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Abstract
A two dimensional lattice gas model with a ‘core-softened’ potential is
investigated. Two liquid phases and density anomaly are found. The demixing
phase transition between the two liquid phases ends at a tricritical point that is
also the terminus of a critical line. The density anomaly is shown to be related
to this continuous line.

1. Introduction

The phase behaviour of single component systems as particles interacting via the so-called
core-softened (CS) potential has received a lot of attention recently. These potentials exhibit a
repulsive core with a softening region with a shoulder or a ramp [1–4]. These models originate
from the desire to construct a simple two-body isotropic potential capable of describing
the complicated features of systems interacting via anisotropic potentials. This procedure
generates models that are analytically and computationally tractable and that one hopes are
capable of retaining the qualitative features of the real complex systems.

The physical motivation behind these studies is the recently acknowledged possibility that
some single component systems display coexistence between two different liquid phases [3, 5–
7]. This has opened up a discussion about the relation between the presence of two liquid
phases, the existence of thermodynamic anomalies in liquids and the form of the potential.
The case of water has probably been the most intensively studied. For instance, liquid water
has a maximum as a function of temperature in both density and compressibility [8]. It
was proposed some time ago that these anomalies might be associated with a critical point
at the terminus of a liquid–liquid line, in the unstable supercooled liquid region [5], at high
pressures. This hypothesis has been supported by varied experimental data [9, 10] that show that
thermodynamic singularities are present in supercooled water,around 228 K and at atmospheric
pressure. In spite of the limit of 235 K below which water cannot be found in the liquid phase
without crystallization, two amorphous phases were observed at much lower temperatures [11].
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There is evidence, although this is still under test, that these two amorphous phases are related
to two liquid phases in fluid water [12, 13].

Water is not an isolated case. There are also other examples of tetrahedrally bonded
molecular liquids such as phosphorus [6, 14] and amorphous silica [15] that are also good
candidates for having two liquid phases. Moreover, other materials such as liquid metals [16]
and graphite [17] also exhibit thermodynamic anomalies.

Acknowledging that CS potentials may engender a demixing transition between two
liquids of different densities, a number of CS potentials have been proposed to model the
anisotropic systems described above. The first suggestion was made many years ago by Stell
and coworkers in order to explain the isostructural solid–solid transition ending in a critical
point [18, 19]. Debenedetti et al [20], using general thermodynamic arguments, confirmed
that a CS can lead to a coefficient of thermal expansion negative and consequently to density
anomaly. This, together with the increase of the thermal compressibility, has been used as
an indication of the presence of two liquid phases [21, 22] which may be hidden beyond the
homogeneous nucleation. The difficulty with these approaches is that continuous potentials
usually lead to crystallization at the region where the critical point would be expected.

In order to circumvent this problem, we study the effect of CS potentials in a lattice. Even
though the lattice is not realistic, it allows us to explore the phase space in an easier way. In this
work we analyse a two dimensions lattice gas with nearest-neighbour repulsive interactions
and next-nearest-neighbourattraction. The system is in contact with a reservoir of temperature
and particles. We show that this very simple system exhibits both density anomaly and two
liquid phases. However, instead of having a critical point ending the coexistence line between
the two liquid phases as one usually would expect, it has a tricritical point. The connection
between the presence of criticality and the density anomaly is also shown.

The remainder of the paper goes as follows. In section 2 the model is presented and the
zero temperature phases are introduced, the mean field analysis is shown in section 3, results
from simulations are discussed in section 4 and our findings are summarized in section 5.

2. The model and its ground state

Our system consists of a two-dimensional square lattice with N sites. Associated to each site
there is an occupational variable, σi . If the site is occupied by a molecule, σi = 1, otherwise
σi = 0. Each site interacts with its nearest neighbours with repulsive interactions and with its
next-nearest neighbours with attractive interactions (see figure 1). Therefore the Hamiltonian
of this system is given by

H = −V1

∑
〈i, j〉

σiσ j − V2

∑
〈〈i, j〉〉

σiσ j (1)

where, 〈i, j〉 represents the sum over the nearest neighbours and 〈〈i, i〉〉 is the sum over the
next nearest neighbours. Our system is in contact with a temperature and particle reservoirs.
The grand potential is given by:

� = 〈H〉 − T S (2)

where H contains the internal energy and the contribution due to the chemical potential µ,
namely

H = H − µ

N∑
i

σi . (3)

Let us now consider the ground state properties of this model. The Hamiltonian
equation (3) allows for a number of different configurations; however, due to the lattice
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Figure 1. Schematic form of the interaction potential.

symmetry and the nature of interaction, just five of them might exhibit lower energy as the
chemical potential is varied. They are (see figure 2):

• Dense liquid (dl):

φdl = �dl

N
= −2V1 − 2V2 − µ. (4)

• Uniformly diluted liquid (udl):

φudl = �udl

N
= −V2 − 1

2
µ. (5)

• Structured diluted liquid (sdl):

φsdl = �sdl

N
= −1

2
V1 − 1

2
µ. (6)

• Semi-diluted liquid (semi-dl):

φsemi−dl = �semi−dl

N
= −V1 − V2 − 3

4
µ. (7)

• Gas (gas):

φgas = �gas

N
= 0. (8)

Here φ is the grand potential per site.
Comparing these expressions for different chemical potentials leads to the following zero

temperature phase-diagram. For a positive chemical potential, µ � |V1| and µ � V2, the
lower grand potential is associated with the dense liquid phase. As the chemical potential is
reduced, the interactions between molecules become relevant. The first-neighbour repulsion
together with the second-neighbour attraction favours the formation of the udl phase. At
µ = −4V1 − 2V2 there is a phase transition between the dense liquid phase and the uniformly
diluted liquid phase. If the chemical potential is decreased even further, at µ = −2V2 there is
a transition between the uniformly diluted liquid phase and the gas phase.
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Figure 2. (a) Dense liquid phase, (b) uniformly dense liquid phase, (c) semi-diluted liquid phase,
(d) structured diluted liquid phase, (e) gas phase and (f) fluid phase.

3. Mean-field

Now, let us exam the phase-diagram for nonzero temperatures employing a mean-field
approximation. The symmetry of the different phases can be better visualized if the square
lattice is divided into four sub-lattices as illustrated in figure 3. In this case, the density of the
sub-lattice α is given by:

ρα = 4

N

∑
j∈α

σ j (9)

where the sum j ∈ α is over one of the sub-lattices α = 1, 2, 3, 4. Note that the density of
each sub-lattice varies between 0 and 1. Using the sub-lattice division, the Hamiltonian given
for the equation (3) can be written as:

H = −
4∑

α=1

∑
i∈α

µeff
α ({σi })σi (10)

where

µeff
α ({σi }) = µα +

4∑
β=1

∑
j∈β

Ji jσ j (11)
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Figure 4. Phase diagram for V2/|V1| = 1. The empty diamonds are continuous lines, the solid
lines are first order transitions and the filled diamonds are the tricritical points.

is the effective chemical potential acting in an ideal sub-lattice α. Here

µ = 1
4

4∑
α=1

µα (12)

is the chemical potential contribution due to the particles reservoir, while the second
contribution in equation (11) is due to the interaction with other sub-lattices. The mean-field
approximation we employ is to take the average of this last term, namely:

µ̄eff
α ({σi }) = µα +

4∑
β=1

∑
i∈β

Ji j〈σ j 〉 = µα +
4∑

β=1

εαβρβ, (13)

where

ρβ = 4

N

∑
j∈β

〈σ j 〉 (14)

is the density of the sub-lattice β and where

εαβ =
∑
j ( �=i)

Ji j , i ∈ α, j ∈ β (15)

is an interaction parameter. The mean-field Hamiltonian then becomes

Hmf = −
4∑

α=1

∑
i∈α

(
4∑

β=1

εαβρβ + µα

)
σi − 1

2

4∑
α=1

N

4

4∑
β=1

εαβραρβ (16)
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Figure 5. Densities of the (a) sub-lattice 1, (b) sub-lattice 2, (c) sub-lattice 3 and (d) sub-lattice 4
for the lattice 20 × 20 at µ̄ = 1.2.

where the second term corrects for over-counting. It is straightforward to show that using
equation (16) the mean field approximation for the grand potential per site is given by

φmf = −kBT ln 2 − kBT

4
ln cosh

[
−β

2

4∑
β=1

(
εαβρβ + µα

)]

− 1
8

4∑
α=1

( 4∑
β=1

εαβρβ + µα

)
− 1

8

4∑
α=1

4∑
β=1

εαβραρβ. (17)

The sub-lattice density can be derived both from equation (14) and from the mean field
grand potential by deriving it with respect to the chemical potential, namely

ρα = −4

(
∂φmf

∂µα

)
T,µα �=β

α = 1, . . . , 4. (18)

In both cases, the derivation leads to

ρα = −1

2
tanh

[
β

2

4∑
β=1

(εαβρβ + µα)

]
− 1

2
, α = 1, 2, 3, 4. (19)

The phase-diagram, illustrated in figure 4, is obtained from solving equations (19) and (17)
for different temperatures and chemical potentials. Here V1 = −1 and V2 = 1 are fixed.
Different choices of the interaction parameters do not change the phase-diagram qualitatively.
At high temperatures, all the sub-lattice densities are ρα = 1/2 and the system is in the fluid
phase. As the temperature is decreased at high chemical potential, µ̄ = µ/|V1| > 2, the sub-
lattices become full and the system goes from the fluid to the dense liquid phase. For negative
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Figure 6. Specific heat for the lattice 20 × 20 and µ̄ = 1.2.
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Figure 7. Fourth-order Binder’s cumulant for the lattice 20 × 20 and for µ̄ = 1.2.

chemical potentials, µ̄ < −2, the sub-lattices become empty, ρα = 0, and the system goes
from the fluid to the gas phase. Between these two limits, 2 > µ̄ > −2, as the temperature is
decreased, two opposite sub-lattices become empty while the other two get full. The system
goes from the fluid phase to the udl phase through a continuous phase transition, T̄c(µ̄). The
low temperature coexistence lines between the udl phase and the dl phase and between the udl
and the gas phase are obtained by comparing the grand potentials per particle, equation (17),
of these phases. The udl–dl phase boundary at µ̄ = 2 and the udl–gas coexistence line at
µ̄ = −2 meet the critical line Tc(µ̄) at two tricritical points at (T̄t = 0.924, µ̄t = 2) and
(T̄t = 0.924, µ̄t = −2), respectively.

4. Monte Carlo simulation

The rather simple mean field approach employed in the previous session is unable to account
for the density anomaly. For investigating the possibility of a density anomaly in our potential,
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Figure 8. Energy versus Monte Carlo steps, τMC for the lattice 20 × 20, µ̄ = 1.2 and T̄ = 1.18.
The presence of only one peak characterizes a continuous transition.

Monte Carlo simulations in a grand canonical ensemble were performed. The Metropolis
algorithm was used to study square L × L lattice and V2/|V1| = 1. Different system sizes
L = 10, 20, 30, 50 were investigated. Equilibration time was 1000 000 Monte Carlo time
steps for each lattice site.

The Monte Carlo simulations at fixed chemical potentials give the following results. At
high temperatures, the density of each sub-lattice is around ρα = 1/2 with sites randomly
occupied in each sub-lattice, so the system is in the fluid phase. As the temperature is decreased
at a fixed chemical potential, µ̄ > 2, the density of each sub-lattice increases continuously to
one. The system goes from the fluid phase to the dense liquid phase with no phase transition.
If the system is cooled from the fluid phase at low chemical potential, µ̄ < −2, the density
decreases continuously from the fluid phase to the gas phase with no phase transition. As
the temperature is decreased at fixed chemical potential, −2 < µ̄ < 2, one finds that two
opposite sub-lattices (1 and 3 for example) become full, while the other two sub-lattices (2
and 4) become empty, which characterizes the udl phase. Figure 5 shows that at µ̄ = 1.2 the
density of each sub-lattice jumps from the fluid phase value to the udl phase value at the critical
temperature T̄c(µ̄) ≡ Tc/|V1| = 1.18. Simulations for various fixed chemical potentials allow
us to find the critical line T̄c(µ̄).

In principle, the fluctuations observed in figure 5 suggest that the transition at T̄c(µ̄) is
continuous. This assumption is supported by the increase in the specific heat at a fixed chemical
potential. Figure 6 illustrates this increase at T̄c(µ̄) = 1.18 for µ̄ = 1.2.

The presence of a minimum in the fourth-order Binder cumulant given by [23]:

VL = 1 − 〈H4〉
3〈H2〉2

(20)

is an indication of criticality. Figure 7 shows VL for µ̄ = 1.2 obtained from our simulation.
The minimum at T̄c(µ̄) = 1.1787 is a sign of the presence of criticality. The hypothesis that
the transition at T̄c(µ̄) is first-order is eliminated by computing the energy histogram shown
in figure 8. If the transition were first-order, two distinct peaks should be present.

In order to check the location of the coexistence lines observed by the mean-field analysis,
simulations varying the chemical potential at a fixed temperature were performed. The results
are shown in figure 9. For temperatures within the interval 0 < T̄ < 0.5, as the chemical
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Figure 9. ρ versus µ̄: the first-order transitions between the gas–udl and udl–dl are illustrated.
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Figure 10. ρ versus T : the maximum in the density for the lattice 20 × 20 and µ̄ = 1.4 is shown.

potential is increased, the system exhibits two first-order phase transitions, one between the
gas and udl phase and another between the udl and the dense liquid phase.

The total density of the system at fixed chemical potential is illustrated in figure 10.
Different from the mean-field result, simulations show an anomalous behaviour of the density;
instead of being monotonic with temperature, the density at positive chemical potential
increases as the temperature is decreased, and it has a maximum at a temperature of maximum
density (T̄TMD(µ̄)) and then decreases. For negative chemical potentials, the complementary
effect is shown in figure 11, defining a temperature of minimum density (T̄TmD(µ̄)).

Summarizing the results discussed above, the µ versus T phase-diagram is shown in
figure 12. The critical line that separates the fluid from the uniformly diluted phase joint the
phase boundaries between the uniformly diluted phase and the dense liquid and gas phases at
symmetric tricritical points at (µ̄ = 2, T̄ = 0.5237) and (µ̄ = −2, T̄ = 0.5237), respectively.
The lines of temperature of maximum density and minimum density at constant chemical
potential are shown.

The p versus T phase diagram (see figure 13) is constructed by numerically integrating
simulations at constant pressure. It exhibits two liquid phases, a critical line and two tricritical
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Figure 11. ρ versus T : the minimum in the density for the lattice 20 × 20 and chemical potential
µ̄ = −1.4 is shown.
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Figure 12. µ̄ versus T̄ phase-diagram for the lattice 20 × 20. The solid lines are the first-
order transitions, the circles are the critical line, the filled squares are temperatures of maximum
density (TMD), the empty squares are the temperatures of minimum density (TmD) and the
diamonds are the tricritical points.

points like in figure 12. Close to the critical line, there is a line of temperature of maximum
density at constant pressure.

From finite size scaling analysis [24], it is possible to estimate the critical temperature of
an infinite system by the following expression:

T̄0(µ̄) = Tc(µ̄)(1 + x0 L−1/2) (21)

where T̄0(µ̄) is the critical temperature of the finite system, Tc(µ̄) is the critical temperature
of the infinite system and x0 a parameter.

Figure 14 shows the critical temperatures of the finite systems as a function of the system
size L. The value of T̄0 was obtained from two different methods: the maximum of the specific
heat at a fixed chemical potential µ̄ = 1.7 and the minimum of the Binder cumulant at the
same chemical potential. The extrapolated critical temperatures are T̄c(µ̄) = 0.920 79 and
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Figure 13. p versus T̄0 phase-diagram for the 20 × 20 lattice. The solid lines are first-order
transitions, the filled circles are the critical line, the crosses are the TMD at constant pressure line
and the filled triangles are the tricritical points.

0 0,002 0,004 0,006 0,008 0,01 0,012

L

0,92

0,93

0,94

0,95

0,96

Tc

-1/2

Figure 14. Minimum of the Binder cumulant (dashed line) and maximum of the specific heat (solid
line) as a function of the system size L = 10, 20, 30, 50 for a fixed chemical potential µ̄ = 1.7.

T̄c(µ̄) = 0.925 43, respectively. The difference between these two values is within our error
bars of our simulations.

5. Conclusions

In this paper the phase-diagram of a two dimensional lattice gas model with competing
interactions was investigated by mean-field analysis and Monte Carlo simulations. It was
shown that this system exhibits two liquid phases and a line of density anomalies.

The relation between the criticality and the density anomaly in this model goes as follows.
The two liquid and the gas phases appear as a result of two competing interactions: the softened
core that favours the formation of the uniformly dilute liquid phase and the chemical potential
that induces the system to become completely filled or empty. For each soft-core interaction
parameter, there is a limit chemical potential beyond which the system is in the dense liquid
phase and another negative chemical potential beneath which the system is in the gas phase.
The double criticality arises from the competition between µ̄ and V1.
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In systems dominated by short-range attractive forces the density increases on cooling.
For the soft-core potential studied here similar behaviour is only observed when the short-range
repulsion becomes irrelevant (high temperatures, µ̄ > 2 and µ̄ < −2). For 2 > µ̄ > −2, the
soft-core repulsion prevents the density from increasing to one as the temperature is decreased.
Therefore, the same competition responsible for the appearance of two liquid phases leads to
the density anomaly. Similar analysis can be made when the pressure instead of the chemical
potential is kept constant.

The presence of a critical line instead of a single critical point as one could generally
expect [5] is not surprising. Due to the lattice structure, the udl is not one single phase
but a region where two different phases coexist: alternating empty/full rows and alternating
empty/full columns. These two phases become critical together with the dense liquid phase
at the tricritical point that is also the locus the where critical line ends. The link between
competing interactions and the presence of a density anomaly and two liquid phases is being
tested in other simple models [25, 26].
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