
February 11, 2014 14:21 WSPC - Proceedings Trim Size: 9in x 6in main˙perspectives

48

Applying Virial theorem in continuous potential of two scales
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In this paper we study the pressure-pressure phase diagram of a family of
core-softened continuous potentials characterized by two length scales. The
first scale is a repulsive core with a softening region and the second scale is
an attractive well. Three different distances between the two length scales are
checked for the presence of density, diffusion and structural anomalies. We
found that in this model the critical point goes to negative pressures as the
distance between the two length scales is above a certain threshold. This result
is explained in the framework of the virial expression for the pressure.

1. Introduction

Most liquids contract upon cooling. This is not the case of water, a liquid

where the specific volume at ambient pressure starts to increase when cooled

below T = 4oC.1 Besides, in a certain range of pressures, also exhibits an

anomalous increase of compressibility and specific heat upon cooling.2,3 It

is less well known that water diffuses faster under pressure at very high

densities and at very low temperatures.2,4–6

These anomalies are proposed to be related to a second critical point

between two liquid phases, a low density liquid (LDL) and a high density

liquid (HDL).7 This critical point was discovered by computer simulations.

This work suggests that this critical point is located at the supercooled

region beyond the line of homogeneous nucleation and thus cannot be ex-

perimentally measured. Even if this limitation, this hypothesis has been

supported by experimental results.8–11

Spherical symmetric models became the simplest framework to under-

stand the physics of the liquid-liquid phase transition and liquid state

anomalies. Acknowledging that core softened (CS) potentials may engender

a demuxing transition between two liquids of different densities, a number

of CS potentials were proposed to model the anisotropic systems described
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above. They possess a repulsive core that exhibits a region of softening

where the slope changes dramatically. This region can be a discontinu-

ous12–23 or a continuous24–38 shoulder or a ramp.11,16,37–43

These models show two liquid phases if the attractive part of the po-

tential is deep enough and density, diffusion and structural anomalies if the

two length scales would be accessible.44,45 In the cases in which the second

critical point is present, the maximum pressure of the temperature of max-

imum density line does not exceed the critical pressure.44–46 However, in

many CS potentials in which an attractive part is present the liquid-liquid

phase transition is located in an nonphysical region of the pressure temper-

ature phase diagram,44,45 namely at negative pressures. In these potentials

the TMD line is also located at negative pressures and, therefore, experi-

mentally inaccessible. Unfortunately no simple theory can predict if a given

CS potential has a liquid-liquid critical at positive pressures or not.

Here we propose a simple prescription that indicates without the need of

performing the simulations if a CS potential has a first and a second critical

points with positive pressures. This recipe is tested for three different CS

potentials characterized by two length scales: a repulsive shoulder and an

attractive well. In order to vary only the pressure of the second critical

point, keeping the temperature constant, the potentials chosen for testing

our prescription have the same energy difference between the two length

scales.

The remaining of this paper goes as follows. In Sec. 1.1 the three mod-

els are introduced. The simulations details are given Sec. 1.2. In Sec. 1.3

presents the Virial theorem. The pressure-temperature phase diagrams,

density, diffusion and structural anomalous are presented in Sec. 2. At the

end of this section a prescription for the presence of a second critical point

at positive pressures is proposed and tested in the three models. Finally,

Sec. 3 presents the conclusion.

1.1. The Model

We consider a system of N particles, with diameter σ, where the pair in-

teraction is described by a family of continuous potentials given by

U(r) = ε

[(σ
r

)a
−
(σ
r

)b]
+

4∑

j=1

hj exp

[
−
(
r − cj
wj

)2
]
. (1)

The first term is Lennard-Jones-like potential and the second parcel

contains four Gaussians centered in cj with j = 1, 2, 3, 4.
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Fig. 1. Interaction potential obtained by changing parameters c1 and h1 in the Eq. (1).
The potential and the distances are in dimensionless units U∗ = U/γ and r∗ = r/r0.

In this paper we analyze three different potentials, A, B and C, illus-

trated in Fig. 1 with U∗ = U/γ and r∗ = r/r0. They are obtained using

three different values for c1, c2, w1, h1 and h2 as shown in the Table 1. The

remaining parameters of Eq. (1) together with the reference values, cref1 ,

cref2 , wref
1 , href1 and href2 are fixed and are given in units of energy, γ, and

length, r0, in the Table 2.

Our potentials, shown in Fig. 2, exhibit a shoulder scale and an attrac-

tive scale what characterizes systems with thermodynamic, dynamic and

structural anomalous behavior. In all the three cases, the difference be-

tween the potential energy of the shoulder scale and the attractive scale is

kept fixed while the distance between the two scales is varied. Thus, the

distance between the two length scales is for the A case: dA = 0.70; for the

B case: dB = 0.60; and for the C case: dC = 0.50; in units of r0. By fixing

the potential energy difference we expect to have all the three cases the

temperature of the second critical point about the same value44,45,47 but

with very different pressures. Therefore, we have chosen this set of poten-

tials for testing our prescription for the presence or not of second critical

point.
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Fig. 2. The distance between the two scales are: dA = 0.70, dB = 0.60 and dB = 0.50.

1.2. Details of Simulations

The properties of the system were obtained by NV T molecular dynamics

using Nose-Hoover heat-bath with coupling parameter Q = 2. The system

is characterized by 500 particles in a cubic box with periodic boundary

conditions, interacting with the intermolecular potential described above.

All physical quantities are expressed in reduced units.

Standard periodic boundary conditions together with predictor-

corrector algorithm were used to integrate the equations of motion with

a time step Δt∗ = 0.002 and potential cut off radius r∗c = 3.5. The initial

configuration is set on solid or liquid state and, in both cases, the equilib-

rium state was reached after t∗eq = 1000. From this time on the physical

quantities were stored in intervals of Δt∗R = 1 during t∗R = 1000. The system

is uncorrelated after t∗d = 10, from the velocity auto-correlation function,

and 50 decorrelated samples were used to get the average of the physical

quantities. The thermodynamic stability of the system was checked analyz-

ing the dependence of pressure on density, by the behavior of the energy

and also by visual analysis of the final structure, searching for cavitation.

All the thermodynamic, dynamic and structural physical quantities are

given in terms of dimensionless units of γ and r0 listed in Table 2.
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Table 1. Parameters c1, c2, w1, h1 and h2 for potentials A, B and C.

Potential c1 c2 w1 h1 h2

A 0.90 cref1 1.27 cref2 0.98wref
1 0.64href

1 0.45href
2

B 1.00 cref1 1.00 cref2 1.00wref
1 0.50href

1 1.00href
2

C 1.10 cref1 0.73 cref2 1.00wref
1 0.65href

1 2.70href
2

Table 2. Parameters for potentials A, B and C in units of Å and of
kcal/mol.

Parameter Value Parameter Value Parameter Value

a 9.056 wref
1 0.253 h3 −0.451

b 4.044 w2 1.767 h4 0.230

ε 0.006 w3 2.363 cref1 2.849

σ 4.218 w4 0.614 cref2 1.514

r0 2.860 href
1 −1.137 c3 4.569

γ 50.00 href
2 3.626 c4 5.518

The diffusion coefficient is obtained from the expression

D = lim
t→∞

〈
[�rj (t0 + t)− �rj (t0)]

2
〉
t0

6t,
(2)

where �rj (t) are the coordinates of particle j at time t and 〈· · ·〉t0 denotes

an average over all particles and over all t0.

1.3. Virial Theorem

Do the potentials A, B and C have a liquid-liquid critical point? Before

computing the pressure-temperature phase diagram for these three poten-

tials, we propose that this question can be answer on basis of the response

function and virial expression for the pressure.

The pressure can be computed from the expression48

6p

ρ
= (6kBT +Ψ) (3)

where Ψ is the Virial given by Ψ = N
〈
�rij · �Fij

〉
, the braket denotes ther-

modynamic averaging. Since �rij = �ri − �rj , �Fij the force on molecule i due

to j.
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The isothermal compressibility is defined as

KT ≡ − 1

V

(
∂V

∂p

)

T

=
1

ρ

(
∂ρ

∂p

)

T

. (4)

KT is thus response of the volume to its conjugate variable pressure and

it is proportional to fluctuations in specific density, KT ∝
〈
(δρ)

2
〉
. Using

Eq. (3) the isothermal compressibility can be written as:

KT =
6

ρ2
(

6p
ρ2 + ∂Ψ

∂ρ |N,T

) . (5)

The condition KT < 0 implies the lost of stability and consequently the

phase separation. For positive pressure (p > 0) the stability is lost for:

6p

ρ2
< −

(
∂Ψ

∂ρ

)

T,N

. (6)

Using Eq. (3) and taking into account that the temperature is positive,

the above inequality leads to the expression:

Ψ

ρ
< −

(
∂Ψ

∂ρ

)

T,N

(7)

For simplicity let us define the following quantities:

f1 = −
(
∂Ψ

∂ρ

)

T,N

, (8)

f2 =
ρ

2

(
∂2Ψ

∂ρ2

)

T,N

, (9)

f3 =

(
Ψ

ρ

)

T,N

. (10)

From the lost of stability condition, Eq. (7), Eq. (8) and Eq. (9) follows

f3 < f1. (11)

This expression together with the condition for positive pressure and posi-

tive temperature arises:

f3 > 0 ,

f1 > 0 . (12)
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Table 3. Critical point and density location for po-
tentials A, B, C, and D.

Potential T ∗
c1 p∗c1 ρ∗c1

A 2.42 0.11 0.10 ≤ ρ∗c1 ≤ 0.13
B 1.98 0.08 0.10 ≤ ρ∗c1 ≤ 0.13
C 1.58 0.50 0.10 ≤ ρ∗c1 ≤ 0.13

Potential T ∗
c2 p∗c2 ρ∗c2

A 0.57 −0.24 0.56 ≤ ρ∗c2 ≤ 0.70
B 0.47 1.83 0.54 ≤ ρ∗c2 ≤ 0.68
C 0.30 7.10 0.53 ≤ ρ∗c2 ≤ 0.58

At the critical point the first and second derivatives of the pressure given

by Eq. (3) with respect to the density are zero, namely:
(
∂p

∂ρ

)

T

= 0, (13)

(
∂2p

∂ρ2

)

T

= 0. (14)

what implies that f2 changes sign across the criticality.

2. Results and Discussion

2.1. Pressure-Temperature Phase Diagram

Fig. 3 illustrates the pressure-temperature phase diagram for the potentials

A, B and C. The system at high temperatures has a fluid phase and a gas

phase (not shown) forming a first order line ending at a first critical point.

The values of pressure, temperature and density region of the critical point

is located in the pressure-temperature phase diagram are listed in Sec. 3.

2.2. Density Anomaly

From the Maxwell relation,
(
∂V

∂T

)

p

= −
(
∂p

∂T

)

V

(
∂V

∂p

)

T

, (15)

the maximum in ρ (T ) versus temperature at constant pressure given by

(∂ρ/∂T )p = 0 is equivalent to the minimum of the pressure versus temper-

ature at constant density, namely
(
∂p

∂T

)

ρ

= 0, (16)
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Fig. 3. Pressure-temperature phase diagram for A potential in the left-hand side, for
B potential in the middle and for C potential in the right-hand side. The thin grey
lines are the isochores 0.30 < ρ∗ < 0.65. The liquid-liquid critical point is the dot, the
temperature of maximum density is the solid thick line, the diffusion extrema is the
dashed line and the structural extrema is the dashed-dotted line.

(
∂2p

∂T 2

)

ρ

> 0. (17)

The three system exhibit a region in the pressure and temperature in

which as the temperature is decreased the density decreases at constant

pressure. The temperature in maximum density (TMD) is illustrated as

solid lines in the Fig. 3. The density ranges of the TMD are: A case 0.48 ≤
ρ∗ ≤ 0.56; B case 0.46 ≤ ρ∗ ≤ 0.54; and C case 0.44 ≤ ρ∗ ≤ 0.55.

This result can be understood using the radial distribution function. The

TMD is related to the presence of large regions in the system in which par-
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ticles are in two preferential distances represented by the first- and second-

scale represented by the two first peaks in the radial distribution function

in our potential.33,49–51 As the temperature is increased the percentage of

particles in closest scales decreases. The decrease of particles in the first

scale leads to a decrease of density with the increase of temperature. Fig. 4,

as the temperature is increased the percentage of particles at the closest

distance increases while the percentage of particles in the second scale de-

creases. The increase of particles in the first scale leads to an increase of

density with temperature what characterizes the anomalous region. The

density anomaly is, therefore, related to the increase of the probability of

particles to be in the first scale when the temperature is increased while

the percentage of particles in the second-scale decreases.

Fig. 5 compares the TMD and the critical points for the three potentials.

The increase in the slope between the two length scales makes harder to the

high density liquid to be formed, requiring higher pressure. In addition it

also makes the fluid phase more stable and therefore the two critical points

move to lower temperatures. The density anomalous region that represents

the range in temperature and pressures in which the scales compete also

increases with the decrease of the distance between the two length scales.

2.3. Diffusion Anomaly

Fig. 6 shows the behavior of the dimensionless diffusion coefficient, D∗, as
function of the dimensionless density, ρ∗, at constant temperature for the

three cases. The solid lines are a polynomial fits to the data obtained by

simulation (the dots in the Fig. 6). For normal liquids, the diffusion at con-

stant temperature increases with the decrease in the density. For potentials

A, B, and C the diffusion has a region in the pressure-temperature phase

diagram in which the diffusion increases with density. This is the diffusion

anomalous region. In Fig. 6 one dashed line joints the points of the density

(or pressure) of minimum diffusion for different temperatures and another

dashed line links the points of density (or pressure) of maximum diffusion

for different temperatures.

2.4. Structural Anomaly

The translational order parameter is defined as5,52,53

t =

∫ ξc

0

|g (ξ)− 1|dξ, (18)

 P
er

sp
ec

tiv
es

 a
nd

 C
ha

lle
ng

es
 in

 S
ta

tis
tic

al
 P

hy
si

cs
 a

nd
 C

om
pl

ex
 S

ys
te

m
s 

fo
r 

th
e 

N
ex

t D
ec

ad
e 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/2
9/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 11, 2014 14:21 WSPC - Proceedings Trim Size: 9in x 6in main˙perspectives

N. M. Barraz Jr. & M. C. Barbosa 57

Fig. 4. Radial distribution function obtained using NVT simulations versus distance
for A, B and C cases, with density fixed (ρ = 0.50). The arrows indicate the direction
of increasing temperature.

where ξ = rρ1/3 is the distance r in units of the mean interparticle sep-

aration ρ−1/3, ξc is the cutoff distance set to half of the simulation box

times29 ρ−1/3, and g (ξ) is the radial distribution function proportional to

the probability of finding a particle at a distance ξ from a referent particle.

The translational order parameter measure how structured is the system.

For an ideal gas g = 1 and t = 0, and the case of crystal phase g �= 1 over

long distances and t is large. Therefore for normal fluids t increases with

the increase in the density.

Fig. 7 shows the translational order parameter as a function of the

density for fixed temperatures. The dots represent the simulation data and

the solid line the polynomial fit to the data. For potentials A, B, and C
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Fig. 5. Comparison between the range of the TMD lines in the pressure-temperature
phase diagram for the three systems.

there is a region of densities in which the translational parameter decreases

as the density increases. A dotted-dashed line illustrates the region of local

maximum of t∗ and minimum of t∗ limiting the anomalous region.

2.5. Critical Point

In the previous chapter we suggested that the presence of phase boundary

between two phases appears if

(1) f1 > 0, f3 > 0

(2) f1 > f3
(3) f2 changes signed

Here we test these three conditions in our potentials A, B and C. Fig. 8

shows the curves f1, f2 and f3 versus density for all potentials, where f1,2,3
are given by Eq. (8), Eq. (9) and Eq. (10).

The curves f1 and f3 are positive, f1 > f3 and f2 changes sign for

the densities located at the liquid-gas phase boundary, namely ρ∗ ≈ 0.13.

Therefore, f1,2,3 satisfy the conditions instability close to the liquid-gas

critical point.
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Fig. 6. Diffusion coefficient as a function of density. The dots are the simulational data
and the solid lines are polynomial fits. The dashed lines connect the densities of minima
and maxima diffusivity that limit the diffusion anomalous region.

For higher densities, the three conditions are also obeyed for potentials

B and C close to the liquid-liquid coexistence at ρ∗ ≈ 0.68 for potential B

and ρ∗ ≈ 0.58 for potential C. For the potential A, however the conditions

were not satisfies what is in agreement with the absence of liquid-liquid

critical point at positive pressures. In the case of potential A criticality

appears at negative pressures.

3. Conclusions

In this article, we constructed the pressure-temperature phase diagram of

a two length scale family of potentials. These core-softened potentials are

built to reproduce the anomalies present in water. The three families differ
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Fig. 7. The translational order parameter as a function of density for fixed tempera-
tures: T ∗ = 1.10, 1.00, 0.90, 0.80, 0.70, and 0.60 from top to bottom. The dot-dashed lines
locate the density of maxima and minima t∗.

by the distance between the two scales. We analyze the effect of decreas-

ing the distance between the two scales in the location in the pressure-

temperature phase diagram of the density, diffusion and structural anoma-

lies. In addition we explore whether the decrease of the distance scales shifts

the critical point and the temperature of maximum density for a region of

positive pressures. We found that the anomalies and liquid-liquid critical

point move to positive results containing a low temperature variation in

the measure that the shoulder is close to the attractive part. This indicates

that the probability of the particles migrate from one scale to another in-

creases with the closeness of the two scales. As the shoulder is close to the

attractive part, are more particles in this range compared to other larger
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Fig. 8. f1, f2 and f3 versus resuced density for the three potentials. The squares and
arrows illustrate the regions where the conditions f1 > f3, f3 > 0 and f2 changing signs
indicates criticality.

distances between the two scales. Finally we propose a simple condition

that involves the different derivatives of the potential to predict if the crit-

ical point occurs at positive pressures. This condition was confirmed with

our results obtained for the three potentials.
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