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Abstract

The interaction between polyelectrolyte and ionic surfactant is of great importance in different areas of chemistry and
biology. In this Letter we present a theory of polyelectrolyte–ionic-surfactant solutions. The new theory successfully
explains the cooperative transition observed experimentally, in which the condensed counterions are replaced by ionic
surfactants. The transition is found to occur at surfactant densities much lower than those for a similar transition in non-ionic
polymer–surfactant solutions. Possible application of DNA surfactant complex formation to polynucleotide delivery systems
is also mentioned. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Solutions containing polyelectrolytes remain an
outstanding challenge to physical chemistry. Due to
the long-ranged nature of the Coulomb force, our
understanding of this class of polymers is still quite
rudimentary. This situation can be compared to the
one that existed in electrochemistry at the turn of the

Ž .century, before Debye and Huckel DH presented¨
w xtheir, now famous, theory of strong electrolytes 1,2 .

The fundamental question that must be addressed by
any successful theory of polyelectrolytes concerns
with the role played by the counterions. In this
respect, the traditional theories of liquid state are not
of great help, since most of the approaches based on
resolution of integral equations come to a dead-end
when the numerical schemes used to tackle these
difficult problems fail to converge. We should, how-
ever, mention a recently reported success of the

w xRISM-based 3 theories for predicting the structure
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w xfactors in polyelectrolyte solutions 4,5 . The scaling
theories, which have been so successful in elucidat-

w xing the properties of non-ionic polymers 6 have
w xprovided mixed results 7,8 in the face of large

number of length scales relevant for polyelectrolyte
solutions. What seems to be lacking is a mean-field
theory of polyelectrolytes similar to the one created
by Debye and Huckel for simple electrolytes, and¨
Flory for non-ionic polymers. In our previous work
we have attempted to construct such a mean-field
theory for one special class of polymer solutions, the

w xrigid polyelectrolytes 9–13 . The constraint of rigid-
ity allowed us to study the effects of electrostatic
interactions decoupled from that of conformational
structure of polyions. The theory has proven to be
successful in elucidating various thermodynamic
properties of rigid polyelectrolytes in the presence,
or in the absence, of monovalent salt. In this Letter
we shall present a theory of rigid polyelectrolyte and
ionic-surfactant solutions.

The interaction between polymers and surfactants
is of great practical importance in areas as diverse as
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colloidal stabilization, polymer solubilization, min-
eral flotation and flocculation, as well as various

w xaspects of molecular biology and biochemistry 14 .
In many practical applications the polymers are dis-
solved in some sort of polar solvent, typically water,
leading to monomer ionization. This situation is very
common for biological systems. For example, in an
aqueous solution, the phosphate groups of a DNA
molecule become ionized, giving it a net negative
charge. Similarly the phospholipids, which compose
the cell membrane, in aqueous environment acquire a
net negative charge. The repulsion between the like-
charged molecules makes the introduction of a
polynucleotide sequence into a cell a formidable
challenge to molecular biologists. It has been ob-
served, however, that in the case of binding by ionic
surfactant dissolved in a polyelectrolyte solution, the
adsorption isotherms show a striking degree of coop-
erativity. This surprising phenomenon suggests that
ionic surfactants or ionic lipids can be used as a
‘packaging’ in order to deliver polynucleotides into
living cells. Indeed, some recent experiments demon-
strate that the cationic lipid reagents provide some of
the best methods available for the gene delivery

w xsystems 15 .

2. The model

The solution under consideration consists of an-
ionic polyions, monovalent salt, and cationic surfac-

Ž .tant, inside a volume V see Fig. 1 . It is important to
remember that the overall system is charge neutral,
which implies that the negative charge of polyions
and the positive charge of surfactants is counterbal-

Žanced by an appropriate number of counterions uni-
. Ž .valent cations , and coions univalent anions , re-

spectively. Furthermore, to simplify the analysis, we
shall assume that all of the counterions are identical,
whether they are derived from polyions or from
disassociation of monovalent salt. A similar approxi-
mation will be made in the case of coions.

In order to study the interaction between an ionic
surfactant and a polyelectrolyte, we resort to the
simplest possible model. The rigid polyions, of den-
sity r , are represented by cylinders of length L andp

diameter a . Each polyion has a charge yZq, uni-p

formly distributed along the length of the cylinder.

Ž .Fig. 1. A polyion of cylindric diameter a and length L4 ap

surrounded by spherical counterions and coions of diameter a ,c

and flexible surfactant molecules. The charge spacing on the
polyion is b' LrZ, and the radius of the exclusion cylinder is

Ž .a' a q a r2.p c

The spacing between each charged group is b'LrZ.
The cationic surfactants, of density r , are modeleds

as flexible chains of n monomers each, with thes

head group carrying a charge qq. For simplicity we
shall assume that each monomer is a sphere of

Ž .diameter a . The density of counterions cations isc
Žr sZr qr , while the density of coions an-count p salt

.ions is r sr qr . Both the coions and thecoion salt s

counterions will be modeled as hard spheres of
diameter a and charge "q located at their centers.c

Ž .The solvent water will be represented by a uniform
medium of dielectric constant D.

The strong electrostatic interaction between the
polyions, the counterions, and the surfactants leads
to formation of clusters each made of one polyion,
n counterions, and m surfactants. In what followsB B

we shall neglect the effects of polydispersity in
cluster sizes, since it can be shown not to signifi-

w xcantly affect the final results 9–13 . The counterion
and surfactant association with the polyions reduces
the number of free entities. Charge conservation
implies

r sr yn r , 1Ž .q count B p

r sr , 2Ž .y coion

rqsr ym r , 3Ž .s s B p

where r is the density of free counterions, r isq y
the density of coions, and rq is the density of frees

amphiphiles.
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3. Theory

The main task of the theory is to determine the
characteristic cluster size, i.e., to find the values of
n and m . In order to achieve this goal the appro-B B

priate Helmholtz free energy has to be constructed
and minimized. The free energy can be decomposed
into an electrostatic and an entropic contributions.
The electrostatic contribution arises due to the
polyion–counterion–surfactant, the polyion–poly-
ion, and the counterion–coion–surfactant interac-
tions. The entropic part is the result of mixing of

w xvarious species 9–13 .
The polyion–counterion–surfactant and the

counterion–coion–surfactant contributions can be
w xobtained in the spirit of DH theory 1,2,9–13 . As a

counterion or a surfactant associates with a polyion it
neutralizes one of its charged groups. Hence, the
effective charge per unit length of a cluster, made of
n bound counterions and m bound surfactants, isB B

Ž .s syq Zyn ym rL. Let us fix one such clus-cl B B

ter and ask what is the potential that it feels due to
the electrostatic interactions with the other entities.
In order to answer this question it is necessary to
solve the Poisson equation, =

2F Žcl.sy4pr rD.q
ŽDue to the hard core exclusion, for r-a' a qp

.a r2 the charge distribution can be approximatedc

as,

s d rŽ .cl
r s . 4Ž .q 2p r

For r)a, in the spirit of DH theory, we shall
assume that

r sy Zyn ym q r qq r eyb qF Žcl.Ž r .Ž .q B B p q

yq r eqb qF Žcl.Ž r .qq rqeyb qF Žcl.Ž r . , 5Ž .y s

Ž .where bs1r k T . Upon linearization, the Pois-B

son–Boltzmann equation can be easily solved to
w xyield 9–13

2s 2s K k aŽ .cl cl 0Žcl.F sy ln rra q , r-a ,Ž .in D D k aK k aŽ .1

6Ž .

2s K k rŽ .cl 0Žcl.F s , r)a , 7Ž .out D k aK k aŽ .1

Ž .2 ) ) qwhere k a '4pr rT , r 'r qr qr , and1 1 q y s

the reduced density and temperature are respectively
) 3 ) 2 Ž .r sr a and T sDak Trq , while K x arei i B n

the n-order modified Bessel functions of second
kind. It is important to recall that the linearization of
the Poisson–Boltzmann equation is justified by the
renormalization of polyion charge through formation

w xof clusters 9–13,16,18–20 .
In terms of this potential, the electrostatic energy

of a cluster is

1
Žcl. Žcl. 3U s r DF d r , 8Ž .H q2

Žcl. Žcl. Ž . Ž .with DF sF q 2s rD ln rra , for r-a;in cl

DF Žcl.sF Žcl., for r)a. That is, we subtract theout

logarithmic potential produced by a line of charge,
since it will only contribute to the self energy of a
cluster. The electrostatic free energy density, f'

ŽyFrV note the minus sign included in the defini-
.tion of free energy density , for the polyion–counter-

ion–surfactant interaction is obtained through the
Debye charging process, where all the particles are

w xcharged from 0 to their final charge 1,2,17 ,

2 bU Žcl. lqn ,lqm ,lqZŽ .1 B Bpcsb f syr dlHp
l0

arLŽ .2syr Zyn ymŽ .p B B 2
)T k aŽ .

= y2 ln k aK k aŽ .1½
2

k aŽ .
qI k a y , 9Ž . Ž .52

where

k a 2xK xŽ .0
I k a ' d x . 10Ž . Ž .H 2K xŽ .0 1

The electrostatic correlational free energy arising
from the interactions between the free counterions,
coions, and free surfactants is obtained using the

w xusual Debye–Huckel theory 1,2,18–20 ,¨
21 k aŽ .cccsb f s ln 1qk a yk a q .Ž .c c3 24p ac

11Ž .
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For sufficiently large separations the effective
electrostatic potential of interaction between two

w xclusters separated by a distance r is 13,21–23

2ps 2 exp yk rŽ .cl
V r s , 12Ž . Ž .pp 2 2Dk sinu k a K k aŽ . Ž .1

where u is the angle between two complexes. The
short-ranged nature of the effective cluster–cluster
interaction allows us to write its contribution to the
free energy as a second virial term, averaged over
the relative angle sustained by two macromolecules,

1
pp 2 3b f sy r d rb V rŽ .Hp pp¦ ;2 u

2p exp y2k aŽ .
sy

) 4 2 3T k a K k a aŽ . Ž .1

=
2

) 2Zyn ym r . 13Ž . Ž .B B p

Ž .The entropic mixing free energy is obtained
w xusing the ideas derived from the Flory theory 24 . In

general f ent sÝ f ent, where f ent is the entropici i i

contribution of each specie i. For free counterions
and coions,

b f ent sr yr ln f , 14Ž ." " " "

Ž ) .Ž .3where f s pr r6 a ra are the volume frac-" " c

tions occupied by free counterions and coions. For
flexible surfactant chains the entropic free energy is
w x24

ent q q qb f sr yr ln f rn , 15Ž .s s s s s

where the volume fraction of surfactant is
q) 3pr as cqf sn . 16Ž .s s ž /6 a

Finally, for complexes made of one rigid polyion, nB

counterions, and m surfactants, we findB

f Zqn qmŽ .cl B Bentb f r sr yr ln ,Ž .cl p p p Zqn m qn zŽ .s B B cl

17Ž .
with

21 ap
)f sprcl p ž /4 arL aŽ .

31 ac
q n m qn , 18Ž . Ž .s B B ž /6 a

and, z , the internal partition function of an isolatedcl
Ž .n ,m complex,B B

z sTreyb H wscŽ t . ,s sŽ t .x . 19Ž .cl

The trace is taken over all possible configurations of
n counterions and m surfactants associated to aB B

polyion. This is similar to the calculation of the
internal partition funcion of a dipole in the restricted

Ž .primitive model RPM of a simple symmetric elec-
w x Ž .trolyte 18–20 . The occupation variables s t andc

Ž . Ž .s t are such that s t s1 if the monomer t of thes c

polyion is occupied by a condensed counterion, and
Ž .s t s0 if no counterion is associated at t. Thec

Ž .occupation variable s t behaves in the same way,s

but for an association with surfactants. The Hamilto-
nian can be written as

2 w x w xŽ . Ž . Ž . Ž .q y1qs t qs t y1qs t qs tc 1 s 1 c 2 s 2
Hs Ý < <Ž . Ž .2 D r t y r t1 2t / t1 2

x
Ž . Ž .q s t s t . 20Ž .Ý s 1 s 22

- t / t )1 2

An implicit constraint is that each monomer can
have either a counterion or a surfactant associated,
but not both. We have also made a simplifying
assumption that the only effect of counterion or
surfactant association is a local renormalization of a
monomer charge. Note that the first term of the
Hamiltonian couples all the sites, since it is due to
the long-ranged Coulomb potential. The second sum
runs only over the nearest neighbors, and is related
to the hydrophobic interaction of the hydrocarbon
tails. The configurations in which agglomerates of
surfactant molecules form are energetically favored,
i.e. the hydrophobicity parameter is negative, x-0.

Even this, seemingly simple, one-dimensional
sub-problem is impossible to solve exactly due to the
long-ranged nature of the Coulomb force. We will,
therefore, resort to a mean-field bound given by the
Gibbs–Bogoliubov–Feynman inequality. Defining

w xx'n rZ, and y'm rZ we find 13B B

2 2z fexp yj S x q2 xyqy y2 xy2 yŽ .cl

= 2exp ybx y Zy1Ž .

=exp yZ 1yxyy ln 1yxyy� Ž . Ž .

qx ln xqy ln y , 214 Ž .
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w Ž . Ž .x Ž .where S'Z c Z yc 1 yZq1, c x is the
2 Ž .digamma function, and j'bq r Db is the Man-

w xning parameter 25 . In our previous study we have
numerically checked that this, indeed, is a good

w xapproximation 13 .
Minimization of the total free energy, fs f ent q

f pcs q f ccs q f pp, with respect to n and m allowsB B

us to determine the characteristic number of bound
counterions, n) , and of bound surfactants, m). WeB B

shall compare the predictions of our theory with the
experimental measurements on DNA dode-

Ž .cyltrimethylammonium bromide DoTAB system
w x26,27 . The DoTAB is a cationic surfactant with an
alkyl chain of twelve carbons. We can estimate the
value of the hydrophobicity parameter, x , as fol-
lows. Consider a micelle or a monolayer composed
of DoTABs. The hydrophobic energy required to
take an alkyl chain of twelve carbons from bulk
hydrocarbon to water is measured to be approxi-

w xmately 20 k T 28 . We can interpret this energy asB

derived from the favorable interaction between the
adjacent surfactants. Since each surfactant inside a
micelle or a monolayer has five or six nearest neigh-
bors, we estimate xfy3.5 k T. Clearly this is onlyB

Fig. 2. The DNA–DoTAB binding isotherms, x sy3.5 k T ,B

Zs440, and j s4.17 for DNA at room temperature. The diame-
˚ters of the polyions and the counterions are 27 and 7.04 A,

respectively. The size of surfactant molecule is n s13. Thes

concentrations of DNA and of added salt are 2=10y6 M and 18
mM, respectively. Note that at the transition the condensed coun-
terions are replaced by the ionic surfactants. The transition is
found to be of the first order with the vertical line locating the
point at which two local minima of the free energy become equal.

w xThe solid circles are the experimental data from Ref. 26 .

Fig. 3. The DNA–DoTAB binding isotherms for various concen-
Ž . Ž . Ž .trations of added salt: a 5, b 18, c 40 mM. The other

experimental parameters are the same as in Fig. 2. Note the
change in the order of transition as it passes from continuous to
discontinuous with an increase in the density of monovalent salt.

a rough estimate but it should be sufficient to ex-
plore the ramifications of the new theory.

In discussions of adsorption it is traditional to
define binding fractions, b 'n)rZ and b 'm)rZ.c B s B

In Fig. 3 we present the binding isotherms of DNA
with dodecyltrimethylamonium bromide, and com-

w xpare it with the experimental data of Ref. 26 . It is
evident that the agreement is quite good, without any
fitting parameters! We note, however, that at densi-
ties of monovalent salt used in experiment, our
theory predicts a first-order transition, while the
experimental data is more consistent with a second-
order transition. This might be an artifact of using
the mean-field theory to treat the internal partition
function. In Fig. 2 we demonstrate that as the con-
centration of monovalent salt is lowered the transi-
tion becomes continuous.

4. Conclusion

We have presented a mean-field theory of poly-
electrolyte–ionic-surfactant solutions. Although quite
simple, our theory manages to capture the essential
physics of the problem. The most non-trivial aspect
of polyelectrolyte–ionic-surfactant complex forma-
tion is that it occurs at extremely low densities, about
a factor of twenty lower than the critical micelle

Ž .concentration CMC of pure amphiphile. This should
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be compared to the interaction of non-ionic polymer
w xwith surfactant 29 , in which case the binding transi-

tion happens at densities close to the CMC. Our
theory explains this dichotomy in terms of strong
electrostatic interactions which, in addition to hy-
drophobic forces, govern the polyelectrolyte–surfac-
tant complex formation.
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