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Abstract

We investigate the effect of excluded volume interactions on the electrolyte distribution around

a charged macroion. First, we introduce a criterion for determining when hard-core effects should

be taken into account beyond standard mean field Poisson-Boltzmann (PB) theory. Next, we

demonstrate that several commonly proposed local density functional approaches for excluded

volume interactions cannot be used for this purpose. Instead, we employ a non-local excess free

energy by using a simple constant weight approach. We compare the ion distribution and osmotic

pressure predicted by this theory with Monte Carlo simulations. They agree very well for weakly

developed correlations and give the correct layering effect for stronger ones. In all investigated cases

our simple weighted density theory yields more realistic results than the standard PB approach,

whereas all local density theories do not improve on the PB density profiles but on the contrary,

deviate even more from the simulation results.
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I. INTRODUCTION

Understanding the behavior of charged macroions in solution is an important problem in

fundamental science [1] as well as in industrial [2] and biological applications [3]. Charged

stabilized colloidal dispersions are present in paints, inks, pharmaceutical products and are

used in the fabrication of nanostructured materials [4–6]. These systems serve also as a

primitive model for the crowded cellular environment that represents numerous biomacro-

molecules and cellular polymers [7, 8]. What all the applications above have in common is

that when a charged macroion is immersed in an electrolyte solution, it is surrounded by

counterions to balance the surface charge. The charged macroion surface along with the

neutralizing diffuse layer of counterions is usually referred to as the electric double layer, the

understanding of which is crucial for describing the behavior of such systems. For instance,

the stability of colloidal dispersion depends on the distribution of small ions around the

colloid. The electrophoretic mobility of the solution also can be rationalized in terms of

the ion distribution [9–12] and most of the electrochemical reactions occur in this interfacial

region [13].

As a result, there has been a considerable effort to describe the density profile around

the macroion for different macroion geometries. The earliest theory that had significant

success was the Poisson-Boltzmann (PB) approach. Its versions for planar geometry, the

so called Gouy-Chapman theory [14, 15], can be solved exactly. It also has an analytical

solution for an infinitely long linear macroion confined to a cylindrical cell [16, 17], whereas

only a numerical solution can be obtained in the case of a spherical geometry. The major

flaw of this mean-field approach is that it neglects all correlations between the ions. For

a long time, integral equation theories have been developed to adequately describe dense

systems of electrolytes, and recently field theories have become very popular in calculating

correlation corrections to the mean field PB approach, see i.e. Refs. [3, 18, 19] for overviews.

However, since the treatment of size effects is mixed with the electrostatic correlations, in

many approaches it becomes difficult to identify the role of each effect. And finally integral

equation theories work well at high densities when excluded volume contributions are very

strong, whereas they are problematic in the low density regime.

It would therefore be desirable to have a theoretical framework which retains the sim-

plicity of the early attempts, but also accommodates correlation effects – something that
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can be done within density functional theories. It is possible to rigorously rewrite the par-

tition function of, say, a system of charged colloids, as a density functional [20], in which

the contribution beyond mean field is included as an additive correlation correction to the

free energy density. The functional form of this correction is unknown and one has to use a

reasonable Ansatz for it. The spirit is very similar to the fundamental problem of integral

equations, where one also has to make an educated guess (namely, the closure relation).

However, in the case of a functional this involves a free energy density expression rather

than a relation between two- and three-point functions. It thus relies on a different kind of

intuition and thus permits some complementary insight.

A number of density functional prescriptions for taking both size and electrostatic cor-

relations into account have been proposed [21–24]. These theories are able to reproduce to

some extent the density profile of charged systems. However, since they treat both size and

electrostatic correlations together, the origin of the result is not clear. Recently we adopted

a different approach. We studied systems of point-like counterions (therefore no size effects)

and addressed the question of when the electrostatic correlations become relevant. For treat-

ing these correlations we proposed the Debye-Hückel-Hole-Cavity functional [25, 26]. This

theory relies on a Debye-Hückel treatment of the One Component Plasma (OCP) [27–29],

in which the short-distance failure of linearization is overcome by postulating a correlation

hole. Since beyond a certain density the resulting OCP free energy density is a concave

function of density, this favors the development of inhomogeneities. In the pure OCP these

are balanced by the homogeneously charged background. However, if one uses the OCP

free energy density as a correlation correction to the mean-field functional describing the

double layer at a charged surface, one has all the charge opposite to the counterions located

on that surface, rather than homogeneously distributed as a stabilizing background. The

consequence is that the double layer becomes unstable and all ions collapse onto the surface,

an effect which has been termed “structural catastrophe” [30, 31]. To prevent this effect we

introduced a spherical exclusion region where no background can be found. The prescrip-

tion for finding the size of such an exclusion serves both to keep the theory self-consistent

and to establish the range of validity of the PB approach. Comparisons of the ionic charge

distribution around a charged cylinder and a charged sphere showed a very good agreement

with the simulations for both monovalent and trivalent counterions [26].

Having studied how to take into account the electrostatic correlations, we address in this
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paper the relevance of excluded volume correlations. We present a validity criterion for

the PB approach by constructing a parameter whose value approximately indicates when

excluded volume correlations are expected to become relevant. We then test several local

density approaches, that have been advocated [32, 33], demonstrating that they all fail to

take the size correlations into account, and that they even lead to an instability of the solution

beyond a certain ion size. In order to circumvent this, a weighted density functional based

on a simplified Tarazona approach [34–36] is introduced. Our results are compared with

Monte Carlo (MC) simulations, showing very good agreement for the cases of moderately

developed hard core correlations, and even for strongly electrostatically interacting systems

in both zero salt and non-zero salt cases.

The remainder of the paper is organized as follows. In Sec. II we discuss validity of the

PB approach for a colloidal system with non-point like counterions and show how the size

effect can be incorporated into the model. Details of the used numerical methods are given

in Sec. III. These are followed by the results and discussions presented in Sec. IV, and our

conclusion in Sec. V.

II. SIZE CORRELATIONS WITHIN DENSITY FUNCTIONAL THEORY

Consider a spherical colloid of radius rc and negative charge Z, which is located in the

center of a spherical cell of radius Rc. This cell represents a bulk colloidal solution with

colloid volume fraction φ = (rc/Rc)
3. The counterions are taken as positively charged hard

spheres of diameter a and valence v and N = Z/v of them provide the neutrality of the cell.

The solvent is modeled as uniform dielectric background of dielectric constant ǫ, and the

strength of the electrostatic interactions is defined by Bjerrum length

lB =
q2

4πǫ0ǫkBT
, (1)

where q is the unit charge. In the non-zero salt case, Ns positive and Ns negative salt

ions are also included. Here we assume that all ions have the same size and valence as the

counterions. The average charge distribution is described by local densities n−(r) for the

coions and n+(r) for the counterions and positive salt ions. These are defined for r0 ≤ r ≤ R,

where r0 = rc+a/2 is the distance of closest approach between the macroion and the particles

and R = Rc − a/2 (See Fig. 1). Therefore, φe, the volume fraction of the electrolyte in the
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FIG. 1: Colloidal cell model. The system is defined by five independent parameters: number of

counterions, N , number of salt ions, Ns, and three characteristic sizes: r0, R and a measured in

units of lBv2. See Appendix for more details.

cell confined between r3
c and Rc is given by

φe =
a3(N + 2Ns)

8(R3
c − r3

c )
. (2)

The effective surface charge density σ should be defined in terms of r0 rather than rc, i.e.

σ = Z/(4πr2
0). This will be used later when defining the plasma parameter of the system.

The central task of a density-functional theory is to derive an analytical expression for

the free Helmholtz energy functional that upon minimization gives the density profiles of

the free ions in solution. Its simplest form is given by the Poisson-Boltzmann functional,

namely

FPB =

∫

d3r
{

kBT n+(r)
[

ln
(

n+(r)λ3
)

− 1
]

+ kBT n−(r)
[

ln
(

n−(r)λ3
)

− 1
]

+ fel(r)
}

,(3)

which includes the translational entropy of the ions (λ is the thermal de Broglie wavelength)

and all electrostatic interactions represented by fel(r). The electrostatic interactions within

the mean-field approximation are given by

fel(r) = vq[n+(r) − n−(r)]ψ(r) , (4)
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where ψ(r) is the total electrostatic potential created at position (r) by the fixed macroion

and all ions together. The minimization of Eq. (3) with respect to n+(r) and n−(r) gives

the Boltzmann density distributions

n±(r) = n0
±e

∓βvqψ(r) , (5)

where parameters n0
+ and n0

− are defined by the charge neutrality condition. In spherical

geometry, Eq. 5 together with the Poisson equation

∇2ψ(r) = −
4qvπ

ǫ
[n+(r) − n−(r)] (6)

and the boundary conditions at r = r0 and r = R comprises a fully defined Poisson-

Boltzmann problem. The problem with this approach is that the ions are considered as

point charges in some average electric field and both electrostatic and excluded volume

correlations between them are not taken into account. When do these correlations matter?

Comparing the PB predictions to simulation results, one has found out, that, for point-like

ions, electrostatic correlations become relevant when the plasma parameter, Γ2d =
√

πσl2Bv
3,

becomes larger than 1 [25, 26, 37–40]. Here we address the question under what condition

the excluded volume effects become significant. For a uniform hard sphere liquid we know

that the radial distribution function changes from monotonically decaying to non-monotonic

at volume fractions of the order of φ ≈ 0.2, which will be the reference volume fraction in our

further estimates. In the case of confined liquids, ions tend to concentrate close to the surface

and their concentration at the surface, especially in charged systems, may be much higher

than that in the bulk [41]. Therefore, to access the hard-core effects one should consider

the average volume fraction within the first layer of counterions close to the colloid surface.

Since the colloid is much larger than the ions it can be approximated as (for simplicity the

salt is not included)

φs =
πa2

6

∫ a

0

nPB(x)dx , (7)

where nPB(x)ℓ3 = 2Γ4
2d/π(2x̄Γ2

2d + 1)2 is the exact solution obtained in the planar geome-

try [14, 15, 42]. Here x̄ = x/ℓ, where ℓ = lBv
2. After integration we find that the volume

fraction close to the macroion is given by

φs =
â3Γ4

2d

3(2Γ2
2dâ + 1)

, (8)
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where â ≡ a/ℓ. Then, for φs . 0.2, there are only weakly developed excluded volume

correlations, and the PB approximation should be still valid. For larger values of φs we

expect to see some layering effects close to surfaces. This criterion is strictly valid only

for a planar geometry, but is expected to approximately hold for sufficiently large spherical

or cylindrical macroions where the curvature effects (∝ 1/R) are negligible. An analogous

formula which takes the curvature into account can also be derived for a cylindrical PB cell

for which the contact density is known analytically. Since electrostatic correlations were not

taken into account, we do not expect this simple analysis to hold for Γ2d & 2. Beyond this

value, the force-distance curves between charged plates cease to be monotonic, and beyond

Γ2d ≃ 2.45 attractions even between like charged macroions can occur [39]. These effects

are results of correlations between different double layers (like, for instance, ion interlocking

[40, 43]) that are stronger than the size effects we are describing here. Note that, Eq. (8) is

designed to give a limit of validity of the mean-field approach. For high ionic radius φs can

become larger than 1, loosing its relation to the actual volume fraction in the system.

Correlations can be included into the PB model by adding to the PB free energy FPB an

excess free energy term,

F = FPB + Fex . (9)

The excess free energy Fex originates from internal interactions within the system and it is

unknown. In principle, it can account for both the hard-core repulsion and the electrostatic

correlations. Since we want to test the excluded volume effects within the range of ionic

strength in which they overcome the electrostatic correlations, the latter will be neglected

within our approach.

There are a number of functionals which can be used to include hard-core effects in

uniform liquids of a given density n. Within the local density approximation (LDA) one can

choose one of these free energy density expressions, fex[n], and replace the uniform density

by a local one so that the total excess free energy reads

Fex = kBT

∫

d3r n(r)fex[n(r)] . (10)

For our system we can take n(r) = n+(r) + n−(r) which means that the hard-core effects

are treated identically for both positive and negative ions. The idea behind Eq. (10) is quite

simple. A particle at r is supposed to be affected by only the particles around it, in a range

given by the interaction. If the range of the interparticle interaction is much smaller than
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the typical length for variations in n(r), the system can be divided in small subvolumes of

nearly constant density and each of them can be treated as part of a homogeneous system.

If we take ions as charged hard spheres, we can use the free energy density derived, for

example, from the Carnahan-Starling (CS) equation of state [44], namely

fCS[φ(r)] =
φ(r)(4 − 3φ(r))

(1 − φ(r))2
(11)

where φ(r) = π a3n(r)/6 is the volume fraction occupied by the free ions. For denser liquids,

the accuracy might be improved by using the more precise virial expansion for the Percus-

Yevick theory for hard spheres [45], namely

fvir[φ(r)] =
{

4φ(r) + 5φ(r)2 + 6.12φ(r)3 + 7.02φ(r)4 + 7.905φ(r)5 + 9.4208φ(r)6
}

.(12)

The last two expressions agree up to second order in local volume fraction φ(r).

A simple form of Fex can also be derived from the free volume (fv) expression for a lattice

gas [32, 33], namely

Ffv1 = kBT

∫

d3r

[

1

a3
− n(r)

]

ln
(

1 − n(r)a3)
)

, (13)

where a is the lattice spacing. With this form of functional the excluded volume effects can

be explicitly incorporated into the PB equation. However, its density expansion is different

from that of hard sphere. Another expression based on the free volume concept which can

be found in Ref. [46]

Ffv2 = −kBT

∫

d3r n(r) ln

(

1 −
φ(r)

2

)

(14)

gives lower order density terms similar to Eq. (11) and Eq. (12).

The assumption of smooth variations of n(r) being within the characteristic range of

hard-core interactions is only valid for sufficiently small ionic diameters a. Consequently, as

we will show later, all the functionals above underestimate the densities close to the colloid

and completely fail to give the correct density profile in the more interesting cases where

stronger variations in n(r) are observed. Moreover, all expressions above have a singularity

at a certain value of volume fraction. This reflects the fact that the bulk density cannot

exceed some upper limit. If a local density is higher than that, for example due to a charged

surface, the local density functional does not converge and no density profile can be obtained.

In order to circumvent the failure of the local density approach, a number of weighted

density approaches (WDAs) have been proposed [34–36, 47–50]. Initially the new methods
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were developed for the description of neutral hard sphere solutions. Stimulated by the success

of the WDA for neutral systems, some rather complex and involved methods have already

been proposed for charged suspensions [21, 22, 51]. The prescription we have followed here

is in the spirit of the generalized van der Waals theory of Nordholm and co-workers [50].

We represent the non-locality of the free-energy density functional through a coarse-grained

density distribution n̄(r). The weighted density is a non-local functional of the local density

n(r). This can be pictured as a mean density around point r averaged over a volume related

to the range of the interactions. In this context, the local density in Eq. (10) is replaced by

some weighted density n̄(r), namely

Fex = kBT

∫

d3r n(r)fex[n̄(r)] (15)

where

n̄(r) =

∫

d3r′w(|r− r′|)n(|r′|) . (16)

The connection between the real system and the approximated functional comes from the

weight function, w(|r − r′|), that should be chosen to give reasonable direct correlation

functions which are functional derivatives of Fex[n̄]. The most important are the first- and

second-order correlation functions, defined as

c(1)(r) =
δFex[n̄]

δn(r)
(17)

c(2)(r, r′) =
δ2Fex[n̄]

δn(r)δn(r′)
.

In Tarazona’s [34, 36, 47] approach one assumes that the weight itself is also density

dependent and can be expanded in powers of the weighted density as follows

w(|r− r′|) = w0(r) + w1(r)n̄(r) + w2(r)n̄(r)2 + ... . (18)

If we substitute this expression into the direct correlation function in Eq. (17), the resulting

expansion can be set equal to the direct correlation function of a uniform hard sphere

fluid [52]. This way it is possible to obtain the weight function that up to second order is

given by [34, 36, 47]
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w0(r) =
3

4πa3
Θ[a− r] (19)

w1(r) = [0.475 − 0.648
r

a
+ 0.113

(r

a

)2

], r < a (20)

= [0.288
a

r
− 0.924 + 0.764

r

a
− 0.187

(r

a

)2

], a < r < 2a

= 0, r > 2a

w2(r) =
5πa3

144
[6 − 12

r

a
+ 5

(r

a

)2

], r < a (21)

= 0 r > a.

Since our aim is not to precisely describe the hard-sphere effects but just to access their

relevance, we will employ the simplest form of the weight function that is the first term in

Eq. 18 or a constant weight [50] given by Eq. 19. We will refer to this weight as WDA0

whereas the weight defined by Eqs. 19-21 will be called WDA2 and will be used to validate

our results. For a pure hard sphere fluid, WDA0 reproduces the discontinuity in the direct

correlation function predicted by Percus and Yevick [46, 53]. However, it overestimates

the range of the correlation function, especially at high densities, when compared to the

density dependent weights [21, 35] or to direction dependent weights [22, 49, 51]. Having

this in mind, we will concentrate on the systems for which size plays a relevant role but the

differences between the constant weight and more sophisticated approaches do not affect our

main conclusions.

Measuring all lengths in units of ℓ = lBv
2 reveals that the full partition function of our cell

model depends on five system parameters. The observables, for example, reduced density

profile n̂(r) = n(r)ℓ3, remain constant under rescaling which does not change the following

quantities: the number of counterions N = Z/v, the number of salt ions Ns, the reduced

distance of closest approach r̂0 = r0/ℓ, the r0/R ratio, and the reduced ion diameter â = a/ℓ

(see Appendix). The same holds for PB theory and is also true for our WDA theory. For

the WDA it implies that both the WDA free energy correction and the weight function have

to obey this restriction.
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III. NUMERICAL METHODS

In this Section we give details of the numerical methods used to study the cell system

described in Sec. II. Three different ways were employed to find the ion distribution in the

cell. The first one was a direct Monte Carlo simulation of the cell model which gave us

reference data to test the theoretical results. The density profile minimizing a given free

energy functional was obtained using numerical iteration until it converged to the equilibrium

charge distribution. Another way of minimizing the functional was by Monte Carlo sampling.

Some technical details of these three methods are summarized below.

A. Monte Carlo simulation.

Within this approach we simulate the cell model exactly as it is – all ions are taken as

charged hard spheres of diameter a confined between two spherical shells of radii rc and

Rc. To gather the statistics of charge distribution the ions are moved around the cell and a

single ion move is either accepted or rejected according to the usual Metropolis probability:

π = min{1, exp (−β∆E)} , (22)

where ∆E is the difference between the system internal energy after and before the move.

Since the density profile is highly anisotropic, a combination of two types of moves was

found to improve the efficiency of the sampling. An ion was either inserted at a random

position in the cell or randomly displaced within a cube centered at its current position.

The former allowed for efficient exploration of low density regions, whereas the latter proved

to be efficient close to the colloid where a successful insertion of an ion could be a rare event

due to the high packing fraction. The frequency of using one or the other move as well as

the displacement range were adjusted to give an about 50% acceptance rate.

B. Iterative functional minimization.

When minimizing a functional containing a non-zero correlation term, Eq. 5 becomes

dependent on the excess chemical potential

µex± (r) =
δFex[n(r)]

δn±(r)
(23)
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and reads

n±(r) = n0
±e

∓βvqψ(r)−βµex
±

(r) . (24)

Once the expressions for µex± are derived for a given functional, we can find the ion distribu-

tion which satisfies both Poisson equation and Eq. 24. Integrating the Poisson equation over

a spherical shell of radius r, and using the Gauss theorem, an integro-differential equation

for the electric field E(r) can be obtained. Consequently, the optimum density profile can

be obtained from the numerical iteration of this equation until convergence is achieved.

C. Monte Carlo functional minimization.

Within this approach the ion position is described only by its distance from the colloid,

r, and this uniquely defines the density distribution, n(r). Each MC step consists of moving

an ion to a new trial position r0 < r < R. This move is either accepted or rejected with

probability [54]

π = min{1, exp (−β∆F )} , (25)

where ∆F is the free energy difference after and before the move and it is explicitly given

by the functional we minimize. This method was found to be more stable and worked much

faster than the iterative procedure, though the final result did not depend on the numerical

approach used.

IV. RESULTS AND DISCUSSION

In this Section we compare how well the different density functional approaches described

in Sec. II capture the excluded volume interactions. First, we apply numerical techniques

described in Sec. III to two colloidal systems already studied in the literature [33]. Then

we perform a systematic analysis of hard-core effects by investigating a number of different

systems with and without added salt.

We start from considering two salt free systems which were also used in [33] to study the

excluded volume effect in colloidal solutions. In both systems r0 = 50Å, R = 100Å, a = 10Å,

and lb = 7Å. The number of monovalent ions is different and it is N = 200 in system (a) and

N = 500 in system (b). Note that already for 200 ions some packing effects are expected to

be seen because φs = 0.25. Figure 2 shows the ion density distribution close to the colloid
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FIG. 2: Ion distribution close to the colloid surface measured in systems with r0 = 50 Å, R = 100Å,

a = 10Å, lB = 7Å, and containing (a) N = 200 and (b) N = 500 monovalent ions (units of n(r)

are Å−3). Each curve corresponds to a particular method used: MC is the result of the Monte

Carlo simulation; FCS , Fvir, Ffv1 and Ffv2 are obtained using LDA with a form of the excess free

energy given by Eqs. 11-14, correspondingly; WDA0 is the constant weight curve and PB is the

numerical solution of PB equation without any hard-core corrections.

obtained using different approaches for both (a) and (b). Comparison between the PB and

the MC curves for system (a) reveals that hard-core repulsion decreases condensation by

pushing ions away from the colloid. This effect is captured well by the WDA, whereas it is

significantly overestimated by all LDAs – the predicted contact densities are too low. The

highest packing fraction achieved in LDA calculations for system (a) was below the critical

value and the equations converged.

In the case of 500 ions, the LDA with functional given by Eq. 13 was found to be nu-

merically unstable. The iterative functional minimization failed to converge, while some

convergence could be still achieved by explicitly limiting the highest density at a−3 in the

MC sampling of the functional. The result, however, depended on the number of bins and

therefore was not physical. A plateau close to the colloid, as seen in [33], was observed

only for relatively large bin sizes, while smaller bins resulted in a saw-like density profile

(not shown here). The other LDAs, while still converging, overestimated hard-core effects

and also resulted in unphysical profiles. Moreover, all local approaches missed the layering

clearly captured by WDA0 and observed in simulations at distance a from the colloidal

surface (Fig. 2(b)).
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lB/r0 (Γ2d)↓ a/r0 → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 (0.5) 0.01 0.08 0.23 0.44 0.74 1.13 1.59 2.13

0.2 (1.0) 0.02 0.11 0.28 0.53 0.87 1.29 1.79 2.37

0.3 (1.5) 0.03 0.13 0.31 0.57 0.92 1.35 1.86 2.46

0.4 (2.0) 0.03 0.13 0.32 0.59 0.95 1.38 1.91 2.51

TABLE I: Parameter φs of different ionic sizes (columns), Bjerrum (rows) lengths and plasma

parameter (rows). Both Bjerrum lengths lB and ion sizes a are given in units of r0. Packing effects

are expected to be seen in those systems for which φs > 0.2. Unrealistically high values of φs

observed for large ions indicate inapplicability of PB and failure of LDA for these systems.

Below we consider a model system in which parameters r0 and R = 5r0 are kept fixed,

whereas the ion size and the Bjerrum length are varied. The cell containing N = 100

monovalent ions of size ranging between 0.1r0 ≤ a ≤ 0.8r0 is studied at four Bjerrum

lengths 0.1r0, 0.2r0, 0.3r0 and 0.4r0. These correspond to plasma parameter 0.5 ≤ Γ2d ≤ 2.0

which enables us to investigate hard-core effects in systems with weak, moderate and strong

electrostatic correlations. The parameter φs calculated for each of these 32 systems and

given in Table I predicts that, at all Bjerrum lengths, the size correlations are expected to

be seen for ion sizes a ≥ 0.3r0, where φs is already greater than 0.2.

The Monte Carlo data show that, indeed, the ion density profile is concave for a = 0.1r0

and a = 0.2r0 but develops a convex region at distance about a from the colloid surface for

larger ion sizes at all four Bjerrum lengths. This indicates some packing taking place which

is well captured by our φs-criterion. Figure 3 shows both the reference Monte Carlo and

WDA0 density profiles calculated for different ion sizes at fixed Bjerrum length lB = 0.2r0

(Γ2d = 1.0). The development of layering with increasing the ion size is well captured by the

non-local functional approach, whereas none of the LDAs exhibits any layering and therefore

are not shown in Fig. 3.

Another way of checking how well correlations are captured by a particular excess free

energy functional is to compute the osmotic pressure. In real systems this pressure also

depends on correlations between ions of different cells, something which is not taken into

account within the cell model approximation. So by pressure we refer to the pressure exerted

on the rigid wall at r = R of our cell model. Within the simulations, the pressure is given [42]

14



 10  

10  

 10  

 0  1  2  3  4  5

n(r)

r-r  (units of a)

(a)

0

-7

-6

-5

MC all
a = 0.1
a = 0.3
a = 0.5
a = 0.7

 10  

 10  

 10  

 0  1  2  3  4  5

n(r)

r-r  (units of a)

(b)

0

-7

-6

-5

MC all
a = 0.2
a = 0.4
a = 0.6
a = 0.8

FIG. 3: Ion distribution close to the colloid surface measured in systems with plasma parameter

Γ2d = 1.0. Odd (a) and even (b) ionic diameters are shown separately for sake of clarity. Only

WDA0 curves are marked while all MC curves are presented as solid lines and can be identified by

the corresponding closest dashed WDA0 curve. All distances are measured in ionic diameters so

the formation of the second layer of counterions is always expected to be around 1. The units of

number density are r−3
0 .

by the contact density at r = R:

Π = kBTn(R). (26)

For the density functional approach, this exact expression should be corrected [55] to

recover the free energy functional after integrating pressure over the volume. The correction

term is generally small and for simplicity we will directly compare contact densities predicted

by different methods. Figure 4 shows both the colloid contact density n(r0) and boundary

density n(R) given by the Monte Carlo simulations and different local and non-local density

approaches for systems at fixed Bjerrum length lB = 0.1r0 (Γ2d = 0.5) as a function of the

ionic diameter a. The colloid contact density is informative of how well a certain method

works at the most packed region of the system and can also be related to the pressure.

Figure 4(b) shows that the local approaches underestimate n(r0) at high ionic radius when

compared to the simulations. We found that even for small ionic sizes PB density profile was

closer to the MC reference data than the results of any of the locally “improved” functionals.

Moreover, the limitation of the local approach is illustrated by the failure of the LDA’s to

converge at large a (no data are shown for large ions). Both WDAs we used here give

consistent results when compared to MC simulations.
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FIG. 4: Contact density (a) n(r0) and boundary density (b) n(R) predicted for systems with

Γ2d = 0.5 by different methods as a function of ionic diameter (the number density is measured in

units of r−3
0 ). All theories at a = 0 are identical to PB which slightly underestimates the contact

density due to ignoring electrostatic correlations. This effect reduces as the ion size increases. The

legend is organized similar to that of Fig. 2 with one more line WDA2 corresponding to the weight

by Tarazona given by Eqs. 19-21. There is a slight positive difference in n(R) predicted by WDA2

and WDA0 not seen clearly in (b) at this scale.

Now, we concentrate on the case of relatively large ions of diameters a ≥ 0.4r0 for which

layering is clearly observed. According to the φs-criterion, the density profiles of such systems

should deviate from PB and the hard-core interactions can be even more significant than

the electrostatics in some cases. Figure 5 shows the integrated ion fraction

P (r) =
1

N

∫ r

r0

dr 4πr2 n(r) (27)

for systems with ionic diameters fixed at (a) a = 0.4r0 and (b) a = 0.6r0 for plasma

parameter Γ2d 0.5, 1.0 and 2.0. Clearly, a larger plasma parameter leads to an increased

condensation (the curves are shifted up) – an effect which is governed by the electrostatics

and also present in PB theory. One could expect that for high Γ2d electrostatic correlations

would be a dominant effect [26], and significant deviations to PB theory and also to our WDA

corrected DFT should arise due to electrostatic correlations, which we did not account for.

However, under the investigated circumstances, the ionic size plays a more relevant role. The

hard core effects lead to packing effects that overcompensate the electrostatic correlations.

For a = 0.4r0, the density profiles are well captured by WDA0, which is always much closer

to the MC data than to the PB result (not shown here). However, for a = 0.6r0, the structure
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FIG. 5: Integrated fraction of counterions obtained using Monte Carlo (MC) and one constant

weighted density approach (WDA0) for plasma parameter Γ2d = 0.5, 1.0, 2.0 and for ionic diameters

(a) a = 0.4r0 and (b) a = 0.6r0. In (b), the WDA2 curve is also shown for the case of Γ2d = 2.0.

of packing becomes important at Γ2d = 2.0. For this system, the WDA2 weight improves the

result, showing that the deviation between the simulations and the constant weight WDA0

is not due to the electrostatic correlations but rather to hard-core effects. Beyond this point

a more sophisticated functional should be used to capture the local packing.

In principle, the addition of salt can lead to new correlations due to ion-ion correlations

and screening. For high electrostatic salt couplings, Γs = ℓ
d
, where d is the distance of closest

approach of ion and coion, ion clusters can also appear, that change the ion distribution

considerably [56, 57]. However, this effect can be overcome by the hard core if the ions are

large enough, rendering Γs . 1. Below we consider the systems from Tab. I with added

salt. Two cases of Ns = 10 (10% of salt) and Ns = N (100% of salt) are studied to

represent moderate and high amount of salt. Since addition of the salt ions into the cell

would increase the packing fraction, here, we prefer to keep it constant adjusting accordingly

the cell radius R. This is partially justified by the fact that the ion distribution close to

the colloid weakly depends on the cell size for our system parameters. Figure 6 shows both

the positive and negative charge density profiles obtained using simulations, WDA0 and

PB for the system with Γ2d = 1.0, a = 0.4r0 with 10% of salt. Due to the screening, the

effect of electrostatic correlations is less profound than in the zero-salt case. The agreement

between the simulations and WDA is therefore improved at higher salt concentrations and

lower plasma parameter. The integrated charge profiles for several systems employing our
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highest plasma parameter Γ2d = 2.0, are shown in Fig. 7. The WDA captures the same
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FIG. 7: Integrated fraction of counterions obtained using (a) Monte Carlo (MC) and (b) one

constant weighted density approach (WDA0) for different ion sizes at plasma parameter Γ2d = 2.0

and different amount of salt (Ns = 0, 10% and 100% of N). The sizes vary from top to bottom as

a = 0.1r0, a = 0.4r0 and a = 0.6r0,

trend in the charge distribution as provided by the MC data. The presence of salt does not

change the layering as is observed for this ionic radius when the salt is not present. One

should be aware that things will be more complicated if one considers asymmetric salt (in

valence and size), or large ion sizes, since then more complicated effects like overcharging
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can occur [41, 56–58].

V. CONCLUSION

In this paper we studied the effects of adding various local and non-local free energy

functionals to the PB free energy functional to include the effects of an ionic hard core. We

started from calculating a layer volume fraction φs using the PB approximation, that gives

a criterion for recognizing when size effects become relevant and the simple PB approach

has to be modified. We tested this criterion for a system consisting of a charged spherical

colloid and its counterions confined to a spherical cell, and studied a number of parameter

combinations where the PB approximation fails.

For including size correlations, four local and two non-local density functional approxi-

mations were employed. The local theories were always found to overestimate the hard-core

effects, creating an exclusion region close to the colloid for large ionic radii. Beyond a certain

ionic radius, all the considered LDAs diverge and produce meaningless results. The failure of

the LDA is also captured by the increasing divergence between the LDA and the MC contact

densities which is seen when the ionic radius is increased, and the absence of any layering

effect in the LDA. Due to this observations we note that the inclusion of the LDA correction

into PB actually worsens the agreement of PB with simulation results. In principle a number

of weighted density functionals [22, 35, 51] or other non local strategies [59] could be used in

order to study this problem. We demonstrated that a simple weighted density approach for

the excluded volume interaction was able to capture the main features of the ionic density

profile. The introductions of a more sophisticated weighted density approximations such as

Tarazona approach [35] improves the agreement with the simulation, but it does not bring

any new physics to the problem. If some salt is included, under certain parameters the main

effect is the increase of screening of the electrostatic correlations. Therefore, the system can

be adequately described by the PB approach supplemented with an excluded volume WDA.

More complicated effects are expected to appear at sufficiently high plasma parameters and

higher salt concentrations. To treat those within density functional theory, a combination

of hard-core and electrostatic correlations along the lines of Refs. [22, 51] will probably be

required.
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APPENDIX

The canonical partition function Z of the colloid surrounded by its counterion in a cell

model is given by:

Z =

∫ N+Ns
∏

i=1

Ns
∏

j=1

d3pid
3rid

3pjd
3rj

h3(N+Ns)h3Ns(N +Ns)!Ns!
e−βH , (28)

where N = Z/v is the total number of counterions, 2Ns is the total number of positive and

negative ions of salt. The Hamiltonian H = T + V splits into kinetic and potential degrees

of freedom. In the classical description employed here the kinetic part T will contribute the

usual factor λ−3N−6Ns to the partition function, where λ is the thermal de Broglie wavelength.

The potential energy can be expressed as

V = −N
N+Ns
∑

i

ℓ

|ri|
+N

Ns
∑

i

ℓ

|ri|
+

1

2

Ns,Ns
∑

i6=j

ℓ

|ri − rj |
(29)

+
1

2

Ns+N,Ns+N
∑

i6=j

ℓ

|ri − rj|
−

1

2

Ns,Ns+N
∑

i6=j

[

ℓ

|ri − rj|
+ g(|ri − rj |/a)

]

,

where the first two terms are related to the electrostatic interactions and the last is re-

sponsible for the hard-core repulsion. The specific form of this term is not relevant here.

After rescaling all length by ℓ, i.e. introducing r̂ := r/ℓ, the total partition function can be
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rewritten as

Z =
1

(N +Ns)!Ns!

(

ℓ

λ

)3N+6Ns
∫ r̂0/φ1/3

r̂0

N+Ns
∏

k

Ns
∏

l

∫

d3r̂kd
3r̂l (30)

exp

{

−N
N+Ns
∑

i

1

|̂ri|
+N

Ns
∑

i

1

|̂ri|
+

1

2

Ns+N,Ns+N
∑

i6=j

1

|̂ri − r̂j|

+
1

2

Ns,Ns
∑

i6=j

1

|̂ri − r̂j |
−

1

2

Ns+N,Ns
∑

i6=j

[

1

|̂ri − r̂j|
+ g(|̂ri − r̂j |/â)

]}

,

where â = a/ℓ.

In this form it becomes evident that appropriately scaled thermal observables like the

integrated charge density (measured in units of ℓ−3) or the pressure (measured in units of

kBTℓ
−3) are invariant under system changes which keep the number of counterions N , the

number of salt particles Ns, the rescaled colloid size r̂0 = r0/ℓ, the rescaled ion radius â,

and the volume fraction φ constant.

Poisson-Boltzmann theory shows the same invariance property, as does the approximate

density functional theory we are proposing in this paper.

[1] J.-L. Barrat and J.-F. Joanny, Advances in Chemical Physics 94, 1 (1996).

[2] M. Hara, ed., Polyelectrolytes: Science and Technology (Marcel Dekker, New York, 1993).
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[9] E. González-Tovar and M. Lozada-Cassou, J. Chem. Phys. 83, 361 (1985).
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