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Abstract

Using molecular dynamic simulations we study a family of continuous core-softened potentials

consisting of a hard core, a shoulder at closest distances and an attractive well at further distance.

The repulsive shoulder and the well distances represent two length scales. We show that if the

first scale, the shoulder, is repulsive or has a small well, the potential has a region in the pressure-

temperature phase diagram with density, diffusion and structural anomalies. However, if the

closest scale becomes a deep well the regions in the pressure-temperature phase diagram where the

three anomalies are present shrink and disappear. This result helps in defining two length scales

potentials that exhibits anomalies.

PACS numbers: 64.70.Pf, 82.70.Dd, 83.10.Rs, 61.20.Ja
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I. INTRODUCTION

Most liquids contract upon cooling. This is not the case of water, a liquid where the spe-

cific volume at ambient pressure starts to increase when cooled below T ≈ 4oC 1,2. Besides,

in a certain range of pressures, water also exhibits an anomalous increase of compressibility

and specific heat upon cooling3–5. Experiments for Te,6 Ga, Bi,7 S,8,9 and Ge15Te85,
10 and

simulations for silica,11–14 silicon15 and BeF2,
11 show the same density anomaly.

Water also has dynamic anomalies. Experiments show that the diffusion constant, D,

increases on compression at low temperature, T , up to a maximum Dmax(T ) at p = pDmax(T ).

The behavior of normal liquids, with D decreasing on compression, is restored in water only

at high p, e.g. for p > pDmax ≈ 1.1 kbar at 10oC 2,3. Numerical simulations for SPC/E

water16 recover the experimental results and show that the anomalous behavior of D extends

to the metastable liquid phase of water at negative pressure, a region that is difficult to

access for experiments17–20. In this region the diffusivity D decreases for decreasing p until

it reaches a minimum value Dmin(T ) at some pressure pDmin(T ), and the normal behavior,

with D increasing for decreasing p, is reestablished only for p < pDmin(T )17–19,21. Besides

water, silica13,22 and silicon23 also exhibit a diffusion anomalous region.

It was proposed a few years ago that these anomalies are related to a second critical point

between two liquid phases, a low density liquid (LDL) and a high density liquid (HDL)24.

This critical point was discovered by computer simulations. This work suggests that this

critical point is located at the supercooled region beyond the line of homogeneous nucleation

and thus cannot be experimentally measured. Even with this limitation, this hypothesis has

been supported by indirect experimental results25,26.

In order to describe the anomalies present in water and in other liquids, isotropic models

has been used as the simplest framework to understand the physics of the liquid-liquid

phase transition and liquid state anomalies. From the desire of constructing a simple two-

body isotropic potential capable of describing the complicated behavior present in water-like

molecules, a number of models in which single component systems of particles interact via

core-softened potentials27 have been proposed. They possess a repulsive core that exhibits a

region of softening where the slope changes dramatically. This region can be a shoulder or a

ramp28–49. These models exhibit density, diffusion and structural anomalies, but depending

on the specific shape of the potential, the anomalies might be hidden in the metastable and
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unstable phases49. The relation between the specific shape of the core-softened potential

and the presence or not of the anomalies is still missing.

How the specific shape of a core-softened potential affects the location of the anomalies

and the critical points? In order to answer to this question in this paper we analyze a family

of continuous core-softened potentials that exhibit two length scales, a shoulder followed

by an attractive well. When the shoulder is purely repulsive, this core-softened potential

represents the effective pair interaction between two neighbors tetramers44,50 and the density,

the diffusion and the structural anomalies are present44,45. If the shoulder has a deep well

with attractive forces, this potential it is related to the effective interaction potential between

two water molecules obtained from the ST451 or TIP5P52 models for water. In this case the

effective potential is derived from the oxygen-oxygen radial distributions function, solving the

Ornstein-Zernike equation by using an integral equation method51,52. The resulting potential

has a shoulder with a deep well at closest distance and a second well with lower energy at

furthest distance. The detailed depth of the softening region depends on the approximations

employed. This potential leads, as we are going see in this paper, to systems in which the

anomalies are in the unstable region of the phase diagram while in the full ST4 and TIP5P

systems the anomalies can be observed. It is important, therefore, to understand what is

lost when one goes from the specific anisotropic ST4 and TIP5P potentials to the isotropic

spherical symmetric case.

So, in this paper we study what happens with the region in the pressure-temperature

phase diagram where the anomalies are located as the potential changes from a repulsive

shoulder to a very deep well. Our results will shade some light not only in the use of spherical

symmetric approximations of asymmetric potentials but also will help to design potentials

for new systems with anomalies.

The paper is organized as follows. In sec. II the family of potentials is introduced and

its link with the derivation the framework of the integral equations is presented. In sec. III

these potentials are tested for presence density, diffusion and structural anomalies, and for

the the existence of two liquid phases and a critical points by molecular dynamic simulations.

Conclusions are presented in sec. IV.
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II. THE MODEL

We study a system of N particles, with diameter σ, where the pair interaction is described

by a family of continuous potentials given by

U(r) = ǫ

[

(σ

r

)a

−
(σ

r

)b
]

+

4
∑

j=1

hj exp

[

−

(

r − cj

wj

)2
]

. (1)
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FIG. 1: Interaction potential obtained by changing parameters h1 in Eq. (1). The potential and

the distances are in dimensionless units U∗ = U/γ and r∗ = r/r0.

The first term is a Lennard-Jones potential-like and the second one is composed by four

Gaussians, each one centered in cj . This potential can represent a whole family of inter-

molecular interactions, depending of the choice of the parameters a, b, σ, {hj , cj, wj}, with

j = 1, . . . , 4. The parameters are chosen in order to obtain a two length scale potential51.

In order to make the simulations in dimensionless units, the potential and the distances

are given in dimensionless units, U∗ = U/γ and r∗ = r/r0 where γ is the energy scale and

r0 is the length scale chosen so the closest approach between particles is about r∗ = 1. All

the parameters of the model are used in the simulations in units of γ and r0. In this work

ǫ/γ = 0.02 and σ/r0 = 1.47. Modifying h1 in the Eq. 1 allow us to change the depth of the

hard-core well, as illustrated in Fig. 1. Here we use four different values for h1 and they are

expressed as a multiple of a reference value href
1 as shown in the Table I. For all the four

cases the values of a, b, {cj, wj} with j = 1, . . . , 4 and href . Table II gives the parameter
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values in Å and kcal/mol consistent with modeling ST4 water51. The depth of the region

of softening of the potentials illustrated in the Fig. 1 where chosen so that the potential B

is the shallow shoulder-like potential similar to the one studied by de Oliveira et al.44 that

exhibits the anomalies, while for the potential D the region of softening has the same depth

as the potential obtained by using the oxygen-oxygen radial distribution function for the

ST4 model51. In this case, the shoulder region has attractive forces. For comparison we also

analyzed two other cases: potential A with a ramp-like shoulder and potential C, with a

very shallow shoulder.

The properties of the system were obtained by NV T molecular dynamics using Nose-

Hoover heat-bath with coupling parameter Q = 2. The system is characterized by 500

particles in a cubic box with periodic boundary conditions, interacting with the intermolec-

ular potential described above. All physical quantities are expressed in reduced units and

defined as

t∗ =
t(m/γ)1/2

r0

T ∗ =
kBT

γ

p∗ =
pr0

γ

ρ∗ = ρr3
0

D∗ =
Dm

γr2
0

.

Standard periodic boundary conditions together with predictor-corrector algorithm were

used to integrate the equations of motion with a time step ∆t∗ = 0.002 and potential cut

off radius r∗c = 3.5. The initial configuration is set on solid or liquid state and, in both

cases, the equilibrium state was reached after t∗eq = 1000 (what is in fact 500000 steps

since ∆t∗ = 0.002) . From this time on the physical quantities were stored in intervals of

∆t∗R = 1 during t∗R = 1000. The system is uncorrelated after t∗d = 10, from the velocity

auto-correlation function. 50 descorrelated samples were used to get the average of the

physical quantities. The thermodynamic stability of the system was checked analyzing the

dependence of pressure on density, by the behavior of the energy and also by visual analysis

of the final structure, searching for cavitation.
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TABLE I: Parameters h1 for potentials A, B, C and D.

Potential Value of h1

A 0.25href
1

B 0.50href
1

C 0.75href
1

D 1.00href
1

TABLE II: Parameters for potentials A, B, C and D in units of Å and of kcal/mol.

Parameter Value Parameter Value

a 9.056 w1 0.253

b 4.044 w2 1.767

ǫ 0.006 w3 2.363

σ 4.218 w4 0.614

c1 2.849 href
1 −1.137

c2 1.514 h2 3.626

c3 4.569 h3 −0.451

c4 5.518 h4 0.230

III. RESULTS

Pressure-Temperature Phase Diagram

First, we are going to show the effects of the shoulder depth in the presence or not of the

thermodynamic anomalies and the location in the pressure-temperature phase diagram of

the different phases. Fig. 2 illustrates the pressure-temperature phase diagram of the four

cases. The system at high temperatures has a fluid phase and a gas phase (not shown).

These two phases coexist at a first order line that ends at a critical point (see Table III for

the pressure and the temperature values). At low temperatures and high pressures there

are two liquid phases coexisting at a first order line (not shown) ending at a second critical

point (see Table IV for the pressure and the temperature values) that is identified in the

graph by the region where isochores cross.
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TABLE III: Critical point location for potentials A, B, C and D.

Potential T ∗

c1 p∗c1

A 1.93 0.072

B 1.98 0.078

C 2.02 0.080

D 2.15 0.094

TABLE IV: Second critical point location for potentials A, B, C and D.

Potential T ∗

c2 p∗c2

A 0.35 3.44

B 0.48 1.86

C 0.57 0.49

D 0.81 −0.33

In the Fig. 2 at low temperatures and low pressures the dotted line separates the fluid

phase from the amorphous region. The amorphous region is identified by the diffusion

coefficient that becomes zero. For the potential A, the amorphous region is located in a

pressure range −0.91 . p∗ . 3.40, for B case this region is located in the range −0.89 .

p∗ . 1.80 and for C case it is located in the range −1.00 . p∗ . 0.48. The potential D does

not has a stable amorphous phase. Hence, as the shoulder becomes deeper the amorphous

phase shrinks and moves to a lower pressure range.

At low temperatures and high pressures two liquid phases are present. As the shoulder

becomes deeper the liquid-liquid coexistence line slides down to lower pressures and it goes

to higher temperatures. This indicates that the deeper the shoulder the liquid-liquid phase

transition stays stable for higher temperatures. Therefore, even thought this transition only

exists if the attractive part of the potential is present (the second length scale), the stability

of the liquid phases is determined by the depth of the shoulder (the first length scale).

7



0.2 0.4 0.6 0.8 1
T

*

0

2

4

p
*

A case

0.2 0.4 0.6 0.8 1
T

*

-1

0

1

2

3

p
*

B case

0.4 0.6 0.8
T

*

-0.5

0

0.5

p
*

C case

0.6 0.8 1
T

*

-0.5

0

p
*

D case

FIG. 2: Pressure-temperature phase diagram for cases A, B, C and D. The thin solid lines are the

isochores 0.30 < ρ∗ < 0.65. The liquid-liquid critical point is the dot, the temperature of maximum

density is the solid thick line, the diffusion extrema is the dashed line and the structural extrema

is the dashed-dotted line. The dotted line indicates the limit between the fluid and the amorphous

regions.

Thermodynamics anomaly

The Fig. 2 also shows the isochores 0.30 ≤ ρ∗ ≤ 0.65 represented by thin solid lines. The

temperature of maximum density at constant pressure coincides with the minimum pressure

on isochores,
(

∂p
∂T

)

ρ
= 0. From the equation

(

∂V

∂T

)

p

= −

(

∂p

∂T

)

V

(

∂V

∂p

)

T

(2)

is possible to see that, for a fixed density, a minimum in the pressure as a function of

temperature represents a maximum in the density as a function of temperature, named
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FIG. 3: Location of the critical points on pressure-temperature phase diagram for cases A, B, C

and D.

temperature of maximum density (TMD) given by
(

∂V
∂T

)

p
= 0. The TMD is the boundary

of the region of thermodynamic anomaly, where a decrease in the temperature at constant

pressure implies an anomalous increase in the density and therefore an anomalous behavior

of density (similar to what happens in water). Fig. 2 shows the TMD as a solid thick line.

For the potentials A, B and C the TMD is present but for potential D no TMD is observed.

Similarly to what happens with the location of amorphous region and of the second crit-

ical, as the shoulder becomes deeper, the region in the pressure-temperature phase diagram

delimited by the TMD goes to lower pressures, shrinks and disappears for the case D, the

potential with the deepest shoulder. As the region delimited by the TMD shrinks, it also

goes to lower temperatures. For the potential C the TMD line is located at temperatures

bellow the the temperature of the liquid-liquid critical point. The thermodynamic parame-

ters that limits the TMD in phase diagram are shown in the Table V, where pl represents

the values of (ρ∗, T ∗, p∗) for the point of the lowest pressure in the TMD line, pm is the point

with the highest temperature and ph is the point with the highest pressure.

The link between the depth of the shoulder and the presence or not of the TMD goes as

follows. The TMD is related to the presence of large regions in the system in which particles

are in two preferential distances represented by the first scale and the second scale in our
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cases pl pm ph

ρ∗ 0.47 0.52 0.57

A T ∗ 0.71 0.85 0.73

p∗ 1.50 2.50 3.30

ρ∗ 0.46 0.50 0.54

B T ∗ 0.67 0.76 0.63

p∗ 0.90 1.40 1.80

ρ∗ 0.40 0.42 0.43

C T ∗ 0.44 0.54 0.52

p∗ 0.15 0.29 0.36

TABLE V: Limiting values for density (ρ∗), temperature (T ∗) and pressure (p∗) of the thermo-

dynamics anomalies on pressure-temperature diagram. Here the point pl represents the density,

temperature and pressure of the point of the lowest pressure in the TMD line, pm represents the

point of the highest temperature and ph represents the point of the highest pressure of the TMD

line.

potential 49,53–55. While for normal liquids as the temperature is increased the percentage

of particles at closest scales decreases (see case D in the Fig. 4), for the anomalous liquid

(see cases A, B and C in the Fig. 4) there are a region in the pressure-temperature phase

diagram where as the temperature is increased the percentage of particles at the closest

distance increases. This increase in the percentage is only possible if particles move from

the second to the first scale. In the first case, the decrease of particles in the first scale leads

to a decrease of density with increase of temperature, behavior expected for normal liquids.

In the second case, the increase of particles in the first scale leads to an increase of density

with temperature what characterizes the anomalous region. The anomaly is, therefore,

related with the increase of the probability of particles to be in the first scale when the

temperature is increased while the percentage of particles in the second scale decreases.
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FIG. 4: Radial distribution as a function of the distance for the four potentials. In the cases A,

B and C the first peak of g(r∗) increases with the increase of the temperature, while the second

peak decreases. For the potential D all the peaks decrease with the increase of the temperature.

Diffusion anomaly

Now we are going to test the effect the shoulder depth has in the location of the diffusion

anomaly in the pressure temperature phase diagram. The diffusion coefficient is obtained

from the expression:

D = lim
t→∞

〈[~rj(t0 + t) − ~rj(t0)]
2〉t0

6t
(3)

where ~rj(t) are the coordinates of particle j at time t, and 〈· · · 〉t0 denotes an average over

all particles and over all t0.
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FIG. 5: Diffusion coefficient as a function of density. The dots are the simulational data and the

solid lines are polynomial fits. The dashed lines connect the densities of minima and maxima

diffusivity that limit the diffusion anomalous region.

Fig. 5 shows the behavior of the dimensionless translational diffusion coefficient, D∗, as

function of the dimensionless density, ρ∗, at constant temperature for the four cases. The

solid lines are a polynomial fits to the data obtained by simulation (the dots in the Fig. 5).

For normal liquids, the diffusion at constant temperature increases with the decrease of the

density. For the potentials A, B and C the diffusion has a region in the pressure-temperature

phase diagram in which the diffusion increases with density. This is the diffusion anomalous

region. In the Fig. 5 one dashed line joints the points of the density (or pressure) of minimum

diffusion for different temperatures and another dashed line links the points of density (or

pressure) of maximum diffusion for different temperatures.

Similarly to what happens with the location of the TMD, as the shoulder becomes deeper,
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the region in the pressure-temperature phase diagram delimited by the extrema of the dif-

fusion goes to lower pressures, shrinks and disappears for the case D, the potential with the

deepest shoulder.

Fig. 2 shows the location at the pressure-temperature phase diagram of the pressure

of maximum and minimum diffusion as dashed lines (the dashed lines in the Fig. 5). In

the Fig. 2 we show that in the pressure-temperature phase diagram the region where the

dynamic anomaly occurs englobes the region where the thermodynamic anomaly is present.

This hierarchy between the anomalies is observed in a number of models17,18,47 and in the

water.2

The link between the depth of the shoulder and the presence or not of the region of

diffusion extrema goes as follows. The presence of the diffusion anomaly is related to having

the quantity Σ2 > 0.4247,56 where

Σ2 =

(

∂s2

∂ ln ρ

)

T

(4)

= s2 − 2πρ2

∫

ln g(r)
∂g(r)

∂ρ
r2dr

where

s2 = −2πρ

∫

[g(r) ln g(r) − g(r) + 1] r2dr , (5)

is the excess entropy. Fig. 6 illustrates the behavior of the radial distribution function for

fixed temperature as the density varies. For the case A the ln g(r) is negative and dg(r)/dρ is

positive for the first scale, while for the second scale the ln g(r) is positive and the dg(r)/dρ

is negative. As a result the second parcel in Eq. (5) is positive a requirement for having

Σ2 > 0.42 since s2 is negative47. For case D, also shown in Fig. 6, the ln g(r) is positive and

huge and dg(r)/dρ is positive what leads to a second parcel in Eq. (5) that is negative what

do not fulfill the requirement Σ2 > 0.42.

Structural anomaly

Finally we are going to test the effect the shoulder depth has in the location in the

pressure-temperature phase diagram of the structural anomalous region.

The translational order parameter is defined as13,18,57
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FIG. 6: Radial distribution for cases A and D as a function of r∗ for various densities. In the case

A the temperature is fixed T ∗ = 0.90 while in the case D the temperature is T ∗ = 1.10.

t =

∫ ξc

0

|g(ξ) − 1| dξ (6)

where ξ = rρ
1

3 is the distance r in units of the mean interparticle separation ρ−
1

3 , ξc is the

cutoff distance set to half of the simulation box times45 ρ−
1

3 , g(ξ) is the radial distribution

function proportional to the probability of finding a particle at a distance ξ from a referent

particle. The translational order parameter measure how structured is the system. For an

ideal gas g = 1 and t = 0, and the case of crystal phase g 6= 1 over long distances and t is

large. Therefore for normal fluids t increases with the increase of the density.

Fig. 7 shows the translational order parameter as a function of the density for fixed

temperatures. The dots represent the simulation data and the solid line the polynomial fit

to the data. For the potentials A, B and C there are a region of densities in which the

translational parameter decreases as the density increases. A dotted-dashed line illustrates

the region of local maximum of t∗ and minimum of t∗ limiting the anomalous region. For

the potential D, t∗ increases with the density. No anomalous behavior is observed.

Fig. 2 shows the structural anomaly for cases A, B and C, as dotted-dashed lines. It is

observed that the region of structural anomaly embraces both dynamic and thermodynamic

anomalies. Similarly to other anomalies the effect of increase the depth of the repulsive

shoulder is to narrow the anomalies asymmetrical. The branch of anomaly in pressures near

to liquid-liquid critical point is most feeling to the effect of the shoulder compared with the

branch obtained in low pressures. However, the hierarchy of the anomalies is maintained,
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FIG. 7: The translational order parameter as a function of density for fixed temperatures: T ∗ =

1.10, 1.00, 0.90, 0.80, 0.70 and 0.60 (from top to bottom). The dot-dashed lines locate the density

of maxima e minima t∗.

the change in the repulsive shoulder does not affect it.

IV. CONCLUSIONS

In this paper we studied a family of potentials characterized by two length scales: a

shoulder and an attractive well. We analyzed the effect in the location in the pressure-

temperature phase diagram of the density, diffusion and structural anomalies of making this

repulsive shoulder a deep well. We found that the anomalies shrink and disappear as the

well becomes deeper. This indicates that an important mechanism for the anomalies is the

possibility of particles in the furthest length scale to move to the closest length scale. As

the shoulder well becomes deeper particles becomes localized in the closest scale and the
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mobility between the two scales decreases.

We find that in the cases of potentials A, B and C the thermodynamic, dynamic an

structural anomalies are present and that the region of structural anomaly embraces the

dynamic and thermodynamic anomaly in pressure-temperature phase diagram. This implies

that the hierarchy of the anomalies is preserved independent of the depth of the repulsive

shoulder, however when the shoulder becomes deeper, the upper pressure lines of anomaly

converge to a similar value in the pressure-temperature phase diagram.

What is the connection between the studies potentials and the real system? Effective

potentials for water has been derived based in the oxygen-oxygen radial distribution func-

tion for the ST451 and TIP5P52 models for water. In both cases the effective potential was

obtained from the g(r∗) using the Ornstein-Zernike equation and integral equation approxi-

mations. The potential resulting are the case D in the Fig. 1 in the case of ST4 and for the

TIP5P model a potential that exhibits a deep shoulder similar to the case D. Consequently

the approximation washes out the anomalies present in both ST4 and TIP5P. In the case

of the TIP5P it was shown that if instead of deep shoulder a smooth shoulder like the one

present in the ramp potential would be used, the anomalies not only would be present but

would be located in the same region of pressure and temperature of the TIP5P potential.

In resume, similarly to other previous studies40,44,58,59, a directional interaction potential

is not a fundamental ingredient to have a water-like anomalies. Two scales isotropic potential

also reproduce this anomalies if the shoulder closest scale would not be too deep.
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