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Abstract

We study the effect of correlations due to hardcore effects in the distribution of
ions around a spherical macroion enclosed in a limited cell. The osmotic pressure
is also computed. Both the profile and the pressure are obtained within density
functional approaches. Various recipes for the correlations are compared with the
Poisson Boltzmann analysis. In the regime of low ionic strength and ionic radius
that is not too large, the weighted density functionals based on the Percus-Yevic and
the Carnahan-Starling approaches seem to incorporate the size correlations better
than the similar local density prescriptions do.
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1 Introduction

Colloidal solutions are ubiquitous in nature and in numerous industrial appli-
cations [1]. Precise knowledge of the thermodynamics and phase behavior of
these suspensions is of interest in a wide range of disciplines. Large molecules
when in solution due to the depletion forces aggregate.This aggregation re-
sults in a number of inconveniences in industrial and biological systems. Ionic
macromolecules in solution loose ions and become ionized. In principle, the
strong electrostatic repulsion between the charged colloidal particles overcome
the short range attractive forces and stabilize the solution against coagulation.
But the electrostatic interaction between the colloidal particles is not simply
the one due to the bare polyions but as that between the overlapping electri-
cal double layers surrounding these aggregates. Then phase behavior and the
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kinetic properties of ionic colloids are determined by the interplay between
the short-range attraction and the electrostatic forces that are in principle
repulsive but can become attractive under certain circumstances.

Understanding the electrostatic interactions in these systems has been sub-
ject of a number studies [1] [2]. In the classical Derjaguin-Landau-Verwey-
Overbeek, DLVO, theory[2], the calculation of the double layer rely in the
Poisson-Boltzmann, PB, equation. This theory neglects completely the ion-
ion correlations and gives only repulsive forces between the electric double
layers. The stability of the suspension results from the competition between
the van der Waals attraction and the electrostatic repulsion. According the
DLVO approach, as the electrolyte concentration is increased, the range of
the double layer decreases and the coagulation might occur. This explanation
has been accepted until recently when experiments showed that there exists
attraction between like charged macroions in the case where the short-range
interactions are not relevant [3]-[5] but the high ionic strength play a relevant
role. Theory [6][7] and simulation [8]-[10] show attraction for short range dis-
tances. However, there is no clear picture for long-range attraction between
like ions observed in experiments.

Recent simulations suggest that the attraction between like charges might be
related to the mechanism that induces overcharging [11]-[13]. Therefore, un-
derstanding the mechanism that leads to overcharging will shed some light
in the appearance of attraction between like-charged polyions. Classical intu-
ition suggests that overcharging happens when the correlations between the
small ions induce the formation of a cloud of positive ions around a negative
macroion that is dominated by the charge of the positive ion. Since the corre-
lations are stronger for multivalent ions, a more dramatic effect is possible in
this case. Namely, instead of charge reduction due to the shielding, it is pos-
sible to observe a charge reversal due to overscreening. The charge inversion
phenomena becomes enhanced with the increasing concentrations of multi-
valent salt [12][13]. Unfortunately the actual mechanism of this overcharging
is not clear. It might be due to electrostatic correlations not included in the
original DLVO approach or by exclusion regions, hard core effects, also not
considered in the original mean field theories [2][14][15]. This issue needs to
be understood so the precise recipe to have overcharging would be clear.

In this paper, we study the effects of ionic size on the double layer around
a single colloidal particle in an ionic media. We apply a nonlocal density
approximation for the size effects. In section II, we introduce the model and a
number of prescriptions for taking into account size correlations. Our results
are discussed in section III. Conclusions end this section.
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2 The Density Functional Approach

We consider a charged colloid of radius r0 containing −Zq charged groups
uniformly distributed at the macroion surface, which are neutralized by ions
of valence v and diameter a. This polyion is embedded in the center of a cell
of radius R also containing the counterions of valence v. For simplicity, we
will assume that the solvent is modeled as an uniform dielectric continuum
characterized by a dielectric constant ǫ.

The thermodynamic behavior of the colloidal system is determined by the
distribution of mobile ions around the polyion. A simple type of theory that
can give this profile is the density functional theory of electrolytes. The ba-
sic notion behind this approach is that the inhomogeneous distributions of
counterions, n(r), results from the minimization of a free energy F [n(r)] that
depends in the complete function n(r). The simplest equation that can be
used to determine the ion distribution around the polyion is derived from
minimizing the free energy

βFPB =
∫

{n(r) ln(n(r)Λ3) − n(r) + βfel[n(r)]}d3r (1)

where Λ is the thermal wavelengh. The first term the entropy of the mobile
ions. The interaction of the small ions with the macroion potential and the
mean-field interaction between the ions is given by

fel[n(r)] =
1

2
qvn(r)φfree(r) + qvn(r)φp . (2)

Here φfree(r) is the potential due to the free ions and φp(r) is the potential
due to the fixed polyion. The extremization of the equation above together
with the requirement of charge neutrality leads to the Boltzmann distribution

n(r) = n0e
−βqvφ(r) (3)

where

n0 =
Z

v
∫

e−βqvφ(r)d3r
(4)

and where φ(r) = φfree(r)+φp(r). Eq. (3) together with the Poisson Equation,

∇2φ(r) =
−4π

ǫ
ρq(r) (5)
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where ǫ is the dielectric constant and ρq is the charge density given by:

ρq(r) = −Zqδ(r) + n(r)qv (6)

gives the well known Poisson Boltzmann, PB, approximation. The basic ap-
proximation of the PB theory is stressed in Eq. (2). Each ion is assumed to
interact with the average field as would be measured by an infinitely small
test charge. However, if one ion is present at a position ~r, it tends to push
away the other ions from that point, which is relevant for high ionic strength.
Moreover, this approach does not take into account the ionic size that also
becomes important at high concentration. This problem can be circumvented
by the addition to the free energy Eq. (1), the inter-particle correlational free
energy densities given by

F = FPB + Fcorr (7)

where

Fcorr =
∫

n(r)fhc[n(r)]d3r (8)

that accounts for the excess of free energy due to hard core exclusion. The
expression for the functional free energy density per ion, fhc[n(r)], can be
taken from the theory for uniform liquids. In this work we adopt the two
prescriptions. One is the free volume under the Percus-Yevic approximation,
PY, [16] given by

βfhc1(n) =
3

2

[

1

(1 − η)2
− 1

]

− ln(1 − η) (9)

where η = πna3/6 that works well when the system is not too packed. For
higher densities one can employ the Carnahan-Starling, CS, [17] form given
by

βfhc2(n) =
η(4 − 3η)

(1 − η)2
. (10)

To employ these expressions in the framework of the Local Density Approx-
imation, LDA, the homogeneous density n in Eq. (9) and Eq. (10) has to be
replaced by the non-uniform density n(r). The density profile can then be
derived by applying the variational principle together with charge neutrality
to Eq. (7). For the PY case, the density profile becomes
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n(r) =n0e
−βvqφ(r)−βµhc1[n(r)] (11)

where

βµhc1[n(r)] =
3η[n(r)]

(1 − η[n(r)])

[

1

(1 − η[n(r)])2
−

1

6

]

(12)

+
3

2

[

1

(1 − η[n(r)])2
− 1

]

− ln(1 − η[n(r)])

while for the CS recipe one gets the density profile

n(r) =n0e
−βvqφ(r)−βµhc2[n(r)] (13)

with

βµhc2[n(r)] =
η[n(r)](4 − 3η[n(r)])

(1 − η[n(r)])2
+

η[n(r)](2 − 4η[n(r)])

(1 − η[n(r)])3
(14)

and

η[n(r)]=
πa3n(r)

6
. (15)

The local density approximation fails for large values of the exclusion region.
Both expressions, Eq. (9) and Eq. (10), diverge when the volume fraction goes
beyond a threshold ( that is different for each expression). This divergence in
the homogeneous system is responsible for not allowing two neighbor parti-
cles to overlap. The excess of chemical potential, µhci pushes particles away
from regions close to the polyion until no particle is left there, generating an
structural catastrophe that is in fact an artifact of the LDA [18].

Since the LDA fails for high volume fractions, we shall employ another strat-
egy, the Weighted Density Approximation, WDA, that consists in instead of
using the local density in the expression for fhc[n(r)], employing an averaged
density, ñ. The coarse-grained density ñ(r) represents the weighted density
average of the local density n(r) given by:

ñ(r) =
∫

w(~r − ~r′)n(r′)d3r′ (16)

Several prescriptions for the weighting function of coarse graining have been
suggested. As a test function, we choose the weighted function related to the
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Debye-Huckel-Hole-Cavity theory, DHHC, [18]-[20], namely

w(~r − ~r ′) =
3

2πh2

[

1

|~r − ~r ′|
−

1

h

]

θ(h − |~r − ~r ′|) (17)

where

h[n(r)] = (
3

4πn(r)
+ a3)

1

3 (18)

is an electrostatic hole where no other particle can be found. The equilib-
rium density profile of the counterions surrounding the macroion is obtained
by functional minimization of Eq. (7) under the constraint of global charge
neutrality. This leads to the distribution

n(r) = n0e
−qvβφ(r)−βµ̃hci(r) (19)

where i=1,2 represents the PY and the CS, free energy functionals given by
Eq. (9) and Eq. (10) respectively. The excess of chemical potential due to the
hard core exclusion correlations is given by the weighted density approxima-
tion

βµ̃hci(r) =
δβfhci [n(r), ñ(r)]

δn(r)
. (20)

The resulting density profile defines the screening of the counterions in the
presence of size effects.

3 Results and Conclusions

In the following we will concentrate in two observables.The first is the inte-
grated fraction of ions within a radial distance r from the colloid center, which
is given by

P (r) =
1

Z

r
∫

r0+a/2

n(r′)d3r′ . (21)
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The second observable we look at is the osmotic pressure Π. For PB like free
energy functionals with an additional correlational density term it is given by
[21]

βΠ =
[

n + n
∂fcorr(n)

∂n
− fcorr(n)

]

n=n(R)
(22)

where fcorr can be any correlational free energy density. In the present work,
we use fcorr = fhci. For the PB case where fcorr = 0, the pressure reduces to the
well known fact that the pressure is given by the boundary density [22]. Since
this result actually holds rigorously for the full restricted primitive model
[23] and since our correlational theory is an approximate way to calculate
the boundary density, then we calculate the pressure from βΠ = n(R). The
difference between this procedure and using Eq. (22) is small and gives a lower
bound for the real pressure value.

Measuring all lengths in the full partition function of the cell model in units
of λ = λBv2 where λB = q2/(ǫkBT ) is the Bjerrum length reveals that the dis-
tribution function P (r) is invariant under a rescaling which keeps the number
of counterions N = Z/v, the coupling length λ, the ionic diameter a/λ and
the volume fraction (r0/R)3 constant [20].

In order to make the comparison between the systems where the counterions
have size and the Poisson Boltzmann form where the counterions are point
ions, the colloid-counterion closest approach r0/λ+a/2λ = 10 and the colloid-
counterion largest separation R/λ− a/2λ = 10 are kept constant while a/λ is
varied. The total integrated charge for the PB case and the two local density
approximations are illustrated for two different diameters, a/λ = 1 and a/λ =
5, in Fig. (1) and Fig. (2) respectively. The two correlational recipes exhibits
similar behavior. The hard core repulsion exclude ions from the vicinity of
the polyion. As the ion radius increases, the exclusion zone increases. Beyond
a/λ = 8 no solution is found.

For high ionic size, the LDA fails and therefore we need to employ the WDA.
The two prescriptions for WDA and the PB approach are compared for a/λ =
1 and a/λ = 5 in Fig. (3) and Fig. (5) respectively. As in the LDA, there is no
qualitative difference between the WDA approach using the PY functional or
the CS functional. The density profile within the WDA softens the size effect
when compared with the LDA. No divergence is found when employing the
WDA. The osmotic pressure for all these cases is illustrated in table (1). Both
the PY and the CS forms are not appropriate for analyzing larger particles
and a more sofisticated functional is needed.
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Fig. 1. Integrated charge for PB and
LDA cases with a/λ =1 and v2 =1.
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Fig. 2. Integrated charge for PB and
PY case with a/λ =5 and v2 =1.
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Fig. 3. Integrated charge for PB and
WDA cases with a/λ =1 and v =1.
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Fig. 4. Enhanced sector of the pre-
vious figure.
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Fig. 5. Integrated charge for PB and
WDA cases with a/λ =5 and v2 =1.
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Table 1
Values of the osmotic pressure in units of λ3 for v2 =1

Approximation/Π[λ3] a/λB=1 a/λB=5

P. Boltzmann 9.62754 10−5 9.62755 10−5

PY - Local Density Approx. 9.65298 10−5 9.65299 10−5

CS - Weighted Density Approx. 1.05119 10−4 1.05078 10−4

PY - Weighted Density Approx. 9.64533 10−5 1.08582 10−4

In conclusion, in the framework of a density functional approach we have
accounted for size effects in the charge distribution around a central colloid.
Our approach was tested for two prescriptions of excess of free energy. Both
recipes give the expected behavior, pushing the ions away from the colloid as
the counterion radius increase. When the counterions are of similar size of the
colloid or for high ionic strengh, the weight we employ fails and one has to
use a combination of a more sofisticated hard core and electrostatic excess of
free energies what will be done in a future work.
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