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Campus Caçapava do Sul, Universidade Federal do Pampa,

Caixa Postal 15051, CEP 96570-000, Caçapava do Sul, RS, Brazil and
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Universidade Federal de Pelotas, Caixa Postal 354,

CEP 96010-900, Pelotas, RS, Brazil

Marcia C. Barbosa§

Instituto de F́ısica, Universidade Federal do Rio Grande do Sul

Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil

1



Abstract

We investigate through non-equilibrium molecular dynamic simulations the flow of anomalous

fluids inside rigid nanotubes. Our results reveal an anomalous increase of the overall mass flux

for nanotubes with sufficiently smaller radii. This is explained in terms of a transition from a

single-file type of flow to the movement of an ordered-like fluid as the nanotube radius increases.

The occurrence of a global minimum in the mass flux at this transition reflects the competition

between the two characteristic length scales of the core-softened potential. Moreover, by increasing

further the radius, another substantial change in the flow behavior, which becomes more evident at

low temperatures, leads to a local minimum in the overall mass flux. Microscopically, this second

transition is originated by the formation of a double-layer of flowing particles in the confined

nanotube space. These nano-fluidic features give insights about the behavior of confined isotropic

anomalous fluids.
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I. INTRODUCTION

The recent development of nanofabrication techniques have opened the possibility of

building nanoscale structures1 that can effectively mimic biological channels2. This new

technology has generated devices with application not only as controlled models for biological

systems, but also as laboratory gatekeepers that are chemically selective and could therefore

eventually function as nanofilters3. In this way, the understanding of the nanofluidic inside

this devices is of great interest.

Some fluids, even in bulk, exhibit an anomalous behavior, distinct from the observed in

most liquids. While the majority of the liquids contract on cooling there is some anoma-

lous liquids in with a maximum in the density is observed at constant pressure. Also,

unlike the general behavior, some liquid diffusion coefficients increase under compression.

These anomalous fluids include water4–6, Te7, Ga, Bi8, Si9,10, Ge15Te85
11, liquid metals12

and graphite13. Computational studies for silica14–16, silicon17 and BeF2
14 also indicate the

presence of thermodynamic anomalies for these materials6. In addition, silica15–18, silicon19

and water20,21 also have a maximum in the diffusion coefficient at constant pressure.

At the nanoscale, however, fluid properties differ significantly from what usual hydrody-

namics would predict. Most of the recent experiments about confined anomalous fluids are

related to water, but a few analysis have been done in alkanes22 where a rapid but not as fast

as the flux observed in water was also measured. In this last case, the For instance, recent

experiments highlight the exceptional properties of carbon nanotubes23–25. Precisely, these

studies revealed that certain microelectromechanical fabrication processes are capable to as-

semble a macroscopic collection of carbon nanotubes with diameters in a range as small as

1.3 to 2 nm. It has been shown that the water flux in these special membranes can be three to

four orders of magnitude larger than the value prediction from the continuum-based no-slip

Hagen-Poiseuille (HP) relation24,26, as also confirmed by computer simulations23. This water

flow increase is not uniform with the different nanotube radius. As the nanotube radius is

reduced, the flow decreases up to a certain threshold, and for smaller radius it increases

again, as reported by computational27 and experimental25 works. This non-monotonic be-

havior is attributed to the transition from continuum to sub-continuum transport as the

nanotube shrinks25,27 and can also be driven by hydrophobicity28. However, despite the use

of all atom models for water, the computational results are only qualitatively comparable
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to the experiments. The approximations employed in the water models and friction effects

might be the origin of these numerical differences29. Also, the evaluation of the slip length

of confined water seems to be sensible to the employed computational method, and non-

equilibrium Molecular Dynamics (NEMD) simulations can lead to spurious results30,31. The

different atomistic models for water give, therefore, a qualitative description of the experi-

mental enhancement flow. This suggests that the major ingredient for the rapid flux is not

related to the details of the model, but to the effective interactions that they do represent.

In the last two decades a number of effective model potentials have been suggested for

anomalous fluids based on water32–36. Despite their simplicity, these models exhibit in bulk

the thermodynamic, dynamic and structural anomalies of water and other liquids, and also

predict the existence of a second critical point hypothesized by Poole and collaborators

for the ST2 water model37. In these models, the particle-particle interaction is modeled

through a potential with two characteristic length scales, that is, one repulsive shoulder and

an attractive well36,38–40. The competition between these two scales leads to the density

and diffusion anomalies. Likewise, other interesting systems, such as colloids and globular

proteins, can be modeled using two length scales potential41,42.

Recently it has been suggested that core-softened potential models are able to capture

some of the anomalous behavior even under confinement43–47. In fact, the behavior of the

diffusion constant for nanoconfined water, attributed to the hydrogen bonds48, was obtained

by pure volumetric effects in these isotropic anomalous fluids46. Motivated by this propo-

sition, in this paper we use NEMD simulation in order to explore the connection between

the enhanced particle flow and the fluid-fluid interaction potential for fluids confined inside

a nanopore. Distinct soft-core fluids are tested, such as one that exhibit anomalous proper-

ties36 and the standard Lennard-Jones fluid. The same NEMD model was used recently by

us in the context of ionic channels49 and core-softened fluids inside nanoporous47. We ana-

lyze only two length scales potential systems and therefore any comparison with the effects

observed in alkanes where the fast flow is also observed should be taken with caution.

The paper is organized as follows. The model and the computational details are given in

Sec. II. The results are discussed in Sec. III, and the summary and conclusions are presented

in Sec. IV.
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II. THE MODEL SYSTEM AND THE SIMULATION METHODOLOGY

The simulation setup, used in this work to obtain the dynamical behavior of anomalous

fluid inside nanotubes, is essentially the same of our previous work, applied to the study of

ionic fluxes through narrow nanopores and transmembrane channels49, as shown schemati-

cally in Fig. 1. The simulation box is a cubic parallelepiped with dimensions 4L×L×L in

xyz directions, containing two reservoirs (two control volumes CVs, CV1 and CV2, where

the chemical potential of the fluid is maintained fixed) and a nanotube connected to both

CVs through small buffer regions. These two buffer regions (see Fig. 1) were used in order to

avoid any influence of the simulation technique applied inside the CVs on the fluid dynamics

through the nanotube. The nanotube structure is built as a cylindrical tube with radius a

and length LNT, made of a wrapped sheet of stationary Lennard-Jones (LJ) particles with

effective diameter σ. Both entrances of the nanotube, except for the orifices, are bounded

by confining flat walls, as well as the two extremes of the simulation box in the x direction,

in order to maintain the movement of fluid particles between the two CVs only through

the nanotube, according Fig. 1. With this setup, periodic boundary conditions are applied

only in the y and z directions. We should address that the nanotube coarse-grained model

used in our simulations is rougher than the surface of a carbon nanotube (CNT) but not

as rough to change thermodynamic and dynamic properties (citar o paper com o Leandro).

Therefore, detailed comparisons with CNT should be considered with caution.

The anomalous fluid system is modeled as a collection of spherical particles with effective

diameter σ, the same of the nanotube particles, and mass m, interacting through the three

dimensional core-softened potential36

U(rij) = 4ε

[

(

σ

rij

)12

−

(

σ

rij

)6
]

+ u0εexp

[

−
1

c2

(

rij − r0
σ

)2
]

, (1)

where rij = |~ri − ~rj | is the center-to-center distance between two fluid particles. The first

term on the right is the standard 12-6 LJ potential50, while the second term corresponds

to a Gaussian centered at r0, with depth u0ε and width cσ. For u0 = 5.0, c = 1.0 and

r0 = 0.7σ, the potential (1) displays two different length scales: one at rij ≈ σ, where

the force has a local minimum, and another at rij ≈ 2σ, where the fraction of imaginary

modes shows a local maximum51. We assume that the fluid-fluid interaction, Eq. (1), has

a cutoff radius of 3.5σ for all cases simulated. It has been previously observed36 that the
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FIG. 1. Schematic depiction of the simulation box. The nanotube is built as a cylindrical tube,

with radius a and length LNT, made of a wrapped sheet of fixed Lennard-Jones (LJ) spheres. The

system is confined in x direction by two flat walls (red planes) at each end of the simulation cell.

The same flat walls are used at both entrances (gray planes), except for the orifices, in order to

maintain the flux between the two reservoirs (CVs) only through the nanotube. Two small buffer

regions were included between both entrances of the nanotube and the two CVs. Periodic boundary

conditions are applied only in y and z directions.

pressure-temperature phase diagram of this system at equilibrium exhibits features similar

to the anomalies present in water52,53.

The interaction between a fixed nanotube and an anomalous fluid particles, separated

by a center-to-center distance r, is given by the purely repulsive Weeks-Chandler-Andersen

(WCA) LJ potential50

UWCA(r) =







ULJ(r)− ULJ(rc) , r ≤ rc ,

0 , r > rc ,
(2)

where ULJ(r) is the standard 12-6 LJ potential and rc = 21/6σ is a cutoff distance. The

confining flat walls are modeled with the same WCA LJ potential, however considering the

x-projection of the distance between one fluid particle (outside the nanotube) and the wall

position. The nanotube radius is varied from a = 1.3σ to a = 9.0σ, while for the simulation

box in y and z directions we have used two sizes: L = 10σ for nanotubes with radius a ≤ 4σ

and L = 2a + 2σ otherwise. Since in our model the nanotube particles have an effective
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diameter of σ, the available radius for fluid movement inside the nanotube is approximately

a− σ/2 in Fig. 1.

A steady state flux of particles through the nanotube is induced by using the Dual Control

Volume Grand Canonical Molecular Dynamics (DCV-GCMD) method54. Briefly stated, in

the DCV-GCMD simulations two control volumes (CVs) are initially prepared at desired

densities, using Grand Canonical Monte Carlo (GCMC) simulations in both CVs, during

5× 105 steps, with the initial velocity for each particle obtained from a Maxwell-Boltzmann

distribution at the desired temperature. After that, the system evolves in time using the

Molecular Dynamics (MD) methodology applied in all simulation box and, as a consequence

of this dynamics, the densities in both CVs are changed. In order to restore the densities

to their initial values, the MD steps are intercaled with insertion/deletion GCMC steps

performed only inside the reservoirs. In our simulations we have used 150 GCMC steps for

every 500 MD steps during the DCV-GCMD methodology, which ensures that the densities

in both reservoirs change less than 2%. Using this procedure, we have maintained fixed the

densities in both CVs as ρ1 = 0.2σ3 and ρ2 = 0.01σ3 in CV1 and CV2, respectively. It should

be noted that the use of small buffer regions between the reservoirs and the nanotube ends is

essential to avoid any artificial effect in the vicinity of the nanotube entrances, produced by

the GCMC steps inside the reservoirs. Since in these buffer regions particles evolve by MD

integration, a particle inserted during a GCMC step that enters the buffer region reaches

the right velocity distribution in few steps, before it eventually gets inside the nanotube. As

a consequence, the flux steady state is obtained after 5× 105 DCV-GCMD steps, after that

the desired observables were typically obtained during 5 × 107 DCV-GCMD steps for each

simulation, averaging over 10 to 20 independent runs. A constant time step of δt = 0.005,

in LJ time units50, is adopted. The average temperature of the system is fixed by means

of the Nose-Hoover heat-bath scheme with a coupling parameter Q = 2. For simplicity,

we assume that the nanotube atoms are motionless during the entire simulation. This is

a valid approximation for the case of rigid nanoconfinement. However, we should address

that the nanopore flexibility can lead to distinct results 30,44. Therefore, since the nanotube

particles are not time integrated, the thermostat is applied only to the fluid particles. The

reduced temperature in our simulations is defined as T ∗ ≡ kBT/ε, where kB is the Boltzmann

constant.

The axial flux of particles through the tube, Jx,tube, is computed by counting the number
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of particles that cross the nanontube from left to right, nltr, and the particles flowing from

right to left, nrtl
54,

Jx,tube =
nltr − nrtl

ANTNstepsδt
, (3)

where ANT = πa2eff , with aeff = a − σ/2 the effective radius available for the fluid, Nsteps is

the total number of steps used in the simulation, and δt is the MD time step. In an entirely

similar way, we evaluate the flux in the x-direction for the non-confined case, Jx,bulk, but

now using A = L× L, since there is no nanotube in the system.

III. RESULTS AND DISCUSSION

In order to characterize the effect of the two length scales present in the potential (1),

simulations were performed for u0 = 5.0, 3.0, 1.0 and u0 = 0, which corresponds to the

standard 12 − 6 LJ fluid, for a reduced temperature of T ∗ = 1.0. In the first two cases,

u0 = 5.0 and 3.0, there is a competition between the two length scales, since the energetic

penalty to move from one scale to another is high, as shown in the inset of Fig. 2. When

applied in bulk conditions, these two cases will exhibit anomalous behavior36. For the last

two cases, on the other hand, there is no significant energetic barrier between the two length

scales for u0 = 1.0, and only one length scale (the minimum in the LJ potential) for u0 = 0.

Hence, in bulk conditons the fluid behavior is non anomalous for these low u0 values. Our

goal here is to check if the presence of anomalous behavior in bulk leads to the observed

enhanced flow inside narrow nanotubes.

Figure 2 illustrates the dependence of the mass flux with the nanotube radius for different

values of u0. The inset of Fig. 2 shows how this parameter affects the shape of the interaction

potential. For u0 = 5.0 and sufficiently large values of the nanotube radius the flux reaches

a maximum, which is approximately equals to the corresponding bulk value. As expected,

by decreasing the radius, the flux gradually decreases from this saturation value, due to the

obvious mass transport limitations of the confined nanotube geometry. Interestingly, as the

radius is reduced even more, the flux reaches a minimum at a critical radius ac ≈ 2.25σ

and starts to increase sharply, revealing anomalously large values for a range of significantly

reduced nanotube radii. Anomalies in the transport behavior have also been previously

observed with atomistic55 and effective models46 of water. In these cases, the diffusion

coefficient is evaluated in confined environments, but under equilibrium conditions, which
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FIG. 2. Flux of particles through the nanotube, Jx,tube, in units of the non-confined flux, Jx,bulk,

for different interaction potential parameter u0. The inset shows the fluid-fluid interaction, Eq. (1),

as a function of the separation distance rij = |~ri − ~rj| between two particles for different values of

u0.

leads to an apparent measure. This can be substantially different from the effective mass

transport Jx,tube quantified here.

As shown in the inset of Fig. 2, the interaction potential for u0 = 3.0 displays a shoulder-

like profile with a small barrier between the two length scales. Our simulations for this case

also indicate the presence of a minimum followed by anomalously large flux values for radii

smaller than the critical radius ac, as shown in Fig. 2. Moreover, despite of the decrease in

the energy barrier from u0 = 5.0 to u0 = 3.0, the critical radius ac is essentially the same

for both potentials, since they still possess identical characteristic lengths.

For u0 = 1.0, the potential exhibits a quasi-LJ shape, as shown in the inset of the Fig. 2,

with a small attractive well in the first characteristic length and a small barrier with a second

characteristic length. As shown in Fig. 2, the anomalous behavior vanishes completelly in

this case. The competition between the two length scales becomes irrelevant as it becomes

energetically viable for a particle to transit from positions corresponding to the first and

second characteristic lengths. Previous works for this soft-core model shows that, even
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FIG. 3. Snapshot of the simulation box. The nanotube radius, from the left to the right, are

a = 10σ, a = 4.5σ, a = 2.25σ and a = 1.5σ. For better visualization, only for the case a = 1.5σ

the nanotube particles are shown.

in bulk, this fluid only features anomalous behavior when exists competition between the

length scales in the interaction potential36. Finally, for the LJ fluid (u0 = 0 case) we also

do not observe the anomalous increase in flux for small radius, as shown in Fig. 2, which

is the expected behavior for simple LJ fluids56. These results show that the presence of

the two length scales are essential to observe an anomalous enhanced flow inside nanotubes.

Therefore, the behavior can be explained in the framework of the competition between the

two length scales potential and the confinement.

Despite the mathematical simplicity of the effective potential representing the fluid in our

model, it is capable to catch several structural changes of the fluid, going from single-file flow

in nanotubes with small radius, to bulk-like flow in nanotubes with large radius. Between

these two regimes, several other structures have been found, including ring structures, as

shown in Fig. 3. As can be seen, there is a formation of structured layers inside the nanotube.

We can understand the dynamical behavior of the system, Fig. 2, through its underlying

structural properties. Here we consider typically the simulation results obtained with u0 =

5.0 at temperature T ∗ = 1.0. Fluids modeled with two-length scales potential tend to display

an ordered structure in bulk, which corresponds to the situation shown in Fig. 4 (a), where

the confining nanotube has a large radius, a = 4.0σ. The ordered behavior and the resulting

high flux reflect the quasi-discrete nature of the particle flow. The distance between two

adjacent density peaks is approximately equals to σ, the first length scale of the core-softened

potential. The fluid therefore experiences an ordered liquid behavior, with a well defined

structure and a high mobility, due to the changes in relative positions of interacting particles

from one density peak to another. The highly ordered density profile of the fluid observed

in Fig. 4 (b) close to the critical nanotube radius ac is responsible for the low particle flux.
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FIG. 4. Axial density profiles inside the nanotube for a fluid modeled with u0 = 5.0 at temperature

T ∗ = 1.0. (a) An ordered liquid behavior is observed for a nanotube with a = 4.5σ, (b) a solid-like

behavior for a = 2.0σ and (c) a disordered structure appears for a = 1.25σ.

This solid-like state, with a well defined structure and the minimum in the mobility, appears

as a special condition due to a combined action of confinement and the presence of two

length scales in the potential. As shown in Fig. 4 (c), ordering disappears under extreme

confinement to generate a single-file flow of enhanced flux, where the particles are obliged

to remain at the first length scale.

We can obtain more details about the flux increase in anomalous fluids analyzing the

radial velocity profile νx,NT. This profile shows the average velocity per particle as function

of the Euclidian distance from the x axis in cylindrical coordinates r = (y2 + z2)1/2. In

Fig. 5 (a) we show the velocity profile for the anomalous fluid, u0 = 5.0. For nanotubes

with radius a = 3.5σ, where the fluid is structured in a ring layer near the wall and a linear

layer in the center, the velocity profile indicates that the central layer is moving faster than
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FIG. 5. Radial velocity profile for some values of nanotube radius for the case with (a) u0 = 5.0

and (b) u0 = 0.0.

the external layer. This behavior is explained by the friction with the rough surface of the

nanotube. At the critical radius, ac = 2.25σ, the fluid shows a ring structure in contact

with the wall nanotube, as depicted in Fig. 3. The fluid-nanotube friction, allied to the

particle distance equals to the second length scale, makes the fluid to move with a small

velocity through the nanotube. However, when the nanotube radius is smaller than ac, such

as a = 1.75σ, the fluid assumes a single line structure and flows with a higher velocity. This

occurs because the distance between the particles is no longer the second length scale. Also,

the small nanotube radius leads the fluid particle to interact with more nanotube particles

that surround it, unlike for the ring structure case, when the fluid only interacts with less

nanotube particles. Nevertheless, we can see that the peak in the velocity profile is higher

for a = 1.75σ than for a = 2.25σ. On the other hand, for the LJ fluid (u0 = 0.0 case) we

do not observe any structure. As a consequence, the velocity profile is uniform, as shown

in Fig. 5 (b). Also, as we decrease the nanotube radius, the velocity per particle decreases

as well, resulting in flow decreasing. This result shows that the competition between the

two length scales is crucial to the formation of layers, and it is strongly connected to the

anomalous flow behavior.

Finally, we investigate the fluid flow behavior in the nanotube for u0 = 5.0 at different

temperatures. A similar behavior was observed, with the minimum flux located at the same

value of critical radius ac, as shown in Fig 6 for T ∗ = 1.0 and 0.25. Surprisingly, a second

anomalous behavior is revealed at lower temperatures. The system at T ∗ = 0.25 shows
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FIG. 6. Particle flux through the nanotube for the u0 = 5.0 case, at different values of temperature.

an anomalous flux increase in the region 2.75σ ≤ a ≤ 3.0σ. Looking in detail the curve

for T ∗ = 1.0, the same behavior can be observed in the region 3.12σ ≤ a ≤ 3.5σ. This

anomaly occurs due to changes in the fluid structure from a double layer of flowing particles

(a cylindrical layer near the nanotube wall and a linear central layer) to a single cylindrical

layer structure. For nanotubes with radius a = 3.5σ, the system displays the same double

layer structure for both temperatures, as shown in Fig. 7 (a). For a = 3.25σ the single

layer structure appears at T ∗ = 1.0, while at a lower temperature T ∗ = 0.25 the fluid still

flows through a double layer structure, as depicted in Fig. 7 (b). This change in the fluid

conformation causes the observed flux anomaly, being a consequence of the competition

between the fluid-fluid and the fluid-nanotube interactions. The fluid particles tend to form

structures that increase the enthalpic contribution to the free energy, minimizing it. On

the other hand, the confinement imposes restrictions to ordering, increasing the entropic

contribution to the free energy. As a consequence, the transition from the structure with

two layers to one single cylindrical layer occurs first in systems at higher temperature, or

higher entropic contribution. For sufficiently low values of the nanotube radius, the flowing

system is characterized by a single cylindrical layer regardless of the temperature, which is

the case for a = 2.75σ, as shown in Fig. 7 (c).
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FIG. 7. Radial density profile inside the nanotube for T ∗ = 1.0 (black circles) and T ∗ = 0.25 (red

stars), for radius (a) a = 3.5σ, (b) a = 3.25σ and (c) a = 2.75σ. The snapshots show the different

observed structures.

IV. CONCLUSION

In summary, we have studied the effect of confinement in the flow of particles interacting

through core-softened potentials. In the presence of two competing length scales our results

show an anomalous oscillatory behavior, in the form of a global minimum flux with the

nanotube radius, which is compatible with a transition from single-file flow to the flow of

an ordered-like fluid. At increased values of the radius, a local minimum in the overall mass

flux appears, which is more evident at low temperatures, and reflects the formation of a

double-layer of flowing particles through the nanotube. These anomalous flow properties

of core-softened particles in confined cylindrical geometries provide useful insight to the

microscopical description of the flow behavior of nanoconfined anomalous liquids.
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