
Chapter 2

The Hydrogen atom

In the previous chapter we gave a quick overview of the Bohr model, which is only really valid in the
semiclassical limit. (cf. section 1.7.) We now begin our task in earnest by applying quantum mechanics
to the simplest atom we know, namely the hydrogen atom.

It is well known from classical physics that planetary orbits are characterized by their energy and
angular momentum. In this chapter we apply the Schrödinger equation to the hydrogen atom to find the
allowed energies and angular momenta of the nucleus-electron system. In classical systems we are also
able to calculate the precise trajectory of the orbit. This is not possible in quantum systems. The best
we shall be able to do is to find the wave functions. These will then give us the probability amplitudes
that allow us to calculate all the measurable properties of the system.

2.1 The Schrödinger Equation

The time-independent Schrödinger equation for hydrogen is given by:
(
− h̄2

2m
∇2 − Ze2

4πε0r

)
Ψ(r, θ, φ) = E Ψ(r, θ, φ) . (2.1)

This is written in terms of the spherical polar co-ordinates (r, θ, φ) because atoms are spheres, and the
use of spherical polar co-ordinates simplifies the solutions. Note that we are considering the motion of
the electron relative to a stationary nucleus here. As with all two-body problems, this means that the
mass that enters into the equation is the reduced mass defined previously in eqn 1.9:

1
m

=
1

me
+

1
mN

. (2.2)

For hydrogen where mN = mp, the reduced mass is very close to me, and has a value of 0.9995me.
Written out explicitly, we have

− h̄2

2m

[
1
r2

∂

∂r

(
r2 ∂Ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Ψ
∂θ

)
+

1
r2 sin2 θ

∂2Ψ
∂φ2

]
− Ze2

4πε0r
Ψ = E Ψ (2.3)

Our task is to find the wave functions Ψ(r, θ, φ) that satisfy this equation, and hence to find the allowed
quantized energies E.

2.2 Angular momentum

The classical definition of angular momentum is:

L = r × p . (2.4)

For circular orbits this simplifies to L = mvr, and in Bohr’s model, L was quantized in integer units of h̄.
(See eqn 1.7.) However, the full quantum treatment is more complicated, and requires the introduction
of two other quantum numbers l and ml, as we shall now see.

The components of L are given by



Lx

Ly

Lz


 =




x
y
z


×




px

py

pz


 =




ypz − zpy

zpx − xpz

xpy − ypx


 . (2.5)
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In quantum mechanics we represent the linear momentum by differential operators of the type

p̂x = −ih̄
∂

∂x
. (2.6)

Therefore, the quantum mechanical operators for the angular momentum are given by:

L̂x =
h̄

i

(
y

∂

∂z
− z

∂

∂y

)
(2.7)

L̂y =
h̄

i

(
z

∂

∂x
− x

∂

∂z

)
(2.8)

L̂z =
h̄

i

(
x

∂

∂y
− y

∂

∂x

)
. (2.9)

Note that the “hat” symbol indicates that we are representing an operator and not just a number.
The magnitude of the angular momentum is given by:

L2 = L2
x + L2

y + L2
z .

We therefore define the quantum mechanical operator L̂
2

by

L̂
2

= L̂2
x + L̂2

y + L̂2
z . (2.10)

Note that operators like L̂2
x should be understood in terms of repeated operations:

L̂2
xψ = −h̄2

(
y

∂

∂z
− z

∂

∂y

)(
y
∂ψ

∂z
− z

∂ψ

∂y

)

= −h̄2

(
y2 ∂2ψ

∂z2
− y

∂ψ

∂y
− z

∂ψ

∂z
− 2yz

∂2ψ

∂y∂z
+ z2 ∂2ψ

∂y2

)
.

It can be shown that the components of the angular momentum operator do not commute, that is

L̂xL̂y 6= L̂yL̂x .

In fact we can show that:
[L̂x, L̂y] = ih̄L̂z , (2.11)

where the “commutator bracket” [L̂x, L̂y] is defined by

[L̂x, L̂y] = L̂xL̂y − L̂yL̂x . (2.12)

The other commutators of the angular momentum operators, namely [L̂y, L̂z] and [L̂z, L̂x] are obtained
by cyclic permutation of the indices in Eq. 2.11: x → y, y → z, z → x.

This rather esoteric point has deep significance. If two quantum mechanical operators do not commute,
then it is not possible to know their values simultaneously. Consider, for example, the operators for
position and momentum in a one-dimensional system:

[x̂, p̂]ψ = (x̂p̂− p̂x̂)ψ = −ih̄ x

(
dψ

dx

)
+ ih̄

d(xψ)
dx

= ih̄ψ .

Thus we have:
[x̂, p̂] = ih̄ 6= 0 . (2.13)

The fact that [x̂, p̂] 6= 0 means that the operators do not commute. This is intrinsically linked to the fact
that we cannot measure precise values for the position and momentum simultaneously, which we know
from the Heisenberg uncertainty principle. The argument based on commutators is thus a more formal
way of understanding uncertainty products.

In the case of the angular momentum operators, the fact that L̂x, L̂y and L̂z do not commute means
that we can only know one of the components of L̂ at any time. If we know the value of Lz, we cannot
know Lx and Ly as well. However, we can know the length of the angular momentum vector, because we
can show that L̂2 and L̂z commute. In summary:
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Figure 2.1: Vector model of the angular momentum in an atom. The angular momentum is represented
by a vector of length

√
l(l + 1)h̄ precessing around the z-axis so that the z-component is equal to mlh̄.

• We can know the length of the angular momentum vector L and one of its components.

• For mathematical convenience, we usually take the component we know to be the z component, ie
Lz.

• We cannot know the values of all three components of the angular momentum simultaneously.

This is represented pictorially in the vector model of the atom shown in figure 2.1. In this model the
angular momentum is represented as a vector of length

√
l(l + 1)h̄ precessing around the z axis so that

the component along that axis is equal to mlh̄. The x and y components of the angular momentum are
not known.

In spherical polar co-ordinates, the two key angular momentum operators are given by:

L̂z =
h̄

i

∂

∂φ
(2.14)

and

L̂
2

= −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
. (2.15)

It is easy to see that the Schrödinger equation given in Eq. 2.3 can be re-written as follows:

− h̄2

2m

1
r2

∂

∂r

(
r2 ∂Ψ

∂r

)
+

L̂
2

2mr2
Ψ− Ze2

4πε0r
Ψ = E Ψ . (2.16)

The eigenfunctions of the angular momentum operator are found by solving the equation:

L̂
2
F (θ, φ) ≡ −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
F (θ, φ) = CF (θ, φ) . (2.17)

For reasons that will become clearer later, the constant C is usually written in the form:

C = l(l + 1)h̄2 . (2.18)

At this stage, l can take any value, real or complex. We can separate the variables by writing:

F (θ, φ) = Θ(θ)Φ(φ) . (2.19)

On substitution into eqn 2.17 and cancelling the common factor of h̄2, we find:

− 1
sin θ

d
dθ

(
sin θ

dΘ
dθ

)
Φ− 1

sin2 θ
Θ

d2Φ
dφ2

= l(l + 1)ΘΦ . (2.20)

Multiply by − sin2 θ/ΘΦ and re-arrange to obtain:

sin θ

Θ
d
dθ

(
sin θ

dΘ
dθ

)
+ sin2 θ l(l + 1) = − 1

Φ
d2Φ
dφ2

. (2.21)
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The left hand side is a function of θ only, while the right hand side is a function of φ only. The equation
must hold for all values of the θ and φ and hence both sides must be equal to a constant. On writing
this arbitrary separation constant m2, we then find:1

sin θ
d
dθ

(
sin θ

dΘ
dθ

)
+ l(l + 1) sin2 θ Θ = m2Θ , (2.22)

and
d2Φ
dφ2

= −m2Φ . (2.23)

The equation in φ is easily solved to obtain:

Φ(φ) = Aeimφ . (2.24)

The wave function must have a single value for each value of φ, and hence we require:

Φ(φ + 2π) = Φ(φ) , (2.25)

which requires that the separation constant m must be an integer. Using this fact in eqn 2.22, we then
have to solve

sin θ
d
dθ

(
sin θ

dΘ
dθ

)
+ [l(l + 1) sin2 θ −m2] Θ = 0 , (2.26)

with the constraint that m must be an integer. On making the substitution u = cos θ and writing
Θ(θ) = P (u), eqn 2.26 becomes:

d
du

(
(1− u2)

dP

du

)
+

[
l(l + 1)− m2

1− u2

]
P = 0 . (2.27)

Equation 2.27 is known as either the Legendre equation or the associated Legendre equation, depending
on whether m is zero or not. Solutions only exist if l is an integer ≥ |m| and P (u) is a polynomial function
of u. This means that the solutions to eqn 2.26 are of the form:

Θ(θ) = Pm
l (cos θ) , (2.28)

where Pm
l (cos θ) is a polynomial function in cos θ called the (associated) Legendre polynomial function.

Putting this all together, we then find:

F (θ, φ) = normalization constant× Pm
l (cos θ) eimφ , (2.29)

where m and l are integers, and m can have values from −l to +l. The correctly normalized functions
are called the spherical harmonic functions Yl,m(θ, φ).

It is apparent from eqns 2.17 and 2.18 that the spherical harmonics satisfy:

L̂
2
Yl,m(θ, φ) = l(l + 1)h̄2Yl,m(θ, φ) . (2.30)

Furthermore, on substituting from eqn 2.14, it is also apparent that

L̂zYl,m(θ, φ) = mh̄Yl,m(θ, φ) . (2.31)

The integers l and m that appear here are called the orbital and magnetic quantum numbers respectively.
Some of the spherical harmonic functions are listed in Table 2.1. Equations 2.30–2.31 show that the
magnitude of the angular momentum and its z-component are equal to

√
l(l + 1)h̄ and mh̄ respectively,

as consistent with Fig. 2.1.
The spherical harmonics have the property that:

∫ π

θ=0

∫ 2π

φ=0

Y ∗
l,m(θ, φ)Yl′,m′(θ, φ) sin θ dθdφ = δl,l′δm,m′ . (2.32)

The symbol δk,k′ is called the Kronecker delta function. It has the value of 1 if k = k′ and 0 if k 6= k′.
The sin θ factor in Eq. 2.32 comes from the volume increment in spherical polar co-ordinates: see Eq. 2.47
below.

1Be careful not to confuse the magnetic quantum number m with the reduced mass that has the same symbol! Note
also that a subscript l is often added (i.e. ml) to distinguish it from the quantum number for the z-component of the spin
(ms).
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l m Yl,m(θ, φ)

0 0
√

1
4π

1 0
√

3
4π cos θ

1 ±1 ∓
√

3
8π sin θe±iφ

2 0
√

5
16π (3 cos2 θ − 1)

2 ±1 ∓
√

15
8π sin θ cos θe±iφ

2 ±2
√

15
32π sin2 θe±2iφ

Table 2.1: Spherical harmonic functions.

2.3 Separation of variables in the Schrödinger equation

The Coulomb potential is an example of a central field. This means that the force only lies along the
radial direction. This allows us separate the motion into the radial and angular parts. Hence we write:

Ψ(r, θ, φ) = R(r)Y (θ, φ) . (2.33)

On substituting this into Eq. 2.16, we find

− h̄2

2m

1
r2

d
dr

(
r2 dR

dr

)
Y + R

L̂
2
Y

2mr2
− Ze2

4πε0r
RY = E RY . (2.34)

Multiply by r2/RY and re-arrange to obtain:

− h̄2

2m

1
R

d
dr

(
r2 dR

dr

)
− Ze2r

4πε0
− Er2 = − 1

Y

L̂
2
Y

2m
. (2.35)

The left hand side is a function of r only, while the right hand side is only a function of the angular
co-ordinates θ and φ. The only way this can be true is if both sides are equal to a constant. Let’s call
this constant −h̄2`(` + 1)/2m, where ` is an arbitrary number at this stage. This gives us, after a bit of
re-arrangement:

− h̄2

2m

1
r2

d
dr

(
r2 dR(r)

dr

)
+

h̄2`(` + 1)
2mr2

R(r)− Ze2

4πε0r
R(r) = ER(r) , (2.36)

and
L̂

2
Y (θ, φ) = h̄2`(` + 1)Y (θ, φ) . (2.37)

On comparing Eqs. 2.30 and 2.37 we can now identify the arbitrary separation constant ` with the angular
momentum quantum number l, and we can see that the function Y (θ, φ) that enters Eq. 2.37 must be
one of the spherical harmonics.

We can tidy up the radial equation Eq. 2.36 by writing:

R(r) =
P (r)

r
.

This gives: [
− h̄2

2m

d2

dr2
+

h̄2l(l + 1)
2mr2

− Ze2

4πε0r

]
P (r) = EP (r) . (2.38)

This now makes physical sense. It is a Schrödinger equation of the form:

ĤP (r) = EP (r) , (2.39)
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Figure 2.2: The radial wave functions Rnl(r) for the hydrogen atom with Z = 1. Note that the axes for
the three graphs are not the same.

where the energy operator Ĥ (i.e. the Hamiltonian) is given by:

Ĥ = − h̄2

2m

d2

dr2
+ Veffective(r) . (2.40)

The first term in eqn 2.40 is the radial kinetic energy given by

K.E.radial =
p2

r

2m
= − h̄2

2m

d2

dr2
.

The second term is the effective potential energy:

Veffective(r) =
h̄2l(l + 1)

2mr2
− Ze2

4πε0r
, (2.41)

which has two components. The first of these is the orbital kinetic energy given by:

K.E.orbital =
L2

2I
=

h̄2l(l + 1)
2mr2

,

where I ≡ mr2 is the moment of inertia. The second is the usual potential energy due to the Coulomb
energy.

This analysis shows that the quantized orbital motion adds quantized kinetic energy to the radial
motion. For l > 0 the orbital kinetic energy will always be larger than the Coulomb energy at small r,
and so the effective potential energy will be positive. This has the effect of keeping the electron away
from the nucleus, and explains why states with l > 0 have nodes at the origin (see below).

2.4 The wave functions and energies

The wave function we require is given by Eq. 2.33. We have seen above that the Y (θ, φ) function that
appears in Eq. 2.33 must be one of the spherical harmonics, some of which are listed in Table 2.1. The
radial wave function R(r) can be found by solving the radial differential equation given in Eq. 2.36. The
mathematics is somewhat complicated and is considered in Section 2.5. Here we just quote the main
results.

Solutions are only found if we introduce an integer quantum number n. The energy depends only
on n, but the functional form of R(r) depends on both n and l, and so we must write the radial wave
function as Rnl(r). A list of some of the radial functions is given in Table 2.2. Representative wave
functions are plotted in Fig. 2.2.

We can now write the full wave function as:

Ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) . (2.42)

The quantum numbers must obey the following rules:

• n can have any integer value ≥ 1.

• l can have integer values up to (n− 1).
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n l Rnl(r)

1 0 (Z/a0)
3
2 2 exp(−Zr/a0)

2 0 (Z/2a0)
3
2 2

(
1− Zr

2a0

)
exp(−Zr/2a0)

2 1 (Z/2a0)
3
2 2√

3

(
Zr
2a0

)
exp(−Zr/2a0)

3 0 (Z/3a0)
3
2 2

[
1− (2Zr/3a0) + 2

3

(
Zr
3a0

)2
]

exp(−Zr/3a0)

3 1 (Z/3a0)
3
2 (4
√

2/3)
(

Zr
3a0

)(
1− 1

2
Zr
3a0

)
exp(−Zr/3a0)

3 2 (Z/3a0)
3
2 (2
√

2/3
√

5)
(

Zr
3a0

)2

exp(−Zr/3a0)

Table 2.2: Radial wave functions of the hydrogen atom. a0 is the Bohr radius (5.29 × 10−11 m). The
wave functions are normalized so that

∫∞
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Figure 2.3: Polar plots of the spherical harmonics with l ≤ 2. The plots are to be imagined with
spherical symmetry about the z axis. In these polar plots, the value of the function for a given an-
gle θ is plotted as the distance from the origin. Prettier pictures may be found, for example, at:
http://mathworld.wolfram.com/SphericalHarmonic.html.

• m can have integer values from −l to +l.

These rules drop out of the mathematical solutions. Functions that do not obey these rules will not
satisfy the Schrödinger equation for the hydrogen atom.

The radial wave functions listed in Table 2.2 are of the form:

Rnl(r) = Cnl · (polynomial in r) · e−r/a , (2.43)

where a = naH/Z, aH being the Bohr radius of Hydrogen, namely 5.29× 10−11 m. Cnl is a normalization
constant. The polynomial functions that drop out of the equations are polynomials of order n − 1, and
have n− 1 nodes. If l = 0, all the nodes occur at finite r, but if l > 0, one of the nodes is at r = 0.

The angular part of the wave function is of the form (see eqn 2.29 and Table 2.1):

Yl,m(θ, φ) = C ′lm · Pm
l (cos θ) · eimφ , (2.44)

where Pm
l (cos θ) is a Legendre polynomial, e.g. P 1

1 (cos θ) = constant, P 0
1 (cos θ) = cos θ, etc. C ′lm is

another normalization constant. Representative polar wave functions are shown in figure 2.3.
The energy of the system is found to be:

En = −mZ2e4

8ε20h
2

1
n2

, (2.45)

which is the same as the Bohr formula given in Eq. 1.10. Note that this depends only on the principal
quantum number n: all the l states for a given value of n are degenerate (i.e. have the same energy),
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even though the radial wave functions depend on both n and l. This degeneracy with respect to l is called
“accidental”, and is a consequence of the fact that the electrostatic energy has a precise 1/r dependence
in hydrogen. In more complex atoms, the electrostatic energy will depart from a pure 1/r dependence
due to the shielding effect of inner electrons. In this case, the gross energy depends on l as well as n,
even before we start thinking of higher order fine structure effects. We shall see how this works in more
detail when we consider the alkali atoms later.

The wave functions are nomalized so that
∫ ∞

r=0

∫ π

θ=0

∫ 2π

φ=0

Ψ∗n,l,mΨn′,l′m′ dV = δn,n′δl,l′δm,m′ (2.46)

where dV is the incremental volume element in spherical polar co-ordinates:

dV = r2 sin θ drdθdφ . (2.47)

The radial probability function Pnl(r) is the probability that the electron is found between r and r + dr:

Pnl(r) dr =
∫ π

θ=0

∫ 2π

φ=0

Ψ∗Ψ r2 sin θdrdθdφ

= |Rnl(r)|2 r2 dr . (2.48)

The factor of r2 that appears here is just related to the surface area of the radial shell of radius r (i.e.
4πr2.) Some representative radial probability functions are sketched in Fig. 2.4. 3-D plots of the shapes
of the atomic orbitals are available at: http://www.shef.ac.uk/chemistry/orbitron/.

Expectation values of measurable quantities are calculated as follows:

〈A〉 =
∫ ∫ ∫

Ψ∗AΨdV . (2.49)

Thus, for example, the expectation value of the radius is given by:

〈r〉 =
∫ ∫ ∫

Ψ∗rΨdV

=
∫ ∞

r=0

R∗nlrRnlr
2dr

∫ π

θ=0

sin θdθ

∫ 2π

φ=0

dφ

=
∫ ∞

r=0

R∗nlrRnlr
2dr . (2.50)

This gives:

〈r〉 =
n2aH

Z

(
3
2
− l(l + 1)

2n2

)
. (2.51)

Note that this only approaches the Bohr value, namely n2aH/Z (see eqn 1.15), for the states with l = n−1
at large n.

Reading

Demtröder, W., Atoms, Molecules and Photons, §4.3 – §5.1.
Haken, H. and Wolf, H.C., The Physics of Atoms and Quanta, chapter 10.
Phillips, A.C., Introduction to Quantum Mechanics, chapters 8 & 9.
Beisser, A., Concepts of Modern Physics, chapter 6.
Eisberg, R. and Resnick, R., Quantum Physics, chapter 7.
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Figure 2.4: Radial probability functions for the first three n states of the hydrogen atom with Z = 1.
Note that the radial probability is equal to r2|Rnl(r)|2, not just to |Rnl(r)|2. Note also that the horizontal
axes are the same for all three graphs, but not the vertical axes.
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2.5 Appendix: Mathematical solution of the radial equation

The radial wave equation for hydrogen is given from eqn 2.36 as:

− h̄2

2m

1
r2

d
dr

(
r2 dR(r)

dr

)
+

h̄2l(l + 1)
2mr2

R(r)− Ze2

4πε0r
R(r) = ER(r) , (2.52)

where l is an integer ≥ 0. We first put this in a more user-friendly form by introducing the dimensionless
radius ρ according to:

ρ =
(

8m|E|
h̄2

)1/2

r . (2.53)

The modulus sign around E is important here because we are seeking bound solutions where E is negative.
The radial equation now becomes:

d2R

dρ2
+

2
ρ

dR

dρ
−

(
l(l + 1)

ρ2
+

λ

ρ
− 1

4

)
R = 0 , (2.54)

where

λ =
1

4πε0

Ze2

h̄

(
m

2|E|
)1/2

. (2.55)

We first consider the behaviour at ρ →∞, where eqn 2.54 reduces to:

d2R

dρ2
− 1

4
R = 0 . (2.56)

This has solutions of e±ρ/2. The e+ρ/2 solution cannot be normalized and is thus excluded, which implies
that R(ρ) ∼ e−ρ/2.

Now consider the bahaviour for ρ → 0, where the dominant terms in eqn 2.54 are:

d2R

dρ2
+

2
ρ

dR

dρ
− l(l + 1)

ρ2
R = 0 , (2.57)

with solutions R(ρ) = ρl or R(ρ) = ρ−(l+1). The latter diverges at the origin and is thus unacceptable.
The consideration of the asymptotic behaviours suggests that we should look for general solutions of

the radial equation with R(ρ) in the form:

R(ρ) = L(ρ) ρl e−ρ/2 . (2.58)

On substituting into eqn 2.54 we find:

d2L

dρ2
+

(
2l + 2

ρ
− 1

)
dL

dρ
+

λ− l − 1
ρ

L = 0 . (2.59)

We now look for a series solution of the form:

L(ρ) =
∞∑

k=0

akρk . (2.60)

Substitution into eqn 2.59 yields:

∞∑

k=0

[
k(k − 1)akρk−2 +

(
2l + 2

ρ
− 1

)
kakρk−1 +

λ− l − 1
ρ

akρk

]
= 0 , (2.61)

which can be re-written:
∞∑

k=0

[
(k(k − 1) + 2k(l + 1))akρk−2 + (λ− l − 1− k)akρk−1

]
= 0 , (2.62)

or alternatively:

∞∑

k=0

[
((k + 1)k + 2(k + 1)(l + 1))ak+1ρ

k−1 + (λ− l − 1− k)akρk−1
]

= 0 . (2.63)
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This will be satisfied if

((k + 1)k + 2(k + 1)(l + 1))ak+1 + (λ− l − 1− k)ak = 0 , (2.64)

which implies:
ak+1

ak
=

−λ + l + 1 + k

(k + 1)(k + 2l + 2)
. (2.65)

At large k we have:
ak+1

ak
∼ 1

k
. (2.66)

Now the series expansion of eρ is

eρ = 1 + ρ +
ρ2

2!
+ · · · ρ

k

k!
+ · · · , (2.67)

which has the same limit for ak+1/ak. With R(ρ) given by eqn 2.58, we would then have a dependence
of e+ρ · e−ρ/2 = e+ρ/2, which is unacceptable. We therefore conclude that the series expansion must
terminate for some value of k. Let nr be the value of k for which the series terminates. It then follows
that anr+1 = 0, which implies:

−λ + l + 1 + nr = 0 , nr ≥ 0 , (2.68)

or
λ = l + 1 + nr . (2.69)

We now introduce the principal quantum number n according to:

n = nr + l + 1 . (2.70)

It follows that:

1. n is an integer,

2. n ≥ l + 1,

3. λ = n .

The first two points establish the general rules for the quantum numbers n and l. The third one fixes the
energy. On inserting λ = n into eqn 2.55 and remembering that E is negative, we find:

En = − me4

(4πε0)22h̄2

Z2

n2
. (2.71)

This is the usual Bohr result. The wave functions are of the form given in eqn 2.58:

R(ρ) = ρl L(ρ) e−ρ/2 . (2.72)

The polynomial series L(ρ) that satisfies eqn 2.59 is known as an associated Laguerre function. On
substituting for ρ from eqn 2.53 with |E| given by eqn 2.71, we then obtain:

R(r) = normalization constant× Laguerre polynomial in r × rle−r/a (2.73)

as before (cf. eqn 2.43), with

a =
(

h̄2

2m|E|
)1/2

=
4πε0h̄

2

me2

n

Z
≡ n

Z
aH , (2.74)

where aH is the Bohr radius of hydrogen.
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