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Abstract

We use Molecular Dynamics simulations to study how the confinement affects the dynamic,

thermodynamic and structural properties of a confined anomalous fluid. The fluid is modeled

using an effective pair potential derived from the ST4 atomistic model for water. This system

exhibits density, structural and dynamical anomalies and the vapor-liquid and liquid-liquid critical

points similar to the quantities observed in bulk water. The confinement is modeled both by

smooth and structured walls. The temperatures of extreme density and diffusion for the confined

fluid show a shift to lower values while the pressures move to higher amounts for both smooth and

structured confinement. In the case of smooth walls, the critical points and the limit between fluid

and amorphous phases show a non-monotonic change in the temperatures and pressures when the

the nanopore size is increase. In the case of structured walls the pressures and temperatures of the

critical points varies monotonically with the pore size. Our results are explained on basis of the

competition between the different length scales of the fluid and the wall-fluid interaction.

PACS numbers: 64.70.Pf, 82.70.Dd, 83.10.Rs, 61.20.Ja
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I. INTRODUCTION

Water is an important material in industry, technology and biological processes due to

its unusual properties. Water unusual properties comprise many anomalous behavior, with

70 known anomalies1, like the maximum value of its density in T = 4oC at room pressure,

and the increase of the diffusion as the system is compressed2–4. These anomalies have been

explained in terms of the formation of hydrogen bond network. The water molecules form

open and compact (bonded and non-bonded) clusters of tetramers. From the competition

between these structures the anomalies arise.

As a natural consequence of the polymorphism of water clusters the pressure-temperature

phase diagram of water is very complex. At low temperatures, water shows a coexistence

of two amorphous phases: a low density amorphous and a high density amorphous. For

higher temperatures, these two amorphous phases might lead to the appearance of two liquid

phases, separated by a first order phase transition line ended in a liquid-liquid critical point

(LLCP ). Whereas, homogeneous nucleation occurs in this region, that is called no man’s

land, and because of that, it is an incredible hard task to do experimental measures of liquid

water in bulk systems in this region. Theoretically, the existence of these two liquid phases

was evidenced in the atomistic ST4 model by Poole and co-authors5 and confirmed in recent

simulations6,7. As well, new experiments suggests the coexistence of a high-density and

low-density liquid phase of water8. A LLCP was also predicted for others atomistic models

of water9–14, and in models for phosphorus15, silica16,17, silicon18, carbon19, hydrogen20 and

colloidal systems21. On the other hand, recent studies suggests that the LLCP can be an

open trend on supercooled water and other materials.22–24. In this way, there is still several

open questions about the LLCP .

As an attempt to avoid the crystallization of water in the no man’s land, experiments

with nanoconfined water have been performed recently25–27. The presence of a confining

structure changes the number of hydrogen bonds, avoiding the nucleation. Some experiments

of water confined in nanopores, performed by x-ray and neutron scattering, show that liquid

states persist down to temperatures much lower than in bulk28–30. The nanopores size

has important influence in the crystallization of the system28,30–33, and hydrophilic and

hydrophobic nanopores can lead to distinct results as well29,34.

Classical atomistic models for water are important tools to understand its properties.
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On the other hand, coarse-grained models arise as an interesting tool to see the universal

mechanisms that lead to anomalous waterlike properties. Coarse-grained models may repro-

duce diffusion and density anomalies and can be modeled by core-softened (CS) potentials

with two length scales, that can be constructed using a shoulder or a ramp potential35–40.

These coarse-grained models for anomalous fluids are able to capture the bulk waterlike

anomalies and averaged properties in the confined materials. When confined by fixed hy-

drophilic plates, the fluid-wall interaction can induce solidification and shift the anomalous

properties to higher temperatures, while hydrophobic nanopores lead the system to remain

in liquid state and shift the waterlike anomalies to lower temperatures in relation to bulk41,42.

Whereas, when the nanopore has at least one degree of freedom, given by the mobility of the

plates in z direction, the anomalous behavior of the fluid disappears and distinct phase tran-

sitions are observed43–46. CS fluids confined in nanotubes also present interesting findings,

similar to obtained in atomistic models for water, as the increase in diffusion coefficient and

flux for narrow nanotubes associated to a layer to single-file transition and a discontinuity

in the enhancement flow factor47–49. The drawback of these core-softened potentials is that

due to the simplicity of the two length scales, they are not capable to reproduce the effects

related to the third coordination shell of the anomalous fluid what might be relevant under

confinement50.

In addition to the relevance of the detail structure of the liquid, the structure of the

confining system is also relevant since biological and physical materials do not exhibit the

smoothness and regularity of the flat walls and tubes employed in the simulations. This

naturally raises the question of what is the role played by the structure of the liquid and of

the interface in the thermodynamic, dynamic and structural behavior of confined systems.

Recent simulations have shown that the hydrophobic or hydrophilic behavior of the confining

surfaces are governed by the interfacial free energy, that strongly depends on the surface

structure51. Even thought these simulations do not observe important differences in the

diffusion of the systems confined between smooth and rough walls52, they show that the

adsorption behavior and the solvation pressure are significantly affected by the roughness of

the confining surface53 and that different liquid and solid phases that exist in the smooth

confined are not present in the rough case44.

In this work we address the question of which are the effects of the roughness of the

nanopore wall in the physical properties of an anomalous fluids. Our analysis is done in the
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framework of an effective model that incorporates not only the two length scales traditionally

present in the CS potentials but additional length scales representing the third coordination

shell of the fluid. Our goal is also to understand the effect of the structure of the liquid in

the thermodynamic, dynamic and structural properties of a fluid confined in a nanopore.

The paper is organized as follows: in Sec. II we introduce the model and the methods

and simulation details are described; the results are given in Sec. III; and conclusions are

presented in Sec. IV.

II. THE MODEL AND SIMULATION DETAILS

In this paper all physical quantities are computed in the standard LJ units54,

r∗ ≡
r

r0
, ρ∗ ≡ ρr30 , and t∗ ≡ t

(

γ

mr20

)1/2

, (1)

for distance, density of particles and time , respectively, and

p∗ ≡
pr30
γ

U∗ ≡
U

γ
and T ∗ ≡

kBT

γ
(2)

for the pressure, energy and temperature, respectively, where r0 = 2.869 Å is the distance

parameter, γ = 0.30 kcal/mol the energy parameter and m the mass of each particle. Since

all physical quantities are defined in reduced LJ units, the ∗ is omitted, in order to simplify

the discussion.

The fluid is composed by N spherical particles of diameter σ = 1.47 and mass m confined

between two parallel and fixed plates. We have studied two kinds of nanopores: with smooth

and structured walls. Smooth plates are modeled by force fields and do not have structure,

interacting continuously with the fluid. Structured plates are formed by spherical particles

in a square lattice with punctual interactions. A schematic depiction for the systems with

(a) smooth and (b) structured plates is shown in Fig. 1.

The particles of the fluid interact through the isotropic effective potential55 given by

U(r)

ǫ
=

[

(σ

r

)a

−
(σ

r

)b
]

+
4

∑

j=1

hj exp

[

−

(

r − cj
wj

)2
]

, (3)

with the parameters given in the Table I. Fig. 2 shows the potential versus distance in

dimensionless units. In this work, we use ǫ/γ = 0.02.

4



FIG. 1. Schematic depiction of the particles confined between (a) smooth and (b) structured plates.
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FIG. 2. Particle-particle interaction potential (black solid line) and particle-plate interaction po-

tential (red dashed line).

This effective potential was derived from the Ornstein-Zernike and integral equations

applied to the oxygen-oxygen radial distribution function of the atomistic model ST458. At

short distances it shows two characteristic length scales: one at r1 ≈ 1.1 and another at

r2 ≈ 1.6, as in the usual coarse grained potentials proposed to model the anomalous liquids.

In addition a third length scale at r3 ≈ 2.2 is also present. Since the derivation of the

potential was based in the oxygen radial distribution function these length scales represent

the oxygen-oxygen distances related to the relevant coordination shells in the liquid. The

bulk system exhibits waterlike anomalies, and the liquid-gas and liquid-liquid critical points

predicted for water55.

In the confined system the particles of the fluid interact with the wall by the Weeks-
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Chandler-Andersen (WCA) potential,

U(r) =







ULJ(r)− ULJ(rcw), r ≤ rcw

0, r > rcw ,
(4)

where ULJ(r) is the standard 12-6 LJ potential54. The cutoff distance is rcw = 21/6. For

smooth plates, the interaction occurs just in z direction and the potential is written as

ULJ(z).

TABLE I. Parameters of the particle-particle potentials in units of Å and kcal/mol.

Parameters values Parameters values Parameters values Parameters values

a 9.065 w1 0.253 h1 0.5685 c1 2.849

b 4.044 w2 1.767 h2 3.626 c2 1.514

ǫ 0.006 w3 2.363 h3 −0.451 c3 4.569

σp 4.218 w4 0.614 h4 0.230 c4 5.518

The dynamic, thermodynamic and structural properties of the fluid was studied using

molecular dynamics simulation in the NV T ensemble. The Nose-Hoover thermostat56,57 was

used to fix the temperature, with a coupling parameter Q = 2. The interaction potential

between particles, Eq. (3), has a cutoff radius rc = 3.5.

The fluid was confined by two different kinds of parallel walls: smooth and structured.

The plates are fixed and are located each one at z = 0 and z = d. The smooth plates

are modeled by force fields in z direction and have no structure. The interaction between

smooth plates and the fluid was done using the WCA (Weeks-Chandler-Andersen) potential,

like shown in Eq. 4, but considering just the z component. The structured plates are

constructed by placing spherical particles of effective diameter σ in a square lattice of area

L2. The fluid-wall interaction also is given by a WCA potential.

In z direction the space occupied for the fluid was limited by the confining plates. Due the

excluded volume between the fluid near to the plates, the distance d between them need to

be corrected to an effective distance de, that can be approach by de ≈ d−σ59. Consequently,

the effective density will be ρ = N/(deL
2).

Systems with plate separations d = 2.5, 4.2, 5.2 and 8.0 were analyzed. Several densities

and temperatures were simulated to obtain the full phase diagrams for each case. For systems
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with d = 2.5, 4.2 and 5.2 N = 507 particles were employed, while for d = 8.0 N = 546

particles were used. Two different initial configuration of the systems were simulated: solid

and liquid states. Using different initial configurations allow us to identify precisely the final

state of the system, avoiding metastability. The equilibrium state was reached after 4× 105

steps, followed by 8× 105 simulation run. We used a time step δt = 0.001, in reduced units,

and all the physical quantities were get with 50 uncorrelated samples. To check the stability

of the systems, we verify the energy as function of time and the perpendicular pressure and

parallel pressure as function of density.

Since the fluid is confined in the z direction, the thermodynamic averages was calculated in

components parallel and perpendicular to the plates60. The systems have periodic boundary

conditions in x and y directions and they are extensive just in area and not in the distance

between the plates.

The parallel pressure was calculated using the Virial expression for the x and y direc-

tions59,

P‖ = ρkBT +
1

2V

〈

V‖

〉

, (5)

where V‖ is given by

V‖ = −
∑

i=1

∑

j>i

x2
ij + y2ij
rij

(

∂U(r)

∂r

)

r=rij

. (6)

The lateral diffusion coefficient, D‖, was calculated using the mean square displacement

(MSD), related from Einstein relation,

D‖ = lim
τ→∞

〈∆r‖(τ)
2〉

4τ
, (7)

where r‖ = (x2 + y2)1/2 is the parallel distance of the particles.

The structure of the system was studied considering the lateral radial distribution func-

tion, g‖(r‖), calculated in specific slabs between the plates. The definition of the g‖(r‖) is

usually given by

g‖(r‖) ≡
1

ρ2V

∑

i 6=j

δ(r − rij) [θ (|zi − zj|)− θ (|zi − zj| − δz)] . (8)
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The θ(x) is the Heaviside function and it restricts the sum of particle pairs in the same

slab of thickness δz = σ. The g‖(r‖) is proportional to the probability of finding a particle

at a distance r‖ from a referent particle.

III. RESULTS

Thermodynamic, dynamic and structural behavior Smooth plates
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FIG. 3. Transversal density profiles for systems confined by smooth plates with T = 0.80 and

different densities at (a) d = 2.5, (b))d = 4.2 (c)d = 5.2 and (c) d = 8.0.

A schematic depiction of the system confined by smooth plates is shown in the fig-

ure ??(a). First, the effect of the structure of the liquid when confined by an uniform

field is checked. Fig. 3 illustrates the transversal density profiles for plates separated at (a)

d = 2.5,(b) d = 4.2 (c) d = 5.2 and (d) d = 8.0 at T = 0.80 and several densities. In all
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cases the system form layers, however the number of layers is dependent on the degree of

confinement and of the density of the systems, what is consistent with results for atomistic

such as SPC/E61 and coarse grained approximations with three body terms as mW62 model.

For higher degrees of confinement, d = 2.5, the fluid is structured in one or two layers,

depending on the density of the system. Fig. 3(a) shows that two layers are observed for high

densities (ρ = 0.587), while one layer occurs for low densities (ρ = 0.192). The mechanism

for the presence of different structures goes as follows. For low densities the wall does not

induce correlations and layering at the z direction therefore one layer or bulk structure is

formed. As the density becomes higher, the competition between particle-particle and wall-

particle interactions leads to the formation of layers. There are two typical separations for

the layers. The first is r3 − r1 ≈ 1.1, which corresponds to the minimum of energy, and the

second one is r2 − r1 ≈ 0.5, which is the second lowest energy potential. Since the plate

separation is d = 2.5, the confinement do not allow the fluid particles to remain in the first

distance (minimum energy), and the layers separation is then equal to the second typical

separation.

For other degrees of confinement, d = 4.2, 5.2, 8.0, the same competition between wall-

particle and particle-particle interactions appears as shown in the Fig. 3. For low densities

an uniform distribution with just one layer appears and as the density increases, two, three,

four or even five layers are present. However, since in this case the plates are further apart,

the interlayer distance is is r3 − r1 ≈ 1.1 that corresponds to the distance between the

shoulder length scale and the third coordination shell in the Figure ??.

The diffusion anomaly observed in liquid water is characterized by the increase of the

diffusion coefficient of the fluid when the pressure, or density, increases. For normal fluids,

this coefficient decreases when the fluid is compressed. The Fig. 4 shows the lateral diffusion

coefficient (D‖) as function of density of the system for (a) d = 2.5, (b) d = 4.2, (c) d = 5.2

and (d) d = 8.0. The range in temperature and density for which the anomaly in diffusion is

the same for the distances d = 4.2, 5.2, 8.0 but is different at d = 2.5. These two behaviors,

one at d = 2.5 and another at larger distances might be related with the different length

scales involved in the close and larger distances as observed in the Figure 3.

In addition to the anomalous dynamic properties of the confined liquid, the thermody-

namic and phase space were also explored. The system with d = 2.5 illustrated in the Fig. 5

(a) shows the presence of a Temperature of Maximum Density, TMD, as a solid line, a vapor
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FIG. 4. Diffusion coefficient as function of density for (a) d = 2.5 and isotherms 0.60, 0.65, 0.70,

0.75, 0.80, 0.90, 1.00, 1.10, 1.25 and 1.50, (b) d = 4.2 and isotherms 0.60, 0.65, 0.70, 0.75 and 0.80,

(c) d = 5.2 and isotherms 0.50, 0.60, 0.70 and 0.80 and (d) d = 8.0 and isotherms 0.45, 0.50, 0.55,

0.60, 0.70 and 0.80. The dots are the simulated data and the black solid lines are polinomial fits.

The dashed green lines bound the region where the diffusion are anomalous.

phase and two liquid phases. This system, therefore, exhibits two stable critical points: a

vapor-liquid critical point, VLCP, at Pc = 0.08 and Tc = 0.55 (red circle) and a liquid-liquid

critical point, LLCP , at Pc = 4.0 and Tc = 0.3 (blue square). In the bulk system the V LCP

occurs at Pc = 0.078 and Tc = 1.98 while the LLCP appears at Pc = 1.86 and Tc = 0.48. The

comparison between the confined and the bulk systems indicates that the VLCP was shifted

to lower temperatures, but did not present significantly changes in pressure. Meanwhile,

the LLCP is shifted to lower temperatures and higher pressures in relation to bulk, what is

in agreement with results obtained for theoretical models involving anomalous fluids63 and

TIP4P water64. The dashed lines in the Fig. 5 (a) represent the diffusion extremes and the
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pointed line indicates the limit between amorphous and fluid phases. The shifting of the

critical point to lower temperatures can be assumed as a natural effect of the confinement,

since the nanopore walls increase the entropy of the free energy of the system, favoring the

disordered fluid phase. The increase in the pressure for the appearance of the LLCP is the

result of the layering imposed by the walls. The layering allows for a high density interlayer

making the full high density liquid only to appear at high densities.
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FIG. 5. Parallel pressure versus temperature phase diagram for systems with smooth plates sepa-

rated by distances (a) d = 2.5, (b) d = 4.2, (c) d = 5.2 and (d) d = 8.0. The thin lines represent

different isochores.

For the plates separations d = 4.2 and 5.2, the phase diagrams illustrated in the Fig. 5

(b) and (c) show the presence of a VLCP also shifted to lower temperatures when compared

with the bulk system. However, the TMD line and the LLCP could not be determined.

Due to the increase of the entropic effects for a system under confinement the melting line

and the LLCP should in principle move to lower temperatures. Whereas, we observed that
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the melting temperatures (Tm) for the confined systems are higher than the bulk system.

In addition the change in the value of Tm is not monotonic with d similarly with what is

observed in atomistic29 and waterlike fluids41.
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FIG. 6. System with plates separated at d = 2.5 and density ρ = 0.402. In (a), the mean potential

energy as function of temperature, in (b) the transversal density profile, in (c) the lateral radial

distribution function (g||(r||)) for the contact layer and in (d) the mean square displacement in

lateral direction.

In order to understand why the melting line moves to higher temperatures, covering the

TMD and the LLCP , the structure in this region was analyzed. For this purpose, the

transition is analyzed for d = 2.5 and d = 5.2. Fig. 6 in (a) illustrates the mean potential

energy as function of temperature, in (b) shows the transversal density profile, in (c) plots

the lateral radial distribution function (g||(r||)) for the contact layer and in (d) presents

the mean square displacement in lateral direction for d = 2.5 and ρ = 0.536. We observe

clearly a first order phase transition between an amorphous solid and a liquid phases. A

discontinuous behavior was detected at T = 0.50. For T < 0.50, the energies have lower
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values, the density profiles and the g||(r||) have a well defined structure and the 〈∆r2(t)〉 has

a small inclination, showing a typical behavior of an amorphous solid phase. Whereas, for

T ≥ 0.500, the energy shows high values and the density profiles, the g||(r||) and the 〈∆r2(t)〉

present a characteristic behavior of liquid phase. Amorphous solid-liquid first order phase

transition was already observed for TIP5P model confined between smooth hydrophobic

plates65. The density profile shown in Figure. 6(b) , however, indicates that amorphous

solid phase is not structured inside each layer but is present in the space between layers.
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FIG. 7. System with plates separated at d = 5.2 and density ρ = 0.536. In (a), the mean potential

energy as function of temperature, in (b) the transversal density profile, in (c) the lateral radial

distribution function (g||(r||)) for the contact layer and in (d) the mean square displacement in

lateral direction.

In the case of d = 5.2 illustrated in the Figures 7 the first order transition is observed at

T = 0.06 because at this temperature the energy has a jump in (a), the radial distribution

function shows a change in the structure from liquid to amorphous solid in (c) and the mean
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square displacement changes from non zero to zero diffusion in (d). The density profile

illustrated in the Figures 7 (b) differently than what is observed for d = 2.5 shows that the

amorphous solid structure is confined to a single layer.

The different ways in which the amorphous solid structures accommodates for the cases

d = 2.5 and d = 5.2 under confinement explains the non monotonic behavior of the melting

temperature. While for strong confinement the amorphous solid forms across the layers in

the region d = 5.2 (and also d = 4.2) the amorphous solid structure is confined to a single

layer. As the distance increases further the amorphous solid are again formed across layers

approaching the bulk structure.
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(a) Liquid-liquid critical points
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FIG. 8. Location of (a) LLCP and (b) V LCP for all the distances between the smooth plates.

The effects of the confinement in the critical points of water are dependent on the geom-

etry and wall structure of confinement that are being considered. For example, when the

water is confined in the pore matrix64, the LLCP and the TMD line are shifted to lower

temperatures and higher pressures in relation to bulk. But, in aqueous solutions of NaCl,

Corradini and Gallo66 shows that the increase of salt concentration in water (TIP4P) shifts

the LLCP to higher temperatures and lower pressures in relation to bulk. Our results for

the LLCP and V LCP are summarized in Fig. 8 and are in good agreement with the results

for the pore media64. This suggests that the salt/water long-range order interaction leads

to changes in the water phase behavior what is not present in the short-range wall-particle

interaction modeled by our system.

Experimental results show a non-monotonic behavior for the melting line and a strong

dependence with the quality of the nanopore walls29 what is observed in our results. In the

next section we will exam how the structure of the plates also have important effect in the
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solidification of the system and in the location of the anomalies and critical points.
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FIG. 9. Comparison of transversal density profile for systems confined by structured and smooth

plates at T = 0.80 and different densities at (a) d = 2.5, (b) d = 5.2 and (c) d = 8.0. The

confinement at d = 4.2 is not shown for simplicity.

The second scenario we address here is the effect of the structure in the wall has in

the thermodynamic and dynamical behavior of the confined liquid. In this case, the plates

are constructed by spherical particles in a square lattice, as sketched in Fig. ?? (b). The

interaction potential between fluid particles and walls particles is given by the WCA potential

(Eq. 4). A layering structure similar to picture observed for smooth plates analyzed in

previous section is also present for structured plates. In Fig. 9 the transversal density

profiles for smooth and structured plates are compared for: (a) for d = 2.5 and ρ = 0.310,

(b) for d = 5.2 and ρ = 0.334 and (c) for d = 8.0 and ρ = 0.321. In all these cases the
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temperature is the same, T = 0.80. As the nanopore width decreases, the difference in the

layer structure between the smooth and the structured walls increases. For d = 8.0, the

fluid exhibits almost the same density profile for the two types of confinement. This shows

that for confined systems the fluid density profile is affected by the nanopore structure,

particularly for strongly confined systems.
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FIG. 10. Diffusion coefficient as function of density for (a) d = 2.5 and isotherms 0.50, 0.55, 0.60,

0.65, 0.70, 0.75, 0.80, 0.90, 1.00 and 1.10, (b) d = 4.2 and isotherms 0.60, 0.65, 0.70, 0.75, 0.80,

0.85 and 0.90, (c) d = 5.2 and isotherms 0.50, 0.55, 0.60, 0.65, 0.70 and 0.80 and (c) d = 8.0 and

isotherms 0.45, 0.50, 0.55, 0.60, 0.65, 0.70 and 0.80. The dots are the simulated data and the black

solid lines are polynomial fits. The dashed green lines bound the region where the diffusion are

anomalous.

Another property of the liquid in which the structure of the confining surface might matter

is the diffusion. Fig. 10 illustrates the diffusion coefficient in the parallel direction to the

plates as function of the fluid density, for nanopores with size d = 2.5, d = 4.2, d = 5.2 and
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d = 8.0. The diffusion anomaly was observed for systems with plates separated at d = 4.2,

d = 5.2 and d = 8.0, while for d = 2.5 no anomalous behavior was detected in the range of

temperatures studied – at low temperatures the fluid presents solidification, lead mainly by

the nanopore structure.

Comparing the dynamical behavior of the systems, we verify that the fluid confined

between structured plates behaves completely different from the smooth cases, particularly

for small values of d. For d = 2.5, systems confined by smooth plates shows a large region

of pressures and temperatures in which the diffusion anomaly is present (Fig. 4), while

for structured walls, the fluid dynamically behaves like normal systems, without diffusion

anomaly for the range of temperatures studied. The reason for this difference is that the

structure of the wall plays a very important role in the structure of the liquid close to the

wall and since at d = 2.5 the liquid is closer to the wall when compared with the smooth

plates, the structure the wall determines the arrangement of the liquid. The liquid particles

will be able to occupy the space between the wall particles.

The parallel pressure versus temperature phase diagrams are shown in the Fig. 11 for (a)

d = 2.5, (b) d = 5.2, (c) d = 4.2 and (d) d = 8.0. The lines in the graph go as follows: the

TMD lines for each case is represented by solid lines, the diffusion extremes by dashed lines,

the V LCP by squares, the LLCP by circles and the limit between fluid and amorphous

solid phases by dotted lines.

For structured nanopores with d = 2.5, the density and diffusion anomalies and the

LLCP are not observed outside the amorphous regions. This is an effect of the influence of

the wall-water potential that favors particles close to the wall to occupy the spaces between

wall particles. Then the particle-particle two length scales competition that leads to the

presence of density and diffusion anomalies does not happen, instead there is a competition

between particle-particle and wall-particle interactions. The solidification for the system in

this case is similar to what happens in the last section for d = 4.2, d = 5.2 and d = 8. In

this case, however, the melting temperatures are lower than in the smooth potential case.

The competition between the wall-particle interaction that favors one solid arrangement

with the particle-particle interaction that favor other arrangement explains the difference

between the melting for rough and smooth walls. Classical water model TIP5P confined

between structured hydrophobic plates also presents a shift for higher temperatures67.

The Fig. 12 summarizes the behavior of (a) LLCP and (b) V LCP for the different
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FIG. 11. Parallel pressure versus temperature phase diagram for systems with structured plates

separated by distances (a) d = 2.5, (b) d = 4.2, (c) d = 5.2 and (c) d = 8.0. The thin lines

represents
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FIG. 12. Location of (a) LLCP and (b) V LCP for all the distances between the structured plates.

nanopores sizes and structured walls. The location of both critical points changes with the
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distances between the plates. As the nanopore width d decreases, the LLCP goes to lower

temperatures and higher pressures, while the V LCP is shifted to lower temperatures and

lower pressures too.

IV. CONCLUSIONS

In this work we have studied the effects of the nanopore structure and of the water

potential length scales in the waterlike properties of an anomalous fluid. First, we tested the

effect of using a three length scales potential for analyzing the fluid behavior. In this case the

system confined by very small distances exhibits a different behavior when compared with

confinement by intermediate and large distances. This difference can be explained by the the

arrangement of the fluid particles in the first, second or third length scale of the potential.

Then we check the differences in the thermodynamic and dynamic anomalies of the fluid

when it was confined between smooth and structured walls. When observed, the density

and diffusion anomalies are shifted to lower temperatures and higher pressures in relation

to bulk for both kinds of confinement. However, the critical points and the limit between

solid and fluid phases present a significant difference for each system. For high degrees

of confinement the properties of the fluid is very well defined when confined by smooth

nanopores, but the fluid crystallizes for structured walls and small d. For intermediates

separation of walls, smooth confinement present solidification and structured confinement

do not. So, a non-monotonic behavior is observed in the properties of the fluid with d

when confined by smooth plates and a monotonic behavior with d when confined between

structured plates. The scales of the fluid-fluid and the fluid-plate interaction potential are

responsible for the different behavior observed for each kind of confinement.
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