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Abstract

We study the counterion distribution around a spherical macroion and its osmotic pressure in the

framework of the recently developed Debye-Hückel-Hole-Cavity (DHHC) theory. This is a local

density functional approach which incorporates correlations into Poisson-Boltzmann theory by

adding a free energy correction based on the One Component Plasma. We compare the predictions

for ion distribution and osmotic pressure obtained by the full theory and by its zero temperature

limit with Monte Carlo simulations. They agree excellently for weakly developed correlations

and give the correct trend for stronger ones. In all investigated cases the DHHC theory and its

computationally simpler zero temperature limit yield better results than the Poisson-Boltzmann

theory.
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I. INTRODUCTION

The screening of charged macromolecules in an electrolyte solution is a long standing

problem which has prompted many attempts aiming at a theoretical explanation. In their pi-

oneering work Gouy [1] and Chapman [2] used what is now referred to as Poisson-Boltzmann

(PB) theory as the basis for a mean field treatment of the electrical double layer. This ap-

proach found its culmination about thirty years later in the famous DLVO theory of charged

colloids [3, 4]. The major flaw of these mean field approaches is their neglect of correla-

tions between the ions. The first attempt to work out such correlations for homogeneous

electrolytes are due to Debye and Hückel [5], whose work remarkably (and at first glance

confusingly) is also based on (linearized) Poisson-Boltzmann theory. In the inhomogeneous

case integral equation theories [6–9] and recently field theories [10] have become very pop-

ular in calculating correlation corrections to mean field double layers. However, in order

to make progress and calculate physical quantities, approximations have to be made which,

unfortunately, instead of clarifying the physics sometimes tend to obscure it. Moreover,

since in some of these methods, the free energy is not defined in a unique way, it becomes

impossible to determine the specific role played by each source of correlations in the system.

It would therefore be desirable to have a theoretical framework which retains the sim-

plicity of the early attempts, but also accommodates correlation effects. This is the case for

density functional theories. It is possible to rigorously rewrite the partition function of, say,

a system of charged colloids, as a density functional [11], in which the contribution beyond

mean field is seen to be expressible as an additive correlation correction to the free energy

density, whose functional form is of course unknown and for which one has to make a rea-

sonable ansatz. The spirit is very similar to the fundamental problem of integral equations,

where one also has to make an educated guess (namely, the closure relation), but in the

functional case the ansatz involves a free energy density rather than a relation between two-

and three-point functions. It thus relies on a different kind of intuition and thus permits

complementary insight.

One suggestion for such a functional correction has been made by Nordholm [12]. It

relies on a Debye-Hückel treatment of the One Component Plasma (OCP) [13–15], in which

the short-distance failure of linearization is cleverly overcome by postulating a correlation

hole. Since beyond a certain density the resulting OCP free energy density is a concave
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function of density, this favors the development of inhomogeneities. In the pure OCP these

are balanced by the homogeneously charged background. However, if one uses the OCP

free energy density as a correlation correction to the mean field functional describing the

double layer at a charged surface, one has all the charge opposite to the counterions located

on that surface, rather than homogeneously distributed as a stabilizing background. The

consequence is that the double layer becomes unstable and all ions collapse onto the surface,

an effect which has been termed “structuring catastrophe” [16, 17].

To circumvent this instability without losing the physical transparency of a local func-

tional, we recently proposed the Debye-Hückel-Hole-Cavity (DHHC) theory [18], in which we

suggested a convex correlation functional. This was achieved by excluding the homogeneous

background from a region of radius a around the central ion during the Debye charging

process. For counterions with size we identified a tentatively as the ion diameter. We then

applied our theory to the screening of a charged rod by its counterions. Comparisons of the

ionic charge distribution obtained showed a very good agreement with the simulations for

both monovalent and trivalent counterions.

In this paper we test our theory for a different geometry: charged spherical colloids with

point-like counterions. In general, colloidal systems exhibit a rich phase behavior. The

particles can agglomerate at high densities, generally an irreversible process, but they may

also show a reversible liquid-vapor phase separation similar to the one present in simple

molecular liquids. In order to prevent them from simply falling out of solution, one needs

some kind of repulsion between the particles. Introducing charged groups at the surface of

the colloid is one way to do that. The large gain in entropy following the dissociation of a vast

number of counterions into solution stabilizes the system, because an aggregation of colloids

into a small sub-volume would – for reasons of global charge neutrality – also require the

counterions to occupy this small volume and thereby give up much entropy. Of course, the

final state of the system is always a balance between energy and entropy, and if electrostatic

interactions are strong, they will ultimately overcome entropy and lead to aggregation of the

colloids [19–23]. The resulting phenomenon of “like charge attraction” has received much

attention, but it is of course only mysterious if one forgets that the entire system is neutral.

Admittedly, confusion persists about whether such a phase separation could also happen

within mean field theory. Even though rigorous proofs exist that PB theory will not permit

attraction between like charged macroions under reasonably general circumstances [24–26],
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and that in a cell model treatment the compressibility will be positive [27], it has been

claimed that an expansion of the free energy of a charged colloidal suspension into zero-,

one-, two- etc. body terms will contain configuration independent volume terms, which may

drive a phase separation even though the pair terms are purely repulsive [28–30]. Since

unfortunately all these derivations rely on a linearization of PB theory, which might render

the findings as artifacts [31–34], the issue appears to be open yet.

All these phenomena ultimately depend on the screening produced by the ionic cloud,

which in turn depends on the geometry of the system. In this regard, a charged spherical

colloid differs from a charged rod in two fundamental ways: the electrostatic potential and

the spatial extension. The logarithmic potential present in the case of charged cylinders

leads to the phenomenon known as Manning condensation [35, 36]. If the line charge density

exceeds a critical threshold, a certain fraction will remain loosely associated with the rod,

even at infinite dilution, and renormalize the rod charge. A quantitative PB treatment of

this provides a unique criterion for defining the effective charge of the system, even at finite

densities [37, 38].

The situation is different for charged spherical colloids, which lose all their counterions

in the limit of infinite dilution; thus, the colloidal charge does not get renormalized. Still,

on often talks about effective charges, which mimic the stronger condensation of nonlinear

theory within a linearized treatment [39–44]. That, however, is clearly not a physical but

rather a formal renormalization, necessitated by the simplified linear treatment, and is thus

a different story.

Another important difference between the spherical and the cylindrical symmetry lies in

the spatial extend. If a charged rod is infinitely long (as is usually assumed in theoretical

treatments), the number of counterions at any given distance from the rod is always infinite.

In contrast, for a charged spherical colloid the number of counterions at any distance is

always finite, since of course there is no direction along which the colloid is infinite. Hence,

fluctuations of the radial charge density are more likely to be important in the spherical

case. However, for clarity we want to remind the reader that none of these fluctuations are

included in theories which only rely on the ground state of some density functional (which

also applies to the theory to be discussed here).

The systems we will consider here are strongly charged colloids with point-like ions of

some specific valence and no added salt inside a spherical cell. Since all the particles are
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limited to be within one cell, correlations between different macroions and between microions

belonging to different cells are not present. In our treatment we will thus exclusively focus

on questions regarding the description of a single double layer. Furthermore, for point-like

ions the interpretation of our cutoff parameter, a, can obviously no longer be the particle

diameter. We will introduce an alternative prescription for a, based again on local density

considerations and keeping in mind that its entire purpose is to prevent the functional from

becoming unstable.

We also derive an approximated version of our correlation functional, namely, its zero

temperature limit. It has the huge advantage that it can be calculated analytically, while

still predicting ion profiles quite close to the full DHHC expression for a wide range of

parameters. It also demonstrates the spirit of our stabilization correction very directly.

Finally, we compare our predictions for ion profiles with Monte Carlo simulations, in

which we independently vary valence v and plasma parameter Γ2d =
√
πσ`2Bv

3, where σ is

the density of surface charges and `B is the Bjerrum length. It has been shown that beyond

Γ2d ' 2.26 the force-distance curves between charged plates cease to be monotonic, and

beyond Γ2d ' 2.45 attractions set in [45]. These effects result from correlations between

different double layers (like, for instance, ion interlocking [46, 47]), which we cannot account

for, and it has in fact been shown that they cannot be described within a local density

functional theory with a convex correlation correction [26]. However, for the description of a

single double layer the regime of applicability of our theory is larger, even though it clearly

must fail for too high coupling.

The paper is organized as follows. In Sec. II the DHHC correlation functional is revis-

ited and its zero temperature limit is introduced. It is then applied as a local correlation

correction to the problem of screening of charged colloids in Sec. III. The case of point-like

ions is discussed in detail and the new expression for a is proposed. Technical details of

the simulations are described in Sec. IV. The results of the simulations, full theory and zero

temperature limit are compared in Sec. V, and we end with our conclusions Sec. VI.

II. THE DEBYE-HÜCKEL HOLE-CAVITY (DHHC) THEORY REVISITED

The one component plasma consists of N identical point-particles of valence v and (pos-

itive) unit charge q inside a volume V with a uniform neutralizing background of charge
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density −vqnB and dielectric constant ε. As a first approximation the free energy of this sys-

tem can be derived in the framework of the Debye-Hückel approach. Then, the electrostatic

potential ψ created by some ion, fixed at the origin for instance, and all its surrounding ions

satisfies the spherically symmetric Poisson equation ∇2ψ(r) = ψ′′(r)+ 2
r
ψ′(r) = −4πρ(r)/ε.

The charge density has a contribution from the central ion, vqδ(r), a contribution from

the surrounding ions which are distributed – within mean field theory! – according to the

Boltzmann factor nPB(r) = vqnB exp{−βvqψ(r)}, and finally from the charged background.

Inserting this into the Poisson equation and linearizing the exponential yields the linearized

Poisson-Boltzmann equation

ψ′′(r) +
2

r
ψ′(r) = κ2ψ − 4π

ε
vqδ(r) , (1)

where κ ≡
√

4π`nB is an inverse screening length, ` = `Bv
2, `B = βq2/ε is the Bjerrum

length, and β = 1/kBT is the inverse thermal energy.

The solution of Eqn. (1) is the well known expression ψ(r) = vq e−κr/εr. However, the

problem with Debye-Hückel theory is that the condition for linearization is obviously not

satisfied for small r, where the potential is large. Indeed, since all ions have the same sign

of charge, this implies that the particle density becomes negative and finally diverges at the

origin. This defect was overcome by the Debye-Hückel-Hole theory [12], which artificially

postulates a correlation hole of radius h around the central ion into which no other ions are

allowed to penetrate. In this case the charge density is given by

ρ(r) =





vq (δ(r) − nB) : r ≤ h

−εκ
2

4π
ψ(r) : r > h

. (2)

The hole size h is fixed by excluding particles from a region where their Coulomb energy

is larger than kBT , which gives 1 + κh = (1 + 3κ`)1/3. Once the potential at the position of

the central ion is known, the electrostatic contribution to the free energy density, fDHH(n),

can be obtained by the Debye charging process [5, 17].

The simple Debye-Hückel-Hole analysis of the one-component plasma theory offers con-

siderable insight into ionic systems and is in good agreement with Monte-Carlo simulations

[48] when fluctuations on the charge density are not relevant [49]. In principle, one can

attempt to include such fluctuations by applying the bulk density-functional theory in a

local way. The basic idea is to obtain the density distribution via functional minimization
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of the free energy

FOCP[n(r)] = FPB[n(r)] +

∫
d3r fcorr

(
n(r)

)
. (3)

The first part, the PB free energy

FPB[n(r)] =

∫
d3r

{
kBTn(r)

[
ln
(
n(r)λ3

)
− 1
]

+ fel

}
, (4)

contains the entropy of the mobile ions (λ is the thermal de Broglie wavelength) and all

electrostatic interactions, fel. For the particular case to be discussed below, ions surrounding

a charged macroion, the latter term will be given by Eqn. (16). The expression fcorr in

Eqn. (3) accounts for the correlation between the mobile ions. The ion distribution can be

derived by minimization of Eqn. (3) under the constraint of charge neutrality. Unfortunately,

this variational process does not lead to a well defined density profile if one uses fDHH(n) as

the correlation correction fcorr. The reason is that fDHH(n) is a concave function beyond n? ≈
7.86/`3 and asymptotically behaves as −n4/3. Since there is no stabilizing homogeneously

charged background but rather a concentration of opposite charge on the macroion surface,

this favors the development of a distribution in which all the ions sit on the surface of the

macroion.

The instabilities present in the DHH approach can be properly overcome by recognizing

that the failure of this model is due to the too strong requirement of local charge neutrality

imposed by the local density approximation: A local fluctuation leading to an increase

of particle density implies a corresponding increase in background density. Therefore, the

fluctuation is not suppressed by an increase in repulsive Coulomb interactions but quite

on the contrary favored by its decrease. To circumvent the instabilities occurring at high

densities, we proposed recently a simple solution in which one excludes the neutralizing

background from a cavity of radius a placed around the central ion (for details of the

derivation of the model see Ref. [18]). In this case, the charge density can be split in three

different regions, namely

ρ(r) =





vqδ(r) : 0 ≤ r < a

−vqnB : a ≤ r < h

−εκ
2

4π
ψ(r) : h ≤ r

, (5)

where the hole size h is chosen such as to yield the same screening (i.e., the same amount
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of charge within h) as the DHH theory, which results in

κh =
[
(ω − 1)3 + (κa)3

]1/3
, (6)

with ω = (1 + 3κ`)1/3. Using this prescription for h, the free energy is obtained by Debye-

charging the fluid:

βfDHHC

nB

=
(κa)2

4
−
∫ ω

1

dω
{ ω2

2(ω3 − 1)
Ω(ω)2/3

+
ω3

(1 + Ω(ω)1/3)(ω2 + ω + 1)

}
, (7)

where

Ω(ω) = (ω − 1)3 +
(κa)3

3κ`
(ω3 − 1) . (8)

Since the DHHC free energy is a convex function of density, fDHHC can thus be used to

account for correlations within a local density approximation.

A. The Zero Temperature Limit DHHC(0)

The fact that the integral in Eqn. (7) has to be solved numerically obstructs a direct

view on how thermodynamic stability is actually restored. Luckily, the crucial point can

already be seen by focusing on the limit of zero temperature. In this case Eqn. (6) gives the

expression

h = (3/4πnB + a3)1/3 (9)

for the correlation hole of the DHHC theory. This conveniently implies the potential to

vanish outside h. In other words, the region a < r < h contains the right amount of

background charge to exactly neutralize the central ion, and it is appropriate to refer to

this limit as “complete screening”. The potential in the two other regions then simplifies

considerably:

ψ(r) =
v q

4πεr
×





1 +
3r

2a

(
n̂B − a

h
(1 + n̂B)

)
: 0 ≤ r < a

1 + n̂B

(
1 +

r3

2a3

)
− 3r

2h

(
1 + n̂B

)
: a ≤ r < h

, (10)
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with the dimensionless scaled density n̂B given by n̂B = 4
3
πa3 nB. After the Debye charging

process one obtains the following closed expression for the excess free energy density:

βf
(0)
DHHC

nB

=
3`

4a

{
n̂B − (1 + n̂B)2/3 n̂

1/3
B

}
. (11)

Note that the limits a → 0 and nB → ∞ do not commute: For high densities, βf
(0)
DHHC

scales asymptotically like −`nB/2a, i.e., linear with density. However, in the limit a → 0

Eqn. (11) becomes

lim
a→0

βf
(0)
DHHC = −`

(
9π

16

)1/3

n
4/3
B , (12)

and this concave scaling with density prevents it from being used within a local density

approximation. The zero temperature limit thus demonstrates in a clear way the key role

played by the cavity of size a, which excludes the uniform background from the vicinity of

the central ion.

B. How to choose a proper value for a

Before applying this strategy to various valences and ionic strengths, we need to specify

the parameter a. If the counterions have a diameter d, no other charge should be found

at a distance r < d. Therefore, in the spirit of the Debye-Hückel theory, we tentatively

interpreted a in Ref. [18] as the ion diameter. This choice has led to an excellent agreement

with simulations when applied to rod-like polyelectrolytes [18] with mono-, di-, and trivalent

counterions (and no added salt), but it is of course infeasible for point ions. In the following

we suggest an alternative way to choose a value for a which is independent of excluded

volume arguments, and show that this choice yields a good description of our Monte Carlo

results and trends.

We already mentioned the crucial role played by a in maintaining the free energy convex.

We also have seen in our discussion of the zero-temperature case that this is achieved because

a in Eqn. (9) balances the length (3/4πnB)1/3, which is basically the mean distance between

ions. One could thus try to selfconsistently choose a proportional to the local ion distance,

but this would be unsuccessful: The balance would not work, since each density increase

would shrink a proportionally, and the collapse could not be stopped. One thus needs a

length which is local and somehow related to the ion density – but which does not change

as the local ion density changes. This suggests to pick the average distance between ions as
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predicted by PB theory : a = (3/4πnPB(r))1/3. Our density functional then quite naturally

emerges as a next order correction to the mean field result.

After these general considerations on the cutoff a, let us continue with a practical remark.

Far away from the charged surface the ion density is always quite low, correlations are weakly

developed, and the precise value of a is immaterial. In fact, we only ever need a stabilizing

cutoff close to the charged surface, where the ion density is largest. This suggests the

following simplification: Instead of using a cutoff function a(nPB(r)) depending on the local

PB density, we pick a constant a from a worst-case scenario, namely, the value which it has

at contact. This then finally yields the following prescription for a:

a =
( 3

4πnPB(r0)

)1/3

. (13)

In fact, since the cutoff will become important in the regime of strong correlations, we could

even replace the contact density nPB(r0) by its limiting value 2π`Bσ
2, where σ is the density

of surface charges [50]. We then find

a

`

strong coupling−→
(

3

8π2σ2`4Bv
6

)1/3

= 0.721 Γ
−4/3
2d , (14)

where

Γ2d =
√
πσ`2Bv

3 (15)

is the 2d plasma coupling parameter [15]. Formula (14) nicely demonstrates that in this limit

the cavity size, measured in the appropriate length scale ` (see also the scaling discussion in

the Appendix), is simply another measure of the coupling strength.

III. APPLICATION TO THE SPHERICAL CELL MODEL

Charged spherical colloids are common and well characterizable systems for studying

many electrostatic phenomena in a particularly transparent way, and they can often serve

as simplified models for more complicated systems like polyelectrolytes or proteins. Solutions

containing such charged structures are indeed complicated to describe due to the long-range

nature of the Coulombic interactions. However, as long as these long range forces are repul-

sive, the colloids will create large correlation holes (“cells”) around themselves which are void

of other colloids. In a first approximation one can then decouple the macroion interactions

and concentrate on what’s going on within a single correlation hole—an approach which is
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termed “cell model” [51]. The cell picture is known to give a good approximation for many

realistic systems, and most of the physics of the system is determined by the screening of

the macroion by the microions inside a cell. As a test case for our theory we shall therefore

consider a charged spherical colloid of radius r0 containing Z charged groups, which are

neutralized by point-like ions of valence v. This macroion is embedded in the center of a

spherical cell of radius R, corresponding thus to a volume fraction φ = (r0/R)3 of colloids.

The thermodynamic behavior of the colloidal system is determined by the distribution of

mobile ions around the macroion. This distribution is obtained by minimization of the free

energy functional, Eqn. (3). For the colloidal system, the interaction of the small ions with

the macroion and the mean-field interaction between the counterions are given by

fel =
1

2
vqn(r)

(
ψ(r) + ψfix(r)

)
, (16)

where ψ(r) is the total electrostatic potential at position r and ψfix(r) = −Zq/εr is the

potential due to the charged macroion alone. The inter-particle correlations are taken into

account by employing fcorr = fDHHC. The minimization itself is accomplished by numerically

solving the corresponding Euler-Lagrange-equation. Special care had to be taken to obtain

a sufficient accuracy of the rapidly varying density profiles close to the colloid surface.

In the following we will concentrate on two observables. The first is the integrated fraction

of ions within a radial distance r from the colloid center, which is given by

P (r) =
1

Z

∫ r

r0

dr̄ 4πr̄2 vqn(r̄) . (17)

We will sometimes plot P as a function of −1/r, which is the Green function of the spherical

Laplacian. This will visually expand the region close to the colloid, but it also has practical

advantages when estimating the amount of closely associated ions, see e.g. Ref. [40, 52].

Measuring all lengths in the full partition function of the cell model in units of ` = `Bv
2

reveals that the distribution function P (r) is invariant under a rescaling which keeps the

number of counterions N = Z/v, the reduced colloid size r0/`, and the volume fraction

φ = (r0/R)3 constant (see Appendix). The same holds for PB theory, and it is also true for

DHHC theory. In the latter case this not only relies on the form of the DHHC free energy

correction (7), but also on our particular choice of a. This invariance property is thus a

further support for Eqn. (13).

The second observable we look at is the osmotic pressure Π. For PB like free energy
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functionals with an additional density term – like our fcorr – it is given by [27]

βΠ =
[
n+ n

∂fcorr(n)

∂n
− fcorr(n)

]
n=n(R)

. (18)

For the PB case, fcorr ≡ 0, this reduces to the well known fact that the pressure is given by

the boundary density [53]. Since this result actually holds rigorously for the full restricted

primitive model [50], one could also argue that DHHC theory is an approximate way to

calculate the boundary density, and then calculate the pressure from βΠ = n(R), i.e., leave

out the additional term nf ′ − f . This would lead to a different result, reminding us that

selfconsistency and consistency with other rigorous results cannot generally be achieved. We

will always use the internally consistent equation (18) for our pressure calculations.

Inserting the DHHC expression (7) for fcorr, we find

βΠDHHC

n(R)
= 1 +

(κa)2

4
− 1

6

∫ ω

1

dω
[ Φ(ω)

Ω(ω)1/3

+
2ω − 1

(1 + Ω(ω)1/3)
− (ω2 − ω)Φ(ω)

(Ω(ω)1/3 + Ω(ω)2/3)2

]
, (19)

where Φ(ω) = (ω− 1)2 + (κa)3ω2/κ`. In the zero temperature limit DHHC(0) this simplifies

considerably. A closed expression can easily be derived by combining Eqns. (11) and (18):

βΠ0
DHHC

n(R)
= 1 +

`

4a
n̂
{

3 − 2
(
1 + n̂−1

)−1/3

−
(
1 + n̂−1

)2/3
}

(20)

= 1 − `

4a
n̂1/3

{
1 − 3 n̂2/3 + O

(
n̂
)}

, (21)

where n̂ ≡ 4
3
πa3n(R). Observe that the contribution originating from the nf ′ − f term is

negative for all densities.

IV. SIMULATIONAL DETAILS

The systems we study consist of a spherical macroion of radius r0 and (negative) central

charge −Zq. Electroneutrality is ensured by the presence of N = Z/v point-like counterions

of valence v, confined inside an impermeable spherical cell of radius R. This also fixes the

colloid volume fraction to φ = (r0/R)3. No additional salt is added. The dielectric constant

ε is assumed to be uniform throughout the system, such that no image forces [54] occur.

Our choices for the system parameters can be found in Table I
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System Z N v r0/` Γ2d nPB(r0) `3 a/`

1 100 100 1 2 2.5 20.77 0.23

2 120 120 1 5.477 1 0.4090 0.836

3 120 120 1 2.739 2 8.275 0.307

4 120 120 1 1.826 3 45.07 0.174

5 120 60 2 1.937 2 7.526 0.317

6 120 40 3 1.581 2 6.976 0.324

TABLE I: The parameters of the simulated systems. The volume fraction was always chosen as

φ = (r0/R)3 = 0.8%.

Standard canonical MC simulations following the Metropolis scheme [55] were employed

to sample the ion distributions. After an initial equilibration time of 200 000 MC steps,

where we attempted to move every ion once to a new position, we sampled the system for

1.3 − 2 × 106 MC steps, producing 1300–2000 configurations for analysis. We will measure

energies in units of kBT and use the coupling length ` = `Bv
2 as our unit of length (for

monovalent ions under aqueous conditions and room temperature we would have ` = 7.14 Å,

and the unit of concentration becomes `−3 = 4.56 M). In the following we will present MC

results for the integrated ion distribution, Eqn. (17), and for the pressure, Eqns. (19) and

(20).

V. COMPARISON BETWEEN SIMULATIONS AND DHHC THEORY

A. Ion distribution functions

Figure 1 shows the integrated charge distribution P (r) for system 1 from Tab. I. The

solid curve is the result from the MC simulation, and it lies distinctly above the PB result

(dash-dotted curve), indicating a stronger condensation of ions due to correlations neglected

in PB theory. Most of this enhancement of ion localization close to the colloid is captured

by DHHC theory (dashed curve) or its zero temperature limit DHHC(0). This is also evident

from the local density n(r), which relatively to PB is enhanced at close proximity to the

colloid, while it drops below PB at the outer cell boundary. From what we have said in
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FIG. 1: Counterion distribution function P (r) for system 1 (see Tab. I). The solid curve is the

result of the MC simulation, while the dash-dotted curve is the prediction from PB theory. The

inset shows the local density n(r). The increase in the counterion condensation due to correlations

is well captured by the DHHC theory (dashed curve) and its zero temperature limit DHHC(0)

(dotted curve). The difference in n(r) between the latter two is invisible on the chosen scale, and

only DHHC is shown.

section III this also indicates that the pressure will be lower, and this is indeed what we

shall find (see below).

It should be noted that the 2d plasma parameter Γ2d = 2.5 is already slightly beyond the

point where attractions between two planes would arise [45]. We should not expect DHHC

theory to work for significantly higher plasma parameters, since it cannot account for effects

like attractions [26]. However, we want to point out that here we only aim at properties of a

single electrostatic double layer and not at phenomena arising from the interaction between

two of them, and in fact the agreement seen in Fig. 1 is very encouraging. It is also quite

pleasing that the significantly simpler zero temperature limit DHHC(0) from Eqn. (11) yields

essentially the same result as the full DHHC theory.

Due to the scaling invariance of the partition function discussed in the Appendix, a system

with e.g. divalent ions and Z = 200 or trivalent ions and Z = 300 (and properly rescaled

Bjerrum lengths `B → `B/v
2) shows exactly the same distribution function (not shown).

In Figure 2 we show distribution functions P (r) for systems 2–4 from Tab. I. These have

monovalent counterions and only differ in their value of the plasma parameter Γ2d. Clearly, a
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FIG. 2: Counterion distribution function P (r) for systems 2, 3, and 4 from Tab. I. The line styles

are the same as in Figure 1, the counterions are monovalent, and the value of the plasma-parameter

Γ2d is indicated.

larger plasma-parameter leads to an increased condensation (the curves are shifted up)—an

effect which naturally is already present in PB theory. However, apart from this, at a larger

plasma parameter the influence of correlations becomes more important, and therefore the

deviation between the PB prediction and the MC result increases for increasing Γ2d, which

is also clearly seen in Fig. 2. Again, this effect is well captured by DHHC theory, which

is always much closer to the MC data than to the PB result, even though its accuracy

diminishes as Γ2d becomes large.

In Fig. 3 we show a “complementary” scan, in which we fixed the value of the plasma-

parameter Γ2d = 2, but changed the counterion valence (systems 3, 5, and 6 from Tab. I).

Maybe surprisingly, an increase in valence leads to a decrease in condensation if it happens

at constant plasma-parameter and colloid charge. If we had changed v from 1 to 2 and

simultaneously replaced `B → `B/4 and Z → 2Z, the plasma parameter would also have

remained unchanged, but due to the scaling property of the partition function that would

actually have been true for the whole distribution function. Instead, we have reduced `B →
`B/2

3/2 ≈ `B/2.83 (i.e., a little less strongly), but have failed to increase Z. The net result

is that condensation drops slightly. However, since the plasma parameter, which is the

best indicator for the strength of correlations, remains the same, the deviation between

PB theory and MC simulation are always about the same (not shown in the Figure). And

as a consequence, the deviation between DHHC theory, which approximately accounts for
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FIG. 3: Counterion distribution function P (r) for systems 3, 5, and 6 from Tab. I. The line styles

are the same as in Figure 1, the plasma parameter is Γ2d = 2, and the value of the counterion

valence is indicated. For clarity, the PB curve is only shown for v = 3.

correlations, and the MC simulation, which captures them all, is about the same in all three

cases, and actually not very big.

B. Osmotic Pressure

Another strategy to check how successful our approach captures correlations is to compute

the osmotic pressure. In real systems this pressure will depend on correlations between ions

of different cells, something which neither our theory nor actually our simulation (of a single

colloid!) takes into account. So in the following by “pressure” we do not, strictly speaking,

refer to the bulk pressure of a colloidal suspension at some given volume fraction, but only

to the pressure exerted on the rigid wall at r = R of our cell model.

Within the simulations, the pressure is given by the contact density at r = R, which

was obtained by fitting the MC density profile close to the cell boundary to a quadratic

expression n(r) = c1 + c2(r − R)2. An example for how the simulated densities compare

to the PB approximation, our analytic DHHC approach, and its simpler zero temperature

limit DHHC(0), can be found in Fig. 4.

Table II shows the predictions for the pressure in the case of point-like ions given by

PB-, DHHC-, and DHHC(0)-theory, as well as by MC simulations. In the case of PB-theory

and MC the pressure is simply the density at the outer boundary, while for the DHHC
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FIG. 4: Counterion density close to the cell boundary for system 2. The dots denote the results of

the MC simulation, the other line styles are the same as in Fig. 1.

Sys. βΠPB`3 βΠDHHC`3 βΠ0
DHHC`3 βΠMC`3 ΠPB/ΠMC ΠDHHC/ΠMC Π0

DHHC/ΠMC

1 2.98 × 10−3 2.56 × 10−3 2.39 × 10−3 2.53(3) × 10−3 1.18 1.01 0.94

2 3.74 × 10−4 3.58 × 10−4 3.44 × 10−4 3.55(4) × 10−4 1.05 1.01 0.97

3 1.58 × 10−3 1.42 × 10−3 1.33 × 10−3 1.38(3) × 10−3 1.14 1.03 0.96

4 3.61 × 10−3 3.02 × 10−3 2.81 × 10−3 2.95(5) × 10−3 1.22 1.02 0.95

5 3.09 × 10−3 2.72 × 10−3 2.53 × 10−3 2.63(6) × 10−3 1.17 1.03 0.96

6 4.10 × 10−3 3.96 × 10−3 3.71 × 10−3 3.83(9) × 10−3 1.07 1.03 0.97

TABLE II: The values of the various pressures (in units kBT/`3) for the systems 1–6. The MC

errors have been conservatively estimated from the fluctuations of the measured density around

the fit close to the cell boundary. The last three columns display the ratio between the theoretical

and MC values, illustrating which theories over- or underestimate the pressure, and by how much.

approach we employ Eqn. (19) and for DHHC(0) Eqn. (21). These data, as well as Fig. 4,

demonstrate that – as anticipated – the simulated pressures lie below the PB prediction.

This decrease in pressure is rather accurately captured by our functional fDHHC and by its

zero temperature limit, f
(0)
DHHC, with the MC result lying significantly below PB and (in

these cases) below DHHC and above DHHC(0). The difference between the two correlation

corrected approaches is consistent with the idea that entropic effects neglected in f
(0)
DHHC

would push ions away from the macroions, or in other words, that the zero temperature
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limit implies stronger correlations than the regular DHHC theory and therefore yields even

lower pressures.

VI. CONCLUSIONS

In this paper we showed how to apply our previously proposed local density functional

approach based on a stable correlation correction to a spherical macroion confined in a

spherical cell. One of the crucial parameters in this theory is the size a of the exclusion

cavity of the background charge density. For point-like ions, we suggest to associate the

exclusion region with the mean distance between ions as predicted by PB theory, and for

simplicity use the value present at colloidal contact.

By going to the zero temperature limit we were able to derive an even simpler free energy

functional F
(0)
DHHC, which is almost as good as the full DHHC theory, but much easier to

handle. We also derived exact expressions for the osmotic pressure in this system. We

successfully compared our predictions to simulations of the same model and compared the

integrated counterion density and the osmotic pressure values for two complementary “scans”

of the coupling strength, namely valence and plasma parameter. We demonstrated that our

local density functional approach based on a stable correlation correction leads to a major

improvement over the PB prediction.
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APPENDIX

The canonical partition function Z of the colloid surrounded by its counterion is given

by:

Z =

∫ N∏

i=1

d3pi d
3ri

h3NN !
e−βH , (22)
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where N = Z/v is the total number of counterions and the Hamiltonian H = T + V splits

into kinetic and potential degrees of freedom. In the classical description employed here the

kinetic part T will contribute the usual factor λ−3N to the partition function, where λ is the

thermal de Broglie wavelength. The potential energy can be expressed as

V = −N
∑

i

`

|ri|
+

1

2

∑

i6=j

`

|ri − rj|
. (23)

After rescaling all length by `, i.e. introducing x := r/`, the total partition function can be

written as

Z =
1

N !

(
`

λ

)3N ∫ x0/φ1/3

x0

∏

k

d3xk (24)

exp

{
−N

∑

i

1

|xi|
+

1

2

∑

i6=j

1

|xi − xj|

}
.

In this form it becomes evident that appropriately scaled thermal observables like the in-

tegrated charge density (measured in units of `−3) or the pressure (measured in units of

kBT`
−3) are invariant under system changes which leave the number of counterions N , the

rescaled colloid size x0 = r0/`, and the volume fraction φ fixed.

Poisson-Boltzmann theory shows the same invariance property, as does the approximate

density functional theory we are proposing in this paper.
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[11] H. Löwen, J.-P. Hansen, and P. A. Madden, J. Chem. Phys. 98, 3275 (1993).

[12] S. Nordholm, Chem. Phys. Lett. 105, 302 (1984).

[13] E. E. Salpeter, Ann. Phys. 5, 183 (1958).

[14] R. Abe, Prog. Theory Phys. 22, 213 (1959).

[15] M. Baus and J.-P. Hansen, Phys. Rep. 59, 1 (1980).

[16] R. D. Groot, J. Chem. Phys. 95, 9191 (1991).

[17] R. Penfold, S. Nordholm, B. Jönsson, and C. E. Woodward, J. Chem. Phys. 92, 1915 (1990).

[18] M. C. Barbosa, M. Deserno, and C. Holm, Europhys. Lett. 52, 80 (2000).

[19] N. Grønbech-Jensen, K. M. Beardmore, and P. Pincus, Physica 261A, 74 (1998).

[20] E. Allahyarov, I. D’Amico, and H. Löwen, Phys. Rev. Lett. 81, 1334 (1998).
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