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Abstract. – We explore the effects of counterion condensation on fluid-fluid phase separation
in charged colloidal suspensions. It is found that formation of double layers around the colloidal
particles stabilizes suspensions against phase separation. Addition of salt, however, produces an
instability which, in principle, can lead to a fluid-fluid separation. The instability, however, is
so weak that it should be impossible to observe a fully equilibrated coexistence experimentally.

Colloidal suspensions present an outstanding challenge to modern theories of statistical
mechanics. In spite of the work extending all the way to the beginning of previous century,
our understanding of these complex systems remains far from complete. Even such basic ques-
tions as what is the form of the interaction potential between two colloidal particles inside
a solution, still remain controversial [1]. The suspensions most often studied experimentally
consist of polystyrene sulphate spheres with diameter in the range of 10−6–10−4 cm, and 103–
104 ionisable surface groups. The typical solvent is water at room temperature. The main
stumbling blocks are the presence of long-range Coulomb interactions and the tremendous
asymmetry existing between the polyions and their counterions. The ratio of the bare charge
of a colloidal particle to that of its counterion can be as high as 10000:1. This large asymme-
try completely invalidates most of the methods of liquid state theory, which have proven so
successful in the studies of simple molecular fluids.
A particularly interesting question that has provoked much controversy over the last two

decades concerns itself with the possibility of fluid-fluid phase separation in charged colloidal
suspensions. A naive argument, based on the theory of simple molecular fluids, suggests that
fluid-fluid (or liquid-gas) coexistence is only possible in the presence of sufficiently long-ranged
attractive interactions. Thus, it has been proposed by some authors that a phase separation, or
c© EDP Sciences



A. Diehl et al.: Charge renormalization and phase separation etc. 87

even existence of voids in charged colloidal lattices requires attraction between the polyions [2].
Although appealing intuitively, this point of view is difficult to justify within the framework of
statistical mechanics. The fundamental observation is that colloidal suspension is a complex
fluid for which many-body effects play the fundamental role. It is, therefore, erroneous to
confine attention to pair interactions between the colloidal particles while ignoring the sig-
nificantly larger contributions to the free energy arising from the presence of counterions [3].
This point has also been emphasized by van Roij and Hansen (RH) [4] who demonstrated, in
the context of the linearized density functional theory, the existence of “volume” terms, which
can drive phase separation even for pairwise repulsive interactions [5]. The prediction of a
liquid-gas phase separation in an aqueous solution of like-charged colloidal particles seems,
however, to be contradicted by the recent simulations of Linse and Lobaskin [6], who did
not find any indication of phase transition in suspensions with monovalent counterions. This
apparent discrepancy between the simulations and the density functional theory suggests that
a closer look at the mechanism of phase separation is worth while. Since the first simulations
were performed in the absence of salt, as a starting point, we shall concentrate our attention
on this regime.
Our model consists of Np = ρpV spherical polyions of radius a, inside a homogeneous

medium of volume V and dielectric constant D. Each polyion carries Z ionized groups of
charge −q uniformly distributed over its surface. A total of ZNp monovalent counterions of
charge +q are present in order to preserve the overall charge neutrality of solution. In the
absence of salt, the counterions can be treated as point-like.
All the thermodynamic properties of colloidal suspensions can be determined given the free

energy. Unfortunately due to the complexity of these systems, no exact calculation is possible
and approximations must be used. We construct the total free energy as a sum of the most
relevant contributions: electrostatic, entropic, and hard core, f = F/V = fel+fent+fhc. The
electrostatic free energy, fel, is the result of polyion-counterion, fpc, and the polyion-polyion,
fpp, interactions. Interactions between the monovalent microions are insignificant for aqueous
solutions and can be ignored [3].
The polyion-counterion contribution to the total free energy can be obtained in the frame-

work of Debye-Hückel theory [3, 7]. Fixing one colloidal particle at the origin, it is possi-
ble to show that the electrostatic potential in its vicinity satisfies the Helmholtz equation
∇2ψ = κ2ψ, where κa = (4πZρ∗p/T

∗)1/2, and the reduced temperature and density are
T ∗ = kBTq2D/a and ρ∗p = ρpa

3, respectively. The electrostatic free energy can be obtained
from the solution of the Helmholtz equation followed by the Debye charging process, yielding

βfpc =
Z2

2T ∗(1 + κa)
ρp . (1)

We note that this expression would be identical to the one obtained by RH using the den-
sity functional theory [4], but for the self-energy contribution, βfself = Z2ρp/2T ∗, which we
include and RH excluded. Since fself is proportional to the density, it is irrelevant for any
thermodynamic calculations, as long as the effects of charge renormalization are neglected.
Thus, contrary to some earlier claims [8], the Debye-Hückel theory is fully consistent with the
density functional theory.
The polyion-polyion contribution to the free energy is calculated within the variational

approach proposed by Mansoori and Canfield [9]. The electrostatic DLVO potential [10]
is used to describe the effective pair interactions between the colloidal particles inside the
suspension. Based on the Gibbs-Bogoliubov inequality F ≤ F0+ 〈U〉0, Mansoori and Canfield
replace the free energy by the lowest variational bound. The subscript 0 denotes the reference
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system of hard spheres whose diameter plays the role of a variational parameter. The polyion-
polyion free energy is given by [11]

βfpp(η) = ρp
η(4− 3η)
(1− η)2 +

Zρp
2
[λ2G(λ)− 1] . (2)

The first term is the free energy of the reference hard-sphere system, while the second is the
electrostatic contribution evaluated using the Percus-Yevick pair correlation function for hard
spheres. The volume fraction, η, plays the role of a variational parameter. The functions

G(λ) =
λL(λ)

12η[L(λ) + S̄(λ)eλ]
,

L(λ) = 12η
[(
1 +

η

2

)
λ+ (1 + 2η)

]
,

S̄(λ) = (1− η)2λ3 + 6η(1− η)λ2 + 18η2λ− 12η(1 + 2η) , (3)

are given in terms of λ = 2κr0η1/3, where r0 is a measure of the typical distance between the
macroions and is given by 4πρpr30/3 = 1. The variational minimum η̄ is found by solving the
equation ∂fpp/∂η = 0, this has to be done numerically. The polyion-polyion contribution to
the total free energy is fpp(η̄). Again we observe that this calculation is very similar to the
one performed by RH using the density functional theory. We also note that eq. (2) already
includes the background subtractions emphasized by Warren [12].
The contribution to the total free energy arising from the hard-core repulsion between the

colloidal particles can be approximated by the Carnahan-Starling form [13],

βfhc = ρp
φp(4− 3φp)
(1− φp)2 , (4)

where φp = 4πρ∗p/3 is the volume fraction of polyions. The final contribution to the total free
energy is due to the entropic motion of counterions and polyions and can be expressed using
the Flory theory [14]

βfent = ρp ln
(
φp
ζp

)
− ρp + Zρp ln

(
φc
ζc

)
− Zρp , (5)

where ζp and ζc are the internal partition functions of the polyions and the counterions,
and φc is the “effective” volume fraction of counterions. Since both the polyions and the
counterions are rigid, without any internal structure, ζp = 1 and ζc = 1. Although we have
assumed the counterions to be point-like, the strong electrostatic repulsion will prevent them
from approaching too close to one another. The distance of characteristic approach d can
be obtained by comparing the electrostatic and the thermal energies. More specifically from
the theory of one-component plasma [15] we find that d = [(1 + 3κa/T ∗)1/3 − 1]/κ. The
volume fraction occupied by the counterions is then φc = 4πZρpd3/3. Combining all these
contributions, we obtain the total free energy f = fent+fpc+fpp+fhc of a colloidal suspension.
We observe that when ZλB/a is bigger than approximately 15, the Helmholtz free energy is
no longer a convex function of colloidal density and the separation into two coexisting phases
becomes thermodynamically favorable. Here λB = a/T ∗ is the Bjerrum length and is equal to
7.2 Å in water at room temperature. In fig. 1 we demonstrate some characteristic pressure-
density isotherms, exhibiting the familiar van der Waals loop, indicating the presence of a
first-order phase transition.
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Fig. 1 – The pressure-volume fraction, φ = 4
3
πa3ρp, isotherms for salt-free colloidal suspensions at

room temperature, λB = 7.2 Å. The circles are for Z = 2000, squares for Z = 2200 and triangles for
Z = 2500. The radius of polyions is a = 1000 Å. Note the presence of the van der Waals loop for
Z = 2200 and Z = 2500.

Is the phase transition found above consistent with the underlying approximations of the
Debye-Hückel and the linearized density functional theory? Clearly the fact that the transition
is located at Z/T ∗ ≈ 15, i.e., the strong coupling regime, should leave us concerned. Certainly,
in this regime the charge renormalization due to strongly associated counterions should play a
significant role [16]. Fortunately, it is fairly straightforward to include the effects of counterion
condensation directly into the theory presented above [3, 17]. To achieve this, we separate
counterions into condensed and free. For simplicity we shall assume that each polyion has
an equal number n of condensed (associated) counterions [3]. The density of free counterions
is then ρf = (Z − n)ρp. We shall suppose that the only effect of condensed counterions is
to renormalize the bare charge of colloidal particles, while the screening is performed by the
free microions. The effective charge of a polyion-counterion complex is then Zeff = Z − n.
The free energy f(n), taking into account the charge renormalization, is obtained by replacing
Z → Z − n in all formulas, including the inverse screening length κ. In addition, since the
complexes now have structure [3], their internal partition function can be approximated by
ζp = [Z!/((Z − n)!n!)]e−βEn , where En is the electrostatic energy of n counterions condensed
onto the surface of a polyion. The electrostatic energy of association can be obtained through
the charging process [3], yielding βEn = −(Zn− n2/2)/T ∗.
For fixed volume and number of particles, the equilibrium state of a colloidal suspension

is determined by the minimum of Helmholtz free energy, fren = minnf(n). Predictions of this
theory for Zeff have been recently tested and found to be in a semi-quantitative agreement with
the experiments [18]. We find that the charge renormalization, fig. 2b, has a most profound
effect on the free energy. The fren is a convex function of colloidal density for all values of Z,
see fig. 2a. We conclude that counterion condensation stabilizes salt-free colloidal suspension
against phase separation.
We now turn our attention to suspensions in the presence of salt. Since a system containing

point-like positive and negative particles is intrinsically unstable, we assign to each counterion
and coion a characteristic radius ac. The concentration of monovalent salt is designated by
ρs. The calculation now proceeds as the one outlined above. The density of free microions is
ρf = (Z − n)ρp + 2ρs and κa = (4πρ∗f /T ∗)1/2. The effective charge of a polyion-counterion
complex is Zeff = Z−n. The polyion-counterion and the polyion-polyion contributions to the
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Fig. 2 – (a) The pressure-volume fraction isotherms for salt-free colloidal suspensions. All parameters
are as in fig. 1. The solid curves are for Z = 2000 (circles), 2200 (squares), 2500 (triangles) with
counterion condensation taken into account. Note that Zeff is almost the same for all three bare
charges, and the isotherms collapse onto one monotonically increasing curve. There is no phase
separation. The dashed curve, included for comparison, neglects the counterion condensation, and
demonstrates the presence of the van der Waals loop and the phase separation for Z = 2500. (b) The
effective charge Zeff vs. Z for various colloidal volume fractions. Note that the effective charge is
quite insensitive to colloidal concentration.

total free energy are the same as for the case without salt, but with the new definition of κ,
since all free microions contribute to screening. The entropic free energy is given by

βfent = ρp ln
(
φp
ζp

)
− ρp + ρ+ ln

(
φ+
ζc

)
− ρ+ + ρ− ln

(
φ−
ζc

)
− ρ− , (6)

where the density of free counterions is ρ+ = (Z − n)ρp + ρs and the density of coions is
ρ− = ρs. The volume fractions are φ+ = 4πρ+a3c/3 and φ− = 4πρ−a

3
c/3.

To study a possibility of phase separation in this multicomponent system is significantly
more difficult than for the case of salt-free suspensions. The clearest indication of phase
transition can still be obtained from the pressure-density isotherms. A caution, however,
must be taken since the two coexisting phases do not necessarily have the same concentration
of salt, but must have the same chemical potential. This can be controlled by putting the
suspension in contact with a hypothetical reservoir containing an aqueous solution of salt. In
fig. 3, we present the pressure-density isotherms for suspensions with salt. We see that even
an extremely low concentration of salt is sufficient to shift the phase transition to the region of
parameter space where the charge renormalization plays only a marginal role. The suspension
phase separates; however, the transition is much weaker than it would be in the absence of
counterion condensation, fig. 3. The instability region forms a closed loop in the (ρs, ρp)-plane.
For the values of Z, a, ac, and λB used in fig. 3 the upper critical point is at ρus ≈ 64µM and
φup ≈ 0.02. For salt concentrations ρs > ρus the suspension is completely stable. The lower
critical point is located at ρls ≈ 0.28µM and φlp ≈ 0.000025. Since in practice it is impossible
to deionise water below ρs ≈ 1µM, all aqueous suspension should —in principle— exhibit
a miscibility gap at sufficiently low colloidal volume fractions and salt concentrations. From
fig. 3, however, it is clear that fluid-fluid transition is so weak that it is highly unlikely that a
fully equilibrated coexistence can be observed experimentally.
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Fig. 3 – The pressure-volume fraction isotherms for colloidal suspensions with two different reservoir
salt concentrations: circles for ρs = 25µM and squares for ρs = 1µM; λB = 7.2 Å, a = 1000 Å,
ac = 2 Å, Z = 2500. The solid curves are when the charge renormalization is neglected, while the
dashed curves are when the charge renormalization is taken into account. We note that in the presence
of salt, the counterion condensation does not fully destroy the phase transition, but only makes it
weaker. The inset amplifies the region of small densities, showing a part of the van der Waals loop
for ρs = 1µM. Note the scale of pressure.

We conclude that the non-linear effects associated with the presence of double layers
strongly modify the critical phenomena of charged colloidal suspensions. In particular, we
find that aqueous suspensions with monovalent counterions do not phase separate in the ab-
sence of salt. Addition of a small amount of 1:1 electrolyte produces a very weak instability.
In fact the phase transition is so weak that it is unlikely to be observed experimentally. The
metastable effects associated with the mathematical singularity, however, might indeed have
been detected, appearing as dilute voids in homogeneously deionised suspensions [2].
We would like to stress that our conclusions are only applicable to aqueous suspensions

with monovalent counterions. In the case of multivalent counterions, the correlations between
the condensed counterions can become so strong as to lead to an effective attraction between
the polyions [19], which in turn can drive a liquid-gas phase separation. Similarly, in organic
solvents of low dielectric constant, the correlations between the condensed counterions can
become sufficiently strong as to produce phase separation [20]. Unfortunately, this correlation-
induced instability cannot be studied at the level of the theory presented in this letter, since
the interactions between the polyions are described by the DLVO potential, which does not
include correlations. The DLVO potential is sufficient as long as the attention is restricted to
water with monovalent counterions, but most certainly fails if the electrostatic interactions
between the condensed counterions are significant, as is the case for low dielectric solvents
and multivalent counterions.
The theory presented above suggests that the counterion condensation stabilizes charged

colloidal suspensions against fluid-fluid phase separation. It, however, says nothing about
the possibility that suspension freezes, forming an ordered lattice. Fluid-solid transition will
certainly occur at sufficiently large colloidal volume fractions and will depend on the concen-
tration of salt in the system. To study this transition requires an accurate free energy of the
crystalline state. This can be obtained using the density functional theory within a suitable
cell geometry. The equality of pressure and chemical potential in the two phases will lead to
a fluid-solid coexistence curve.
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