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Aline L. Balladares†

Instituto de F́ısica, Universidade Federal do Rio Grande do Sul,

CP 15051, CEP 9105-970, Porto Alegre, RS,

Brasil and Departament de Fisica Fonamental, Universitat de Barcelona

Vera B. Henriques‡

Instituto de F́ısica, Universidade de São Paulo,

Caixa Postal 66318, 05315970, São Paulo, SP, Brazil

Marcia C. Barbosa§

Instituto de Fsica, Universidade Federal do Rio Grande do Sul,

CP 15051, CEP 9105-970, Porto Alegre, RS, Brasil.

Abstract

We investigate the phase diagram of a three-dimensional associating lattice gas (ALG) model.

This model combines orientational ice-like interactions and “van der Waals” that might be repulsive,

representing, in this case, a penalty for distortion of hydrogen bonds. These interactions can be

interpreted as two competing distances making the connection between this model and continuous

isotropic soft-core potentials. We present Monte Carlo studies of the ALG model showing the

presence of two liquid phase, two critical points and density anomaly.

PACS numbers:
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I. INTRODUCTION

Water is an anomalous substance in many respects. Most liquids contract upon cooling.

This is not the case of water, a liquid where the specific volume at ambient pressure starts

to increase when cooled below T = 4oC1. Besides, in a certain range of pressures, water

also exhibits an anomalous increase of compressibility and specific heat upon cooling2–4. Far

less known are its dynamics anomalies: while for most materials diffusivity decreases with

increasing pressure, liquid water has an opposite behavior in a large region of the phase

diagram5–11.

It was proposed a few years ago that these anomalies are related to a second critical

point between two liquid phases, a low density liquid (LDL) and a high density liquid

(HDL)12. This critical point was discovered by computer simulations. This work suggests

that the critical point is located at the supercooled region beyond the line of homogeneous

nucleation and thus cannot be experimentally measured. In spite of this limitation, this

hypothesis has been supported by indirect experimental results13,14.

Water, however, is not an isolated case. There are other examples of tetrahedrally bonded

molecular liquids, such as phosphorus15,16 and amorphous silica17, that also have two liquid

phases. In the case of phophorous a fluid-fluid phase-transition between a P4 fluid and a

polymeric P is experimentally observed, while in the case of silica the transition is between

two amorphous phases. Moreover, other materials such as liquid metals18 and graphite19

also exhibit thermodynamic anomalies. Unfortunately a coherent and general interpretation

of the low density liquid and high density liquid phases is still missing.

What kind of potential would be appropriated for describing the tetrahedrally bonded

molecular liquids, capturing the presence of thermodynamic anomalies? Realistic simula-

tions of water20–22 have achieved a good accuracy in describing the thermodynamic and

dynamic anomalies of water. However, due to the high number of microscopic details taken

into account in these models, it becomes difficult to discriminate what is essential to explain

the anomalies. On the other extreme, a number of isotropic models were proposed as the

simplest framework to understand the physics of the liquid-liquid phase transition and liq-

uid state anomalies. From the desire of constructing a simple two-body isotropic potential

capable of describing the complicated behavior present in water-like molecules, a number

of models in which single component systems of particles interact via core-softened (CS)
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potentials have been proposed. They possess a repulsive core that exhibits a region of soft-

ening where the slope changes dramatically. This region can be a shoulder or a ramp23–41.

Unfortunately, these models, even when successful in showing density anomaly and two liq-

uid phases, fail in providing the connection between the isotropic effective potential and the

realistic potential of water.

It would, therefore, be desirable to have a theoretical framework which retains the sim-

plicity of the core-softened potentials but accommodates the tetrahedral structure and the

role played by the hydrogen bonds present in water. A number of lattice models in which

the tetrahedral structure and the hydrogen bonds are present have been studied42–53. One

of them, is the three-dimensional model proposed by Roberts and Debenedetti44–46 and fur-

ther studied by Pretti and Buzano49 defined on the body centered cubic lattice. According

to their approach, the energy between two bonded molecules rises when a third particle is

introduced on a site neighbor to the bond. Using a cluster mean-field approximation and

computer simulations they were able to find the density anomaly and two liquid phases. In

this case the coexistence between two liquid phases may arise from the competition between

occupational and Potts variables introduced through a dependency of bond strength on local

density states.

In other lattice models the main strategy has been to associate the hydrogen bond disorder

with bond48,54–56 or site47 Potts states. In the former case the density anomaly and the

coexistence between two liquid phases may follow from the presence of an order-disorder

transition and a density anomaly is introduced ad hoc by the addition to the free energy

of a volume term proportional to a Potts order parameter. In the second case, the density

anomaly and the two liquid phases are related to the bond strength density dependent.

In order to investigate the mixtures of water with other chemical species as that present

in a number of biological and industrial processes, it would be interesting to have a simpler

model capable of capturing the same essential features observed in water and also being

able to bridge the gap between the realistic models for water and the isotropic softened-core

potentials.

Thus, in this paper we investigate a three-dimensional associating lattice-gas model that

can fulfill both requirements. Our model system is a lattice gas with ice variables57 which

allows for a low density ordered structure. Competition between the filling up of the lattice

and the formation of an open four-bonded orientational structure is naturally introduced in
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terms of the ice bonding variables, and no ad hoc introduction of density or bond strength

variations is needed. In that sense, our approach bares some resemblance to that of con-

tinuous softened-core models58–60. Using this simple model we are able to find two liquid

phases, two critical points and the density anomaly. The remainder of the paper goes as

follows. In sec. II the model is introduced and the simulation details are given. Sec. III is

devoted to the main results and conclusion ends this session.

II. THE MODEL

We consider a body-centered cubic lattice with V sites, where each site can be either

empty or filled by a water molecule. Associated to each site there are two kinds of variables:

an occupational variables, ni, and an orientational one, τ ij
i . For ni = 0 the i site is empty,

and ni = 1 represents an occupied site. The orientational state of particle i is defined by

the configuration of its bonding and non-bonding arms, as illustrated in Fig 1. Four of them

are the usual ice bonding arms with τ ij
i = 1 distributed in a tetrahedral arrangement, and

four additional arms are taken as inert or non-bonding (τ ij
i =0). Therefore, each molecule

can be in one of two possible states A and B as illustrated in Fig. 1. A potential energy

ε is associated to any pair of occupied nearest-neighbor (NN) sites, mimicking the van

der Waals potential. Here, water molecules have four indistinguishable arms that can form

hydrogen-bonds (HB). An HB is formed when two arms of NN molecules are pointing to

each other with τ ij
i = 1. An energy γ is assigned to each formed HB.

In resume the total energy of the system is given by:

E =
∑

(i,j)

ninj

(

ε + γτ ij
i τ ji

j

)

. (1)

The interaction parameters were chosen to be ε > 0 and γ < 0, which implies in an

energetic penalty on neighbors that do not form HBs. From this condition results the

presence of two liquid phases and the density anomaly.

The ground state of the system can be inferred by simply inspecting the equation 1, and

taking account an external chemical potential µ. At zero temperature, the grand potential

per volume is Ω = e + µρ, where ρ is the water density and e = E/V . At very low values

of the chemical potential, the lattice is empty and the system is in the gas phase. As the

chemical potential increases, at µ = 2(ε + γ), a gas phase with ρ = 0 and a low density
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liquid (LDL) with ρ/a3 = 1/2 (here a is the the distance between two neighbor sites that

in our calculations is assumed to be equal to unit) coexist. In this case, each molecule in

the LDL phase has four occupied NN sites, forming four HBs, and the energy per site

is e = ε + γ. As the chemical potential increases even further a competition between the

chemical potential that favors filling up the lattice and the HB penalty that favors molecules

with only four NN sites appears. At µ = 6ε + 2γ, the LDL phase coexists with a high

density liquid (HDL) with ρ/a3 = 1. In the HDL, each molecule has eight NN occupied

sites, but forms only four HBs. The other four non-bonded molecules are repealed, which

can be viewed as an effective weakening of the hydrogen bonds due to distortions of the

electronic orbitals of the bonded molecules. The energy per molecule is then e = 4ε + 2γ.

Our model may be interpreted in terms of some sort of average soft-core potential for large

hydrogen-bond energies. The low density phase implies an average interparticle distance

dLD = ρ
−1/3
LD = 21/3, whereas for the high density phase we have dHD = ρ

−1/3
HD = 1 at T = 0.

The corresponding energies per pair of particles are eLDL
p = ε + γ and eHDL

p = 4ε + 2γ

respectively. Figure 2 illustrates this effective pair potential for the case of γ/ε = −2. The

hard core is offered by the lattice, since two particles cannot occupy the same site. Thus, for

distances r < a, the potential diverges. For 1 < r/a < 1.26 the effective potential vanishes,

which means that, a system with this average interparticle distance is in the HDL phase.

When 1.26 < r/a < 1.42 the potential is the minimum and the LDL phase is favored. For

r/a > 1.42 the potential is null again and the gas present. The values r/a = 1.26 and

r/a = 1.42 are the average distance of the low density liquid as will be shown later ( see

Figure 3).

The system pressure P can be calculated from the grand potential since Ω = −P . At the

gas-LDL coexistence, P = 0 and at LDL-HDL coexistence point, P = 2ε.

The model properties for finite temperatures were obtained through Monte Carlo simu-

lations in the grand-canonical ensemble (chemical potential and temperature were kept con-

stant). The total number of molecules is allowed to change in time by means of the Metropo-

lis algorithm, where in one time unit (1 Monte Carlo step) we test all lattice sites in order to

insert or exclude one water molecule. The insertion and exclusion transition rates are written

as w(insertion) = exp(−∆φ) and w(exclusion) = 1 if ∆φ > 0, and w(insertion) = 1 and

w(exclusion) = exp(+∆φ) if ∆φ < 0. Here ∆φ = β (emolecule − µ) − ln (2), where emolecule

is the energy of the included (or excluded) molecule, and the factor ln (2) guarantees the
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detailed balance.

The simulations were carried out for lattices with linear size L = 10, and the interaction

parameters were set to γ/ε = −2. Since the simulation box is defined by two interpenetrated

cubic lattices the maximum number of particles in the lattice is 2L3. Runs were of the order

of 104 Monte Carlo steps. Some test runs were done for L = 20, showing no relevant change

in the critical temperatures (the difference is smaller than the symbols used to represent the

points in the graphs). A detailed study of the model properties and the full phase diagrams

was undertaken for an L = 10 lattice.

In order to obtain the pressure-temperature phase diagram of the model, the pressure was

calculated from the simulation data. By numerical integration of the Gibbs-Duhem relation,

SdT − V dP + Ndµ = 0 at fixed temperature, we obtain P (ρ, T ), using the condition that

P = 0 at ρ = 0. Since the model presents two first-order phase transitions (from gas to

LDL, and from LDL to HDL phases), the curves ρ versus µ have two discontinuities and

hysteresis loops. The hysteresis were observed when the simulations were started at different

initial conditions for a given chemical potential around the transition point.

III. RESULTS AND CONCLUSIONS

The model properties for finite temperatures that were obtained through simulations at

constant temperature and chemical potential go as follows. For sufficiently low values of the

chemical potential and at low temperatures, all attempts to insert molecules are frustrated,

and the total density ρ remains equal to zero. By increasing the value of µ, the molecules

begin to enter in the system, increasing ρ and leading to two first-order transitions, one

between the gas and the LDL phases and another between the LDL and HDL phases. The

dependence between ρ and the reduced chemical potential µ̄ = µ/ε for some temperatures

is illustrated in Fig. 3a. Similarly the number of hydrogen bonds per site is illustrated in

Fig. 3b. The transition between one hydrogen bond per site to two hydrogen bonds per site

occurs at the LDL-HDL phase transition. The coexistence of the gas and LDL phases and

the LDL and the HDL phases were then obtained from this data.

In order to confirm the loci of the coexistence lines and the critical points, the histograms

of the densities were collected during a simulation run. The histograms for four different

temperatures and chemical potentials are shown in Fig. 4 for illustration. Near a first-
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order phase transition, mainly inside the metastable region, the histogram is double-peaked,

and the system density fluctuates around two characteristic values. One can obtain the

coexistence lines by finding the chemical potential in which both peaks have the same height

(Figs. 4a and 4c). As the temperature approaches the critical value, the peaks converge to

a single one, and a homogeneous phase appears (Figs. 4b and 4d).

In Fig. 5 we exhibit the reduced pressure, P̄ = P/ε, versus density isotherms. The gas-

LDL and LDL-HDL first-order phase transitions are evidenced by the presence of plateaus

in the P̄ .vs.ρ curves at low reduced temperatures, T̄ = T/kB.

The plot of density versus reduced temperature at constant pressures shows that an

inversion of the behavior of density as a function of temperature takes place at intermediate

pressures, in the LDL phase. At smaller pressures, density decreases with temperature,

whereas at higher pressures, density increases with temperature. This yields a temperature

of maximum density for a fixed pressure, TMD, in the higher range of pressures, which we

illustrate in Fig. 6.

The pressure-temperature phase diagram is illustrated in Fig. 7. The gas, LDL and

HDL phases are shown together with the two coexistence lines, the two critical points and

the line of temperature of maximum density (TMD) as a function of pressure. Reduced

temperature versus density illustrating the two coexistence regions and the two critical points

are shown in Fig. 8. As a matter of comparison, the pressure versus temperature and the

density versus temperature phase-diagrams for the RD model44–46 are slightly different from

ours. For some values of its parameters, the RD model presents a LDL−HDL coexistence

line with an upper and lower critical points, which results in a closed loop in the T versus

ρ diagram. Changing the model parameters make the LDL−HDL coexistence disappear,

and only the LDL − gas appears. In our case, for ε > 0 and γ > 0, the two liquid

phases and the density anomaly are always present. Conceptually the two models are quite

different. While in the RD model the coexistence between two liquid phases may arise from

the competition between occupational and Potts variables introduced through a dependency

of bond strength on local density states in our case it comes from the competition between

the chemical potential and the bond variables.

We have shown that it is possible to incorporate some of the microscopic properties of true

water molecules into a very simple minimal model that still contains some of the ingredients

of real water without having its whole complexity.
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The model includes orientational and occupational variables, and guarantees the local

distribution of hydrogens on molecular bonds, without the need of increasing the volume

artificially or introducing artificial orientational variables43. In spite of the absence of an

orientational order-disorder transition61, the model presents liquid-liquid coexistence, with

slightly positive slope in the pressure-temperature plane, accompanied by a line of maximum

density on the low density side, a feature expected for real water. Besides, this study points

out to the fact that the presence of a density anomaly, with the thermal expansion coefficient

α < 0, on the low temperature side, and as a consequence, (∂S
∂p

)T > 0, does not imply a

negative slope of the liquid-liquid line, contrasting with the results for most studies of

metastable liquid-liquid coexistence in models for water, which suggest a transition line

with negative gradient24.

The presence of both a density anomaly and two liquid phases in our model begs the

question of which features of this potential are responsible for such behavior. Averaged over

orientational degrees of freedom, our model can be seen as some kind of shoulder potential,

with the liquid-liquid coexistence line being present only for a repulsive “van der Waals”

potential. The same was indeed observed for continuous step pair potentials25,28, for which,

however, the density anomaly is absent. On the other hand, a density anomaly has been

observed in a number of shoulder-like lattice models in which the major ingredient is the

competition between two scales29–31. This feature is present in our case. Therefore it seems

that the competition between two scales is the major ingredient that warranties the presence

of the density anomaly. If, in addition, the model has an attractive interaction, two liquid

phases and two critical points emerge.
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Figures

1 - The two possible states of the water molecules in the body centered cubic lattice. A

and B molecules are forming an hydrogen bond since two of their arms are pointing each

other.

2 - Effective potential vs inter-particle distance for γ/ε = −2. The corresponding energies

per pair of particles are eLDL
p = ε + γ and eHDL

p = ε + γ/2 for LDL and HDL respectively.

3 - (a) Density isotherms vs. reduced chemical potential for different temperatures. (b)

Number of bonds per site vs. reduced chemical potential for different temperatures. ρ is

given in units of lattice space and the temperature is in units of kB.

4 - Histograms of the total density ρ. (a) the coexistence between LDL and HDL phases

at T = 0.8 and (b) an homogeneous phase at T = 1.0 near the LDL − HDL critical

temperature. (c) the coexistence between gas and LDL phases at T = 1.2 and (d) an

homogeneous phase at T = 1.4, near the gas− LDL critical temperature.

5 - Reduced pressure as a function of the total density ρ for some values of T̄ .

6 - Total density as a function of reduced temperature at constant values of the reduced

pressure. The maximum in the curves give the temperature of maximum density for a given

pressure.

7 - Reduced pressure versus reduced temperature phase diagram. The gas-LDL and

LDL-HDL coexistence lines, the two critical points and the TMD line are shown

8 - Density as versus reduced temperature illustrating the two coexistence regions, the

two critical points and the TMD line.
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