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I. INTRODUCTION

Water appears to be unique relative to other fluids in nature because of its several
anomalous structural, thermodynamic, and dynamic properties.

The most familiar anomaly is its increasing density with temperature, at ambient
pressure, up to 4oC. Above this temperature water behaves as a normal liquid and
density decreases as temperature increases. Experiments for water allow to locate
the line of temperatures of maximum density (TMD) in the pressure–temperature
plane. Below TMD density decreases with decreasing temperature, differently
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from the behavior of the majority of fluids, for which density increases on lowering
temperature [1].

Besides, a number of thermodynamic and dynamic anomalies water exhibit
many solid phases due to structural and symmetry changes. Several coexistence
lines separate the multiple solid phases. Thus, the energy landscape associated to
the crystalline phases presents a number of sharp valleys with very low energies.
The temperature and pressure ranges at which each one of these sharp valleys
displays the lowest energy values define the stable phase in that region of the
phase diagram. Those valleys of the energy landscape that never achieve the lowest
energy correspond to the amorphous configurations. Therefore, it is reasonable to
think that multiple amorphous phases are present. Even though the existence of
water amorphous phases has been known since 1935 [2], the identification of
two amorphous phases, one of lower density (LDA), the other of higher density
(HDA)[3,4], as well as the suggestion of the existence of a very high-density
amorphous phase (VHDA) [5], is quite recent.

Polyamorphism has been promoted as a means for understanding the anomalous
thermodynamics and dynamics of water. It has been proposed that the increase of
compressibility with the decrease of temperature is related to a second critical
point at the end of a coexistence line between two liquid phases, a low-density
liquid (LDL) and a high-density liquid (HDL) [6]. This critical point would be
located in the supercooled experimentally inaccessible region [7–9]. In contrast,
it is possible to explain the existing anomalies without invoking the presence of a
critical point [9–11] and support the presence of a second critical without the need
of polyamorphism [12].

Water, however, is not an isolated case. There are also other examples of tetrahe-
drally bonded molecular liquids such as phosphorus [13,14] and amorphous silica
[15] that are other good candidates for having two liquid phases. Moreover, other
materials such as liquid metals [16], graphite [17], and yttrium oxide-aluminum
oxide [18] also exhibit thermodynamic anomalies.

What kind of potential would be appropriate for the description of tetrahedrally
bonded molecular liquids in order to yield thermodynamic anomalies? Realistic
simulations of water [19–21] have achieved a good accuracy in describing both
thermodynamic and dynamic anomalies. However, due to the high number of
microscopic details taken into account in these models, it becomes difficult to dis-
criminate what are the essential ingredients to produce the anomalies. On the other
extreme, a number of minimalistic isotropic models were proposed as the simplest
framework capable of probing the physics of liquid–liquid phase transitions and
liquid state anomalies. The desire to construct a simple two-body isotropic poten-
tial capable of describing water-like behavior has led to the design of a number of
models in which single component systems of particles interact via core-softened
(CS) potentials. Such model interactions present a repulsive core that exhibits a
region of softening where the slope changes dramatically. This region can be a
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shoulder or a ramp [22–37]. These two length scale models reproduce the density
and diffusion anomalies, many solid phases and a reentrant spinodal. With the
addition of an attractive interaction, these potentials also display a liquid–liquid
transition besides liquid–gas coexistence. In this case, polymorphism arises due
to the two arrangements allowed for by the two length scales.

The models cited above illustrate that directionality is not a fundamental ingre-
dient neither for the presence of anomalies, nor of liquid–liquid coexistence, or
even of polyamorphism. However, water molecule interactions due to hydrogen
bonds exhibit directionality. What are the consequences of eliminating direction-
ality or of replacing its effects with effective isotropic interactions? Lattice models
represent the simplest framework for introducing directional interactions in the
search for an answer to this question.

In the next section, we review a number of lattice gas models for which the
addition of directional interactions not only allows for polyamorphism and two
liquid phases but also introduces the possibility of a richer phase diagram, in
which a critical line following the liquid–liquid first-order phase transition substi-
tutes the critical point. Even though not explored in the literature, this picture is
not inconsistent with known experimental results for water and other tetrahedral
liquids [38].

II. ASSOCIATING LATTICE GAS IN TWO AND
THREE DIMENSIONS

The directionality present in the H-bonding of water molecules and in other tetra-
hedral liquids can be represented by models that associate a lattice gas with bond
orientation . This is the case of the associating lattice gas model introduced by
Henriques and Barbosa [39] that is presented in the following two- and three-
dimensional versions.

Consider a two-dimensional triangular lattice where each site may be empty
or full. Associate to each site two kinds of variables: an occupational variable, σi,
and an orientational variable, τ

ij
i . The orientational state of particle i is defined

by the configuration of its bonding and nonbonding arms, as illustrated in Fig. 1.
We consider two possible values for the ij arm variables. Four among the six
arms can make a bond, with τ

ij
i = 1, while the remaining two are inert arms, with

τ
ij
i = 0. Thus, there are three possible orientational states per particle. An energy

γ is attributed to each pair of occupied neighboring sites that form a hydrogen
bond, while nonbonding pairs are attributed an energy of ε. The overall energy is
given by:

E = ε
∑
(i,j)

σiσj + γ
∑
(i,j)

σiσjτiτj (1)
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τ = 0τ = 0

τ = 1 τ = 1

τ = − 1 τ = − 1

Figure 1. One possible orientational state for the molecule. Dashed lines correspond to non-
bonding arms τ = 0, whereas solid lines correspond to bonding arms τ = 1 (donator) and τ = −1
(acceptor).

where σi = 0, 1 are the occupational variables, τ
i,j
i = 0, ±1 represents the arm

states described above.
This system can exhibit a number of ordered states. In Fig. 2a, a system fully

occupied with each molecule making four hydrogen bonds is shown. This is the
ordered high-density phase (HD). Figure 2b illustrates the configuration in which
the system has 3/4 of its sites occupied and each site has four hydrogen bonds.
This is the ordered low-density phase (LD). The HD and LD energies per site are
given by e = 2γ + 3ε and e = 3(ε + γ)/2, respectively.

The zero temperature stable phases are obtained simply from comparison of the
corresponding grand potentials per site. The latter are given, at zero temperature,
by φ = e − μρ, where φ = �/V , e = E/V , N is the number of occupied sites and
ρ = N/V is the density of the system. Thus, at high chemical potential, the lowest
grand potential per site is the one of the high-density phase (ρ = 1), as illustrated
in Fig. 2, φhdl = 2γ + 3ε − μ. As the chemical potential is decreased, the low-
density phase (ρ = 0.75) with the grand potential per site given byφldl = 3(γ + ε)/
2 − 3μ/4 becomes energetically more favorable and μHDL−LDL = 2γ + 6ε rep-
resents the coexistence point between the HD and the LD phases. Similarly, the
pressure of coexistence between the two phases at zero temperature is given by
pHDL−LDL = 3ε. If the chemical potential decreases even further the gas phase
with φgas = 0 becomes energetically more favorable and coexistence between the
LD and a gas phases occurs at μLDL−gas = 2(γ + ε) and pLDL−gas = 0.
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(a)

(b)

Figure 2. Representation of
high-density liquid (HDL) (a)
and low-density liquid (LDL) (b)
phases. In the HDL phase, lattice is
fully occupied and the nonbonding
arms point to occupied sites. In
the LDL phase three-fourth of the
lattice is occupied and nonbonding
arms point to empty sites.

Existence of an intermediate LD phase between the gas and the HD phases
requires pHDL−LDL > pLDL−gas, which implies ε > 0. Since ε represents the
isotropic van der Waals-like interaction, the physical interpretation for this require-
ment is that ε represents an energetic penalty on pairs that do not form a bond.

For nonzero temperatures the complete μ − T phase-diagram obtained from
numerical simulations for γ = −2ε is illustrated in Fig. 3 and goes as follows. At
low-reduced chemical potentials, μ = μ/v, for all reduced temperatures, T = T/v,
with v = −ε − γ , only the gas phase is present. As the reduced chemical potential
increases a low-density liquid phase (LDL) appears. This phase coexists with
the gas phase along a first-order transition line at μ = μgas−LDL(T ). For even
higher reduced chemical potentials a high-density liquid phase (HDL) emerges.
This phase coexists with the low-density liquid phase at the first-order line μ =
μLDL−HDL(T ).

Study of the system dynamics shows that at very low temperatures the diffusion
coefficient in the high-density and low-density phases is zero, characterizing solid
amorphous phases (LDA and HDA). Thus, starting from zero temperature at fixed
chemical potential, the LDL and the HDL emerge continuously from the LDA
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Figure 3. Chemical potential versus temperature phase diagram. Solid line and diamonds rep-
resent the Gas–LDL coexistence line, whereas solid line and triangles represent the LDL–HDL co-
existence line. The temperature of maximum density (TMD) is represented by a solid line and stars.
The dashed line is a critical line, named λ-line, and the solid line is another critical line named τ-line.
λ-line emerges from the Gas–LDL coexistence line at a tricritical point Tc1 and meets the τ-line at the
LDL–HDL coexistence line at a bicritical point Tc2 .

and the HDA phases, without any phase transition. The major difference between
the LDL and the LDA phases is that in the first phase, the diffusion coefficient is
nonzero while in the second the system does not diffuse. The same criteria apply
for the HDL and HDA phases.

Such features of the statistical model resemble the low-density amorphous and
high-density amorphous phases present in water. Similarly to what happens in
water there is no phase transition but a continuous change form the amorphous to
the supercooled liquid phases.

Finally, besides polyamorphism and liquid polymorphism, this model also ex-
hibits density and diffusion anomalies [40,41].

A novel feature of this particular model relates to the terminus of the LDL–
HDL coexistence line. The introduction of the orientational degrees of freedom
through the τ variables leads to a richer phase diagram. The presence of an extra
component, the orientation, in accordance with Gibbs’ phase rule [42], gives rise
to a critical line ending the coexistence between the two phases in place of the
critical point presented by the isotropic soft-core models.
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B

A

Figure 4. Two possible ori-
entational states for a molecule,
named A and B. Each particle has
four-bonding arms with τ = 1 and
four-nonbonding arms with τ = 0.
Arms are distributed in a tetrahe-
dral arrangement mimicking a real
water molecule arrangement.

Now, let us consider the three-dimensional associating lattice gas model of
V = L3 sites on a body centered cubic (BCC) lattice, introduced by Girardi and
coworkers[43] and described through a mean-field treatment by Buzano et al. [44].
The hamiltonian given by Eq. (1) is considered with the bonding and nonbonding
arms distributed in a tetrahedral arrangement imposed by the lattice geometry.
Four arms are the usual ice-bonding arms, while the remaining four arms are
considered inert. Under these assumptions, each particle will found in one of two
possible orientational states as illustrated in Fig. 4.

Similar to the two-dimensional case, at null temperature, a gas phase and two
phases of different densities, LD and HD, may be present, depending on model
parameters. The ordered high-density and low-density phases are represented in
Fig. 5. As can be seen, in the LD phase only half the lattice is occupied and each
particle bonds to all the four nearest neighbors, whereas in the HD phase all the
sites are occupied and each molecule forms four bonds. At chemical potential
μc = 2(ε + γ), the gas phase (ρ = 0) coexists with the low-density (LD) phase
with ρ = 0.5. The latter is present in the chemical potential range 2(ε + γ) < μ <

6ε + 2γ , yielding the condition that ε > 0 for the existence of the LDL phase. At
the chemical potential μc = 6ε + 2γ , the LD phase coexists with a high-density
(HD) phase, with ρ = 1.

For nonzero temperatures, the model phase diagram given in terms of the re-
duced chemical potential, μ = μ/ε, versus reduced temperature , T = kBT/ε, is
illustrated in Fig. 6. Data are from numerical simulations for γ = −2ε. As the
temperature is increased the low- and high-density phases that may be identified
as amorphous, due to a zero diffusion coefficient, smoothly turn into low- and
high-density liquids, respectively, analogously to the two-dimensional case.
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(a)

(b)

Figure 5. Representation of high density (HDL) (a) and low density (LDL) (b) phases. In the
HDL phase, lattice is fully occupied and the nonbondig arms point to occupied sites. In the LDL phase,
half of the lattice is occupied and nonbonding arms point to empty sites.

The coexistence between the LDL and the HDL phases ends at a tricritical point.
The critical line emerging from this tricrical point, the λ line, is characterized by
disordering of position distribution, described through sublattice densities, while
the critical line at higher temperatures, the τ line, is characterized by orientational
ordering on sublattices.

The three-dimensional model system also exhibits density and diffusion anoma-
lous behavior [43,45].

In resume, introduction of the orientational degrees of freedom produce a critical
line emerging from the coexistence between the two liquid phases for both the two-
dimensional and the three-dimensional versions of the associating lattice gas.
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Figure 6. Chemical poten-
tial versus temperature phase
diagram. Solid line and di-
amonds represent the Gas–
LDL coexistence line whereas
solid line and triangles rep-
resent the LDL–HDL coex-
istence line. The temperature
of maximum density (TMD)
is represented by a solid line
and stars. The dashed line is
a critical line, named λ-line,
and the solid line is another
critical line named τ-line.
λ-line emerges from the LDL–
HDL coexistence line at a
tricritical point Tc2 and meets
the τ-line at the Gas–LDL
coexistence line at a bicritical
point Tc1 .

III. BELL-LAVIS WATER MODEL

The Bell-Lavis model, introduced in the 1970’s, and whose mean-field phase
diagram was described recently [46], is a two-dimensional system in which
molecules are located on a triangular lattice and are represented by two kinds
of variable, σ and τ, in order to represent occupational and orientational states.
Each molecule has six arms, separated by 120◦, three of them inert, with τ

ij
i = 0,

while the other three are the bonding arms, with τ
ij
i = 1. These conditions yield two

possible orientations per particle, as illustrated in Fig. 7 . Examples of maximally
bonded configurations of different densities are illustrated in Fig. 8.

Two neighbor molecules interact via van der Waals and hydrogen bonding of
energies given, respectively, by parameters ε and ε + γ . The model is described
by the following effective Hamiltonian, in the grand-canonical ensemble:

H =
∑
(i,j)

σiσj(γτ
ij
i τ

ij
j + ε) − μ

∑
i

σi (2)

where μ is the chemical potential.
A feature that distinguishes the Bell-Lavis model from the ALG models dis-

cussed in the previous section is that even the lowest energy configurations of the
high-density phase (ρ = 1) involve frustration of the hydrogen bonds. As a conse-
quence, the LD phase is present also for attractive van der Waals ε < 0, in contrast
with both versions of the ALG.
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Figure 7. Bell-Lavis water model interactions. Two orientations of the water particles.

At zero temperature, a gas phase coexists with a low density phase at lower
chemical potential, while a low-density phase coexists with a high-density phase
at higher chemical potential.

As the temperature is increased, the low-density and the high-density phases
turn continuously into the low-density liquid (LDL) and the high-density liquid
(HDL) phases, respectively, as identified from the smooth emergence of nonzero
diffusion coefficients [47,48].

Chemical potential μ = μ/ − ε versus temperature T = kBT/ − ε phase dia-
grams are shown in Fig. 9a, b, for two different ratios of van der Waals to bonding

(a) (b)

Figure 8. Representation of high-density (HDL) (a) and low-density (LDL) (b) liquid phases
for the model. In the HDL phase, the lattice is fully occupied whereas in the LDL phase lattice is
two-third occupied and nonbonding arms point to empty sites, forming a honeycomb structure.
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Figure 9. (a) Chemical
potential versus temperature
phase diagram for ζ = 1/10.
(b) Chemical potential versus
temperature phase diagram
for ζ = 1/4. In both phase di-
agrams, solid line represents
the Gas–LDL coexistence
line, dashed line represents
the LDL–HDL critical line,
and solid line with stars, rep-
resents the TMD. In the ζ =
1/10 case, coexistence line
ends in a tricritical point t ,
while in the ζ = 1/4 case, co-
existence line ends in a crit-
ical point c. The critical line
meets the coexistence line in
a critical end point e.

energies, γ = 9ε and γ = 3ε, respectively. The phases of different density are sep-
arated by a critical line, shown in the figure, in which data are from Monte Carlo
simulations. Differently from the previous models, HD–LD coexistence is present
for negative values of the van der Waals parameter ε, but only at null temperature
(T = 0). The order parameter associated to the critical line in the Bell model is
orientational sublattice density.

The Bell–Lavis model also presents density and diffusion anomalous
behavior [47,48].
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IV. CONCLUSIONS

Here we have explored two lattice orientational models (one of them in two and
three dimensions) that exhibit two low-temperature amorphous-like phases that
become liquid as the temperature is increased. Differently from isotropic continu-
ous models, the orientational models that we have investigated present bicritical or
tricritical points at the terminus of the liquid–liquid coexistence line. This higher
order criticality is due to the introduction of an additional number of degrees of
freedom in the system and is consistent with the Gibbs phase rule [42].

The Gibbs phase rule describes the possible number of degrees of freedom (f) in
a closed system at equilibrium, in terms of the maximum number of stable phases
(M) and the number of system components (N) asf = N − M + 2. The number of
degrees of freedom for a system at equilibrium is the number of intensive variables
(often taken as the pressure, temperature, composition fraction, or orientations) that
may be arbitrarily specified without changing the number of phases. In a region
with M stable phases, the values of the N − M + 2 state variables can be changed
independently while preserving the same set of stable phases.

In the lattice models studied here, there are two system components: density and
orientation with the corresponding conjugate fields, chemical potential μ and some
“staggered” orientational field λ. This implies that liquid–liquid coexistence must
be represented by a plane in (T, μ, λ) space, with f = 2. Our phase diagrams are
sections of this plane, in which HD–LD coexistence appears as a line. Accordingly
this coexistence plane may be limited by critical surfaces, as in the case of the
associating lattice gas in two dimensions, or by a critical line, as in the three-
dimensional associating lattice gas model or in the Bell-Lavis water models. Both
cases are consistent with the Gibbs phase rule.

As for real water, it is not clear if the orientation imposed by hydrogen bonding
is so relevant as to actually lead to a critical line instead of a critical point at the
end of the hypothetic two liquid phase coexistence. However, this picture can not
be excluded. The peaks in the specific heat observed in the confined water system
could be an indication of criticality, indication that would only be confirmed if
experiments in bulk water would be possible [38].
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