®M = & + (20,/D) In(r/a), for r < a; AN =
o1 for r > a. That is, we subtract the logarithmic
potential produced by the line of charge, since it only
contributes to the self-energy of the cluster. The charge
density is given by eqs 5 and 6 in linearized form.
Evaluating the integral, we find'4

(Z — n)a/lL) Ky(xa)
T* kaK;(xa)
(Z — n)4(a/L) |Ki(xa)
2T* K%(KCI)

ﬂU(n) —

—1] (13)

The electrostatic free energy is found through the
Debye charging process, in which all the particles are
charged simultaneously from 0 to their final charge!®!5

2 U(n)(/l)

Z
fpc = an _/;)1
n=0 A

The free energy density due to the polyion-counterion
interaction becomes

i (14)

,(alLl) 1

T* (ka)®

V4
@ I =Y ouz )
n=0

(ka)*
2 In[kaK,(ka)] — I(ka) + T (15)

with

a  XK'(X)
Itka) = [ dx }1‘;(:)

IV. The Counterion—Coion and the
Polyion—Polyion Interactions

IV.1. The Counterion—Coion Interaction. In the
previous calculation of the polyion—counterion free
energy, we have neglected the correlational effects
arising due to the counterion—counterion, counterion—
coion, and coion—coion interactions. To leading order,
the contribution to the excess free energy arising from
the correlations in the charge density distribution can
be calculated using the usual Debye—Htckel theory. To
this end we consider the counterions and the coions
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Figure 2. Two infinite polyions at distance p and with relative
orientation 6. The distance between the line elements i and j
is r2 = (i — j cos 0)? + p? + (j sin 6)2.

moving in a neutralizing background produced by the
free polyions and clusters. It is then a simple matter
to demonstrate that the correlational free energy takes
on the usual Debye—Huckel form510

3 (KGC)2
In[1 + ka,] —KGC+T (17)

c_1la
apfe=| -

C

IV.2. The Polyion—Polyion Interaction. The
long-ranged Coulomb interaction between the macroions
inside the polyelectrolyte solution will be screened by
the mobile counterions and coions, producing a short-
ranged effective potential. Following Onsager,!6 the
energy of interaction between two lines of charge in an
ionic sea is obtained by integrating the interaction of
elements of charge, which is given by a Yukawa
potential

_ OmOn o . o XD (—«r)
Vin=—p S di [[Jd————  (18)

mn

Here oy, is the linear charge density of a polyion with

m counterions associated, « = «/4np1q2ﬁ/D is the in-
verse Debye length, di is the line element of a polyion,

and r is the distance between the line elements
r* = (i — j cos 0)* + p* + (j sin 6)* (19)

Here i and j denote the distance of a line element to
the center of each molecule, 0 < 6 < x is the relative
angle of inclination between the lines, and p is the
perpendicular distance of separation between the mol-
ecules (see Figure 2). Note that to simplify the calcula-
tions we have extended the limits of integration to
infinity.1® Changing the variables

s=jsinf, t=i—jcosb (20)

we have
P =p’+s*+t (21)
Hence, in terms of s and t the potential becomes

1/2]

exp[— + 5%+ t?
v = D fdsdt pl—«(p® e S

sin 0 (p* + s* + tH)1?
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The integral can be performed easily by going to polar
coordinates, and we find!6

Vi = 270,,0, exp(—«p)

mn ™MD sin 6 (23)

So far in this section we have treated the molecules
as lines of charge. A more realistic approximation is to
model them as cylinders of radius a. As was mentioned
following eq 10, one can go from the line of charge to
the cylinder by replacing o, — on ©(xa). In the case of
spherical particles this transformation leads to the
DLVO potential of interaction between two macroions.!3
We shall conjecture that the same procedure remains
valid for cylinders at asymptotically large separations.
With this geometrical factor, the pair potential of
interaction between two clusters becomes

2m0,,0, exp(—«p)

Dk sin 6 (xa)® K, (xa)

(24)

mn

It is important to note that this is an asymptotic
potential, valid for p > a. When two polyions are in a
close proximity of each other, the fluctuations in their
condensed layers can become correlated, producing an
effective attractive interaction.!” Though extremely
interesting, this short-distance effect should not have
any significant influence on the thermodynamic proper-
ties of the polyelectrolyte solution determined mostly
by the counterions and their interactions with the
polyions (see Figure 7).

Since the effective potential is short ranged, we can
account for the polyion—polyion contribution to the free
energy using a van der Waals type of approach. To this
end the polyion—polyion contribution is expressed as a
second virial term averaged over the relative angle
sustained by two molecules

1
fpp = Ezpmpn<f d3r an(r)>01

+ sin 6

Zmepn 2 [ dp [P x

7—sm0
L

+—
dy [ ?dz

2

an>6 (25)

The result is

—27a® exp (—2«a)

PP = S(Z — m)(Z — n)ppp
T*  (ka)'K;*(a) mn mPn
(26)
Using eq 2, we obtain
-2 * 2 * 2 .
a3ﬂfpp: ”(PIT* Peait)” €xp (—2ka) 27)

(ka)*K, (ka)
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0
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Figure 3. Sample of charge distribution on a polyion. Each
site contains 1 or 0 counterions associated to it, so the charge
of the site is 0 or —q, respectively.

V. The Mixing Free Energy

The entropic contribution to the free energy can be
calculated using the Flory theory.!® Thus the increase
in free energy due to mixing of various species is the
sum of their ideal free energies,

nt _
B = Z[Pt — p¢ In(g,/Ep)] (28)
t
a o2 r r r
0.15 | ~
_ m=n/Z
m(s) 0.10
0.05 | £=2.283 :
0.00 . . 1 N
0.0 20.0 40.0 60.0 80.0 100.0
S
C o080 T — T
m=n/Z
0.60 |
m(s) 040 H £=2.283
0.20
0.00 A . A .
0.0 20.0 40.0 60.0 80.0 100.0

S
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The volume fractions are

3
:

TPk, (ap)Z N nmp;,

= a@r\a) "6 (29)
7Pyl a3

6. =" 5) (30)
_ mpt|a,)?

=6 la By

for the n-clusters, the counterions, and the coions
respectively; &; is the internal partition function of an
isolated species t. For structureless particles, ¢+ = ¢~
= §o = 1, while for clusters

Y0 exp(—pHIq(s)))
~ " exp(—BHI—q))

The Hamiltonian H represents the electrostatic en-
ergy of interaction between the n condensed counterions
located at sites s;, i =1, ..., n, and the negatively charged
monomers of the polyion (see Figure 3)

Cn (32)

1 q(s1)q(sy)
Hlq(s)] =~ _— (33)
2 5175, D|r(s;) — 1(s,)]
b 0.50 T T T T
0.40
m=n/Z
0.30 | d
m(s)
£=2.283
0.20 |
0.10 F
0.00 L L A L
0.0 20.0 40.0 60.0 80.0 100.0
S
d 0.92 T T T
0.90
m=n/Z
0.88 L
m(s)
£=2.283
0.86 H
0.84
0.82 L L . L
0.0 20.0 40.0 60.0 80.0 100.0

s

Figure 4. Distribution m(s) of associated counterions on a n-cluster for Z = 100, and several values of n: (a) n = 10; (b) n = 40;

(¢) n=170; (d) n = 90.
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0.8= =
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£=2.283 n
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Q.
0.1 -
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n
b o4 r
p=10°M
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PPy 0.20 |
0.10 f .
(@) p,=10"M, n'=69.45
(b) p,=10"M, n'=72.17
0.00 . : - L
0.0 20.0 40.0 60.0 80.0 100.0

n

Figure 5. (a) Cluster size distribution p, for polyion density
op = 107*M, salt psar = 1073 M, and Z = 100; the polyion and
counterion diameters are 12 and 9.3 A, respectively. The
average number of associated counterions is n* = 72.173, while
the Manning infinite-dilution result is ny = 56.198. (b) Cluster
size distributions p, for two different densities of polyions. One
should note the strong insensitivity of the distribution to the
variation in density of polyions.

We are labeling the Z sites on the polyion with the index
s, 1 <s <Z; q(s) is the net charge on site s, which is —¢q
(no counterion associated) or 0 (one counterion associ-
ated); r(s) is the distance (in units of b) of site s from
one of the ends. We assume that the only effect of a
condensed counterion is to neutralize the monomer
charge. Furthermore, the electrostatic repulsion be-
tween the counterions will prevent that a site is oc-
cupied by more than one counterion. H[—q] is the
energy of the reference state in which no counterions
are condensed, and each site has the charge —q.

At this point we need to evaluate the internal parti-
tion function. Unfortunately even this comparatively
simple problem is very difficult to solve due to the long-
ranged nature of the Coulomb force. In the absence of
the exact solution we shall resort to a mean-field type
of approach. We first define the free energy of associa-
tion as —pFR =1n . Itis easy to show that this energy
is bounded from above

FR<FR=F{}+(H-Hy),— Hl-ql  (34)

where Hy is an arbitrary Hamiltonian and Fy is the
free energy corresponding to Hy. This is a well-known

Macromolecules, Vol. 31, No. 23, 1998

15.0

(b)

15.0

0.0 s 2
0.0 5.0 10.0 15.0

X2

Figure 6. Osmotic coefficient ¢; = p/(Zp, + 2psair) for a
polyelectrolyte solution (solid line) for three different concen-
trations of salt: (a)psair = 1073 M; (b)psarr = 1072 M; (C)psarr =
10-! M. We have defined X = Zpp/psa. The characteristics of
the polyions are Z = 100, & =2.283, a,= 12 A, a.= 9.3 A, and
a = 10.65 A. The squares, triangles, and circles are the
experimental results of Alexandrowicz (see text for the refer-
ences).

Gibbs—Bogoliubov bound on free energy. We shall
choose Hy to be of one-body form so as to facilitate the
calculations

Hlq(s)] = Y ¢(s)q(s), qls)=—q,0  (35)
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Figure 7. Relative contributions to the osmotic pressure
inside a polyelectrolyte solution (psait = 1072 M; see caption to
Figure 6 for details) in order of importance: mixing (dot—
dashed line); polyion—counterion (dotted line); polyion—polyion
(dashed line); counterion—coion (solid line).

where ¢(s) is the effective position dependent mean field
to be determined. The partition function corresponding
to Hy is

Zy= )

q(s)=—4q,0

exp[—B) ¢(s)q(s)] =

[Tl expl+Baep(s)] + 1} (36)

s

and the free energy is

1
Fg=- BZ In{explBqe(s)] + 1] 37)
The average charge on site s is
_ _ __qexplBqe(s)]
p(s) = (q(s)y = explpo)ql + 1 (38)
From this we obtain
___pls)
explBqe(s)] = oS + 4 (39)

Therefore

FR[ ] 1 a m(sl)m(sz) - m(Sl) - m(sz) n
m(s)] = —-—
2 T+ Ir(sy) — 1(s;)]

Y[1—=m()]n[1 - m(s)]+ Y m(s) In[m(s)] (40)

s

where m(s) = p(s)/q + 1 is the average number of
associated counterions on site s.

To find the optimal bound on free energy, we shall
minimize it with respect to m(s), i.e., 0FR/om(s) = 0,
under the constraint Ys m(s) = n. The resulting
distribution m(s), which is obtained by numerically
solving the minimization problem (see Figure 4), cor-
responds (within mean field theory) to the equilibrium
density profile, i.e., (q(s))/q + 1 ~ m(s). Without the
knowledge of the exact solution, we shall approximate
the free energy of association by its optimal bound, FR
~ FR[m(s)]. In practice, however, even this simplified
procedure will make finding the distribution of cluster
sizes very slow, since for each cluster size n we will need

Rodlike Polyelectrolytes 8353

Table 1. Free Energy of Association for Z = 100 and & =

2.283¢

n FR{m(s)] FR[m]

10 —218.443899 —214.144172
20 —399.827094 —394.192426
30 —554.221516 —548.635357
40 —683.959854 —679.127270
50 —790.048546 —786.298434
60 —872.900058 —870.322928
70 —932.493432 —931.026672
80 —968.353696 —967.779398
90 —979.023957 —978.926802

a FR[m(s)] is the free energy obtained using the variational
counterion profile. FR[m] is the free energy with a uniform profile
m = n/Z.

to find m(s) by numerically solving the minimization
problem. Instead, we noted that outside the endcap
regions, m(s) is more or less uniform and can be
approximated by m(s) ~ m = n/Z (see Figure 4). With
this approximation the sums in eq 40 can be carried out
explicitly and we find (¢ = Sq%Db is the Manning
parameter)

BFR[m] = &m* — 2m)( Z[y(Z) — (V)] - Z + 1} +
Z[(1 —m)In(l — m)+ mlInm] (41)

where y(n) is the digamma function.!® We have com-
pared the free energy obtained using this uniform
counterion profile with that obtained using the exact
solution of the variational problem and found that they
agree to within a few percent (see Table 1). We shall,
therefore, approximate the internal partition function
of a n-cluster as &, = exp(—SFR[m]) with m = n/Z.
Inserting this into eq 28 completes the calculation of
the entropic contribution to the free energy inside the
polyelectrolyte solution.

VI. The Helmholtz Free Energy

The full Helmholtz free energy for the polyelectrolyte
plus salt system is

f=f" 4+ 0+ P (42)

From the free energy, all the thermodynamic proper-
ties of the solution can, in principle, be found. Mini-
mization of the free energy under the constraint of fixed
number of particles, eqs 1 and 2, reduces to the law of
mass action, uo + nu+ = un. The chemical potentials of
all species are obtained from the free enerqgy, uy = —of/
dpt, and in thermodynamic equilibrium we find that

$n = bo ¢ G eXPIBUUG + ' — )1 (43)

where the excess chemical potential is uf* = —af*/dpy;
foX = fpe + fe¢ + PP and the ¢'s are the volume fractions
defined earlier. The above expression eq 43 consists of
Z + 1 equations for the Z + 1 densities involved. The
form of eq 43 is particularly suited to iterative methods.
Thus starting with the uniform distribution of clusters,
eq 43 was iterated untill the desired accuracy was
obtained. The convergence took a few seconds of CPU
time on a VAX-4000/500 computer.

With the cluster densities determined, the osmotic
pressure may be calculated using eq 3. It is traditional
in the polyelectrolyte literature to plot the osmotic
coefficient defined as ¢s = p/(Zpp + 2psat). In Figure 6
we present the value of ¢s as a function of X = Zpp/psait
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Figure 8. Dependence of the effective charge density oes/oo
on the inverse Manning parameter 1/&. Two densities of
polyions are considered: (a) pp=10"*M; (b) p, = 107** M. The
dashed line is the Manning's infinite dilution theory. Note that
at infinite dilution there is no counterion association for £<1,
and the transition appears sharply at & = 1, with oge/oo =1 —
1/& (see text in Conclusion).
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Figure 9. Dependence of the relative effective charge density
oerfoo on the density of salt psair. The density of polyion is
fixed: pp, = 1078 M.

for various densities of salt. A good agreement with the
experimental results of Alexandrowicz? is obtained. The
relative contribution of each term of the free energy can
be seen in Figure 7. Note that the polyion—polyion
contribution to the osmotic pressure is negative, which
can be interpreted as an effective induced attraction
between the polyions. The characteristic size of a
cluster is n* = Xpnpn/pp. In Figure 8 we demonstrate
the dependence of the average charge of a cluster

Z Oypn

Ot = Z—Z 0|1

n=0 Pp

n*

(44)

on 1/&, and compare it to the infinite-dilution counterion
condensation theory.* We note that the sharp counte-
rion condensation transition disappears at finite densi-
ties, replaced by a smooth crossover. Finally, in Figure
9 we demonstrate the relative insensitivity of the
average cluster charge on the density of added salt.

It is interesting to explore the connection between the
limiting (infinite dilution) behavior found by Manning
and the current finite density theory. It was empha-
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sized in our previous work that as soon as one moves
away from the infinite dilution the corrections which
scale as 1/(In p) becomes important. Thus we could have
suposed that the limiting laws (LL) would apply only
at an unphysically low densities. This, however, is not
the case and it is well-known that LL have a range of
validity extending well into the experimentally acces-
sible regime.* Tt is evident that the higher order terms
coming from the various interionic interactions conspire
to cancel in such a way as to extend the validity of the
LL. Is it only a coincidence, or can one atribute some
deeper meaning to this fact? Still remains an open
question.

VII. Conclusions

We have constructed a DHB]j theory for an isotropic
polyelectrolyte solution. We find that, at equilibrium,
the solution consists of free polyions, free counterions,
and clusters composed of one polyion and 1 < n < Z
counterions. The distribution of cluster sizes was
calculated explicitly as was the osmotic pressure. A
good agreement with the experimental data of Alex-
androwicz was obtained. Finally, it is important to note
that the sharp counterion condensation observed at &
= 1 for infinite dilution, gets “smoothed out” for finite
densities. This is indeed what one might have expected
based on the modern theory of phase transitions. It is
well-known that the higher-order phase transitions
(second and above) are associated with a diverging
length scale. In the ionic systems the length scale
relevant to the counterion condensation phenomena is
the Debye screening length. In the case of polyelectro-
lyte solutions, this length will stay finite for any nonzero
temperature. In this respect the counterion condensa-
tion is very different from the Kosterlitz—Thouless (KT)
metal—insulator transition observed in two-dimensional
plasma.?! The KT transition is a real thermodynamic
phase transition at which the Debye length becomes
infinite. Itis important to stress this difference in view
of the recent speculations that the counterion condensa-
tion is a KT-like phase transition.2? Instead we should
compare the counterion association with a micellar
formation in amphiphilic systems.
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