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We review in this work the properties of the nuclear and quark matter equations
of state under the influence of a strong magnetic field, in special, its effects in the
hadron-quark phase transition and in the global properties of compact stars. We
describe moreover the emission of gravitational waves from a compact stars that
goes over a hadron-quark phase transition in its inner core.

1 Introduction

In the last few years, the determination of properties of the equation of
state (EoS) of nuclear matter has became one of the main goals in nuclear
physics. Astrophysical observations together with the investigation of dense
hadronic matter via high-energy colliders, BNL-RHIC and CERN-LHC, have
brought excellent expectations on this matter.

Additionally, through the determination of masses and radii of neutron
stars, one may establish important constrains in the parameters of nuclear
models. For instance, Chandra X-Ray Observatory and BeppoSax are per-
forming important analysis on neutron stars and pulsars X-Ray or thermal
emission. Specially important are the new data about the masses of neutron
stars, extracted from quasi-periodic oscillations (QPO) in low mass X-ray bi-
naries (LMXB), specially the system of Vela X-1 pulsar; these data have given
new information about the nuclear matter equation of state. Although most
of the pulsar masses are found around the value of the Hulse and Taylor pul-
sar (1.44M�), the Vela X-1 pulsar has an inferred mass about 1.86±0.16M�.
This result indicates new relevant characteristics about the stiffness of the the-
oretical EoS. In addition, one must also mention the recent results obtained
from the system RXJ 1856.5-3754, which shows special features concerning
its temperature and evolution, leading to the conclusion, despite some still
open questions, that it may be formed by extremely compacted strange quark
matter (M≈ 1M� and R≈ 6km).

New important results from the research on gravitational waves are ex-
pected. For instance, we mention the detection of gravitational waves gener-
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ated by rotating pulsars, phase-transitions, star-quakes or micro-collapses on
neutron stars.

Very important aspect related to the structure of the EoS in neutron stars
are the influence of a strong magnetic field in global static properties of the
star and in particular its effects in the phase transition of hadron matter to a
plasma of quarks and gluons inside the star.

In the following we briefly discuss these topics. We use, for the hadron
phase, a modified version of the quantum hadrodynamics (QHD)1 model and
for the quark-gluon phase the MIT2 bag model.

2 Nuclear Matter Equation of State

One consistent approach to describe nuclear matter is the pioneering work
of Walecka which is based on effective field theory. Further developments
were done by many authors from whose we extract the works by Boguta and
Bodmer3, Zimanyi and Moszkowski4 and Taurines et. al.5, developed in the
following years.

We have used as the starting point of our study the lagrangian density
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which includes the fundamental baryon octet (p, n, Λ,Σ+, Σ0, Σ−, Ξ−, Ξ0)
coupled to three mesons (σ, ω, �), and two free leptons (e, µ). The scalar and
vector coupling constants, gσ, gω and the coefficients b, c are determined by
fitting nuclear matter bulk properties, i. e., the binding energy Eb (= -16.3
MeV), the compression modulus K (= 240 MeV) and the effective nucleon
mass M∗ = M − gσσ̄ (= 732 MeV) at saturation density ρ0 (=0.153 fm−3).
The ρ-baryon coupling constant, g�, is determined by fitting the nuclear mat-
ter asymmetry coefficient, a4 (= 32.5 MeV) (for details see Refs.6,7).

Applying standard technics of field theory and solving the dynamical field
equations at a mean-field level, one can extract expressions for the thermo-
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dynamical quantities like pressure, p, and energy density, ε, and verify the
suitability of the model. The predictions for the experimental values of com-
pression modulus, K and effective nucleon mass, M∗, result in excellent agree-
ment with the experimental values for neutron star masses and radii6,8. In
Fig. 1 we describe in particular the behavior of the distribution of species a
function of the total baryon density.
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Figure 1. Particle distribution as function of baryon density.

3 Phase Transition to Quark Matter

The phase transition from nuclear to quark matter is expect to occur
at high densities and/or high temperatures, and to restore chiral symme-
try. We follow in this section the work of Heiselberg and Hjorth-Jensen9

which describes the conditions for the occurrence of a mixed phase composed
by hadrons and deconfined quarks. The occurrence of a mixed phase, first
claimed by Glendenning10, where quark structures are immersed into a hadron
matter (or vice-versa at higher densities), is now uncertain. This work will
not clarify this topic, once it is model-dependent; however, as an application
of this study we intend to propose possible differences on the detection of such
phases inside hybrid stars.

Generally speaking, the physical properties of the transitions with one
or more than one conserved charges are quite different. The most important
feature is that the pressure may be constant or vary continuously with the
proportion of phases in equilibrium. Reviewing Heiselberg’s work, one can
search for the answer respect to which kind of transition is energetically fa-
vored through an analysis of the bulk energy gained in such a transition and
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the Coulomb and the surface energy relations, as stressed below.
Using the MIT bag model in the description of quark matter and com-

bining the MIT expression for the thermodynamical potential
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with the corresponding results of the model described in Eq. (1), one can
relate the resulting energy densities in order to calculate the bulk energy of
hadron-quark matter. However, due to large uncertainties in the estimates of
bulk and surface properties, one cannot claim that the droplet phase is favored
or not, once it depends crucially on the nuclear and quark matter properties.

If droplet sizes and separations are small compared with the Debye scre-
ening length, λD,

1
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= 4π
∑
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)
nj ,j �=i

(3)

where ni, µi and Qi are the number density, chemical potential and charge
of particle species i, the electron density will be uniform to a good approxi-
mation. Screening effects can be estimated: if the characteristic spatial scales
of structures are less than about 10 fm for the nuclear phase, and less than
about 5 fm for the quark phase, screening effects will be unimportant, and
the electron density will be essentially uniform; in the opposite case, the total
charge densities for bulk nuclear and quark matter will both vanish.

When quark matter occupies only a small fraction,

f =
VQM

VQM + VNM
(4)

of the total volume, quarks will form spherical droplets. The surface energy
per droplet is given by εS = σ4πR2, where σ is the surface tension, and the
Coulomb energy is

εC =
16π2

15
(ρQM − ρNM )2R5 . (5)
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Minimizing the energy density with respect to R, one obtains the usual result
εs = 2εC and finds a droplet radius

R =
(

15
8π

σ

(ρQM − ρNM )2

)2

. (6)

These results cannot be considered definitive before a high precise de-
termination of the surface tension, σ, is performed. However, for σ ∼
70 − 100MeV , a mixed phase is unfavored and the star will have a density
discontinuity. The result is a larger radius to support the mixed phase. The
behavior of the equation of state for the constant pressure phase transition to
quark matter, determined through our models, is shown below in Fig. 2.
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Figure 2. Equation of state for pure neutron star matter (solid line) and for the transition
to quark matter (dotted line).

4 Magnetic Field Effects

Several independent arguments link the class of Soft γ-Ray Repeaters
(SGRs) and anomalous X-ray pulsars with neutron stars having ultra strong
magnetic fields. In addition, two of four known SGRs directly imply, from
their periods and spin-down rates, that the surface magnetic fields lay in
the range (2 − 8) × 1014G. An estimate of the magnitude of the magnetic
field strength needed to dramatically affect the neutron star structure yields
B ∼ 2 × 1018 M/1.4M�

(R/10km)2 in the interior of neutron stars11.
In this section we investigate the effects of very strong magnetic fields on

the equation of state of dense matter whit hyperons and quarks. In the pres-
ence of a magnetic field, the equation of state above nuclear saturation density
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is significantly affected both by the Landau quantization and by magnetic mo-
ment interactions; this happens however only for fields strengths B > 1018G.

The lagrangian density (Eq.1) can be re-written in order to include the
magnetic field as
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For detailed and well founded texts on magnetic field effects, we recommend
Refs.12,13, from where one can find the energy spectrum for the protons given
by
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In a strong magnetic field, the particles motion are perpendicular to the
field lines and are quantized having discrete Landau orbitals. The particles
behave like a one-dimensional rather than a three-dimensional gas, and the
stronger is the field, the smaller is the number of occupied Landau levels.
Moreover, the energy of a charged particle changes significantly in the quan-
tum limit if the magnetic field obeys H ≥ Hc. With respect to the relativistic
intensity of the effects, for electrons, Hc ∼ 4 × 1013G, for u and d (mass-
less quarks), Hc ∼ 4 × 1015G, for s-quark, Hc ∼ 1018G and for protons,
Hc ∼ 1020G.

Considering phase transition aspects, a strong magnetic field unfavor the
mixed hadron-quark phase once it increases the electron number in the nu-
clear phase leaving the quark phase practically unchanged. This increases the
droplet size as it was discussed in the previous section and in ref.14.
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Figure 3. Masses of neutron star as a function of central energy density. The results for a
hybrid star without mixed phase (solid line), with mixed phase (dotted line) and for a pure
neutron star (dashed line) are presented.

5 Compact Stars

The first step through an analysis of compact stars recall the simpler solu-
tion of the general relativistic Einstein equations which represents a static and
spherically symmetric star, the Schwarschild solution, known as the Tolman-
Oppenheimer-Volkoff (TOV) equations15,16. Thus, the TOV equations des-
cribe the structure of a static, spherical and isotropic star with the pressure
p(r) and the energy density ε(r) reflecting the underlying nuclear model. The
TOV equations involve various constraints and boundary conditions: they
must be evaluated for the initial condition ε(0) = εc (with εc denoting the
central density in the star) and M(0) = 0 at r = 0; the radius R of the star
is determined under the condition that, on its surface, the pressure vanishes,
p(r)|r=R = 0.

The condition for chemical equilibrium for neutron stars are:

µi = biµn − qi(µ�) (8)

where µi and µ� stand for the baryon and lepton chemical potentials, respec-
tively; bi is the baryon number and the baryon and lepton electrical charges
are represented by qi.

The corresponding equations for baryon number and electric charge con-
servation are:

ρbaryonic =
∑
B

k3
F,B

3π2
, (9)
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and

∑
B

qe,B

k3
F,B

3π2
−
∑

�

k3
F,�

3π2
= 0 . (10)

Here one can visualize the importance on the determination of the param-
eters of quark and nuclear matter, once they will reflect on the properties of
compact stars. First, quark stars maximum mass, M , and radius, R, are di-
rectly governed, in conventional bag models, by the value of the bag constant
(B60) as:

M =
1.964M�√

B60

; R =
10.71km√

B60

(11)

where B60 = B/(60MeV/fm3) in the massless quarks case. Additionally, the
strong coupling constant αc is also related to quark star properties. Both B60

and αc will determine whether or not the hadron-quark phase transition will
take place. The sequence of neutron stars (mass-energy density relation) and
the behavior of the energy density in the interior of a neutron star is presented
in the figures below.
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Figure 4. Energy density distribution inside the neutron star for two different central en-
ergies.

The nuclear matter coupling constants gBσ, gBω and gB� present the
same sensibility and uncertainties. Nuclear matter properties of the nucleon
effective mass, compression modulus of symmetric nuclear matter and particle
distribution play also an important role on the phase transition and star
properties and, consequently, on the emission of gravitational wave as we
will discuss in the following sections.
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The effects of the presence of a strong magnetic field are shown in the
figures that describe the equation of state, Fig.5, neutron star masses, Fig.6,
and particle distribution, Fig.7.
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Figure 5. Equation of state for neutron star for B=0 (solid line) and B=1018G with (dotted
line) and without (dashed line) the presence of the anomalous magnetic moment.

6 The Conversion of Neutron Stars to Hybrid Stars

The transition from the configuration of pure hyperon stars (H) to hybrid
stars (HQ) may occur through the formation of a met-astable core, built up
by an increasing central density which may be a consequence of a continuous
spin-down or other different mechanisms in the star. This transition releases
energy, exciting mainly the radial modes of the star. These modes do not emit
GWs, unless when coupled with rotation, a situation which will be assumed
here.

Strange matter is assumed to be absolutely stable and a seed of strange
matter in a neutron star would convert the star into a hybrid or strange
star. The speed at which this conversion occurs was calculated by Olinto17,
taking into account the rate at which the down- and strange-quark Fermi seas
equilibrate via weak interactions and the diffusion of strange-quarks towards
the conversion front.

Accordingly to Ref.17, cold neutron star matter can convert to strange
star matter with speeds ranging from 5km/s to 2 × 104km/s. The outcome
of such an event would emit an incredible amount of energy from 0.5ms to 2s.
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Figure 6. Masses of pure neutron star at B=0 (solid line) and B=1018G with (dotted line)
and without (dashed line) the effects of anomalous magnetic moment and the masses of
hybrid stars at B=1018G (long dashed line) and B=5×1018G (dot-dashed line) as functions
of the central energy density.
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Figure 7. Particles distribution at B=0 (solid lines) and B=1018G (dotted line) as functions
of the baryonic density.

We apply this discussion to the partial conversion of a neutron star to strange
matter, forming a hybrid star.

However, the emission of gravitational waves, which will be discussed in
the next section, can only recognize the phase transition after a structural
rearrangement of the star, which shall reduce its radius and gravitational
mass, conserving its total baryon number. Such mechanism has already been
studied by Bombaci18 for the emission of γ-ray bursts.
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7 Gravitational Wave Emission

In order to simplify the analysis, I will consider that most of the mecha-
nical energy of GW emission is in the fundamental model. In this case, the
gravitational strain amplitude can be written as

h(t) = h0e
−(t/τgw−ıω0t) (12)

where h0 is the initial amplitude, ω0 is the angular frequency of the mode and
τgw is the corresponding damping timescale. The initial amplitude is related
to the total energy Eg dissipated as GWs according to the relation19

h0 =
4
ω0r

[
GEg

τgwc3

]1/2

(13)

where G is the gravitational constant, c is the velocity of light and r is the
distance to the source.

Relativistic calculations of radial oscillations of a neutron star with a
quark core were recently performed by Sahu et al.20. However, the relativistic
models computed by those authors do not have a surface of discontinuity
where an energy jump occurs. Instead, a mixing region was considered, where
the charges (electric and baryonic) are conserved globally but not locally10.
Oscillations of star modes including an abrupt transition between the mantle
and the core were considered in Refs.7,21,22. However, a Newtonian treat-
ment was adopted and the equation of state used in the calculations does not
correspond to any specific nuclear interaction model. In spite of these simpli-
fications, these hybrid models suggest that a rapid phase transition occurs as
the result from the formation of a pion condensate, then proceeds at the rate
of strong interaction and affects substantially the mode frequencies. However,
the situation is quite different for slow phase transitions (the present case),
where the mode frequencies are quite similar to those of an one-phase star21.
In this case, scaling the results of Ref.21, the frequency of the fundamental
mode (uncorrected for gravitational redshift) is given approximately by

ν0 ≈ 63.8
[
(M/M�)

R3

]1/2

kHz (14)

where the mass is given in solar units and the radius in km.
Once the transition to quark-gluon matter occurs, the weak interaction

processes for the quarks u, d and s

u+ s→ d+ u and d+ u→ u+ s (15)
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will take place. Since these reactions are relatively slow, they are not balanced
while the oscillations last and thus, they dissipate mechanical energy into
heat23. According to calculations of Ref.21, the dissipation time-scale can be
estimated by the relation

τd ≈ 0.01
(

150MeV

ms

)4(
M�
Mc

)
s (16)

where ms is the mass of the s-quark in MeV and Mc is the mass of the
deconfined core in solar masses. This equation is valid for temperatures in
the range 108 − 109K. On the other hand, the damping time-scale by GW
emission is

τgw = 1.8
(
M�
M

)(
P 4

ms

R2

)
s (17)

where again the stellar mass is in solar units, the radius is in km and the
rotation period P is in milliseconds.

In a first approximation, the fraction of the mechanical energy which will
be dissipated under the form of GWs is

fg =
1

(1 + τgw/τd)
. (18)

Notice that the damping time-scale by GW emission depends strongly on the
rotation period. Therefore, one should expect that slow rotators will dissipate
mostly of the mechanical energy into heat. In table 1 is shown for each star
model the expected frequency of the fundamental mode (corrected for the
gravitational redshift) , the critical rotation period (in ms) for having fg =
0.50, the GW damping for this critical period and the quality factor of the
oscillation, Q =πν0τgw.

Considering now a strongly magnetized neutron star with B ∼ 1018G,
we detect an increasing in the gravitational mass of a star composed by pure
hadronic matter. However, the gravitational mass of hybrid stars decrease
for the case of increasing magnetic field and the explanation is quite simple:
once the hybrid star has lower gravitational mass than the pure hadronic one,
due to the presence of a softer quark matter in its inner shells and, the phase
transition from hadron to quark matter occurs at lower densities with higher
magnetic fields, the highly magnetized hybrid star will have a more important
quark-gluon plasma core and a lower mass. This fact will represent a larger
energy released during the phase transition and gravitational wave emission
which could be detected from larger distances.
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Table 1. Oscillation parameters for B=0: the damping time-scale τgw is given for the critical
period; maximum distances for VIRGO (V) and LIGO II (L) are in Mpc, and the LIGO II
result for B=1018G.

ν0 Pcrit τgw Q Dmax Dmax Dmax

(kHz) (ms) (ms) - (VIRGO) (LIGO II) B = 1018G
1.62 1.64 87.0 442 4.9 10.2 11.5
1.83 1.25 27.0 155 6.4 13.5 15.28
2.06 1.13 17.0 110 6.0 12.8 14.48
2.32 1.06 11.5 84 5.1 11.1 12.56
2.72 1.00 8.4 72 3.6 5.7 6.45

After filtering the signal, the expected signal-to-noise ratio is

(S/N)2 = 4
∫ ∞

0

| h̃(ν) |
Sn(ν)

dν (19)

where h̃(ν) is the Fourier transform of the signal and Sn(ν) is the noise power
spectrum of the detector. Performing the required calculations, the S/N ratio
can be written as

(S/N)2 =
4
5
h2

0

(
τgw

Sn(νgw)

)
Q2

1 + 4Q2
. (20)

In the equation above, the angle average on the beam factors of the detector
were already performed.

From Eqs.(12) and (18), once the energy and the S/N ratio are fixed,
one can estimate the maximum distance Dmax to the source probed by the
detector. In the last two columns of table 1 are given distances Dmax derived
for a signal-to-noise ratio S/N = 2.0 and the sensitivity curve of the laser
beam interferometers VIRGO and LIGO II. In both cases, it was assumed
that neutron stars underwent the transition having a rotation period equal to
the critical value.

We emphasize again that our calculations are based on the assumption
that the deconfinement transition occurs in a dynamical time-scale24. In the
scenario developed in Ref.10, a mixed quark-hadron phase appears and the
complete deconfinement of the core occurs according to a sequence of quasi-
equilibrium states. The star contracts slowly, decreasing its inertia moment
and increasing its angular velocity until the final state be reached10 in a time-
scale of the order of 105 yr. Clearly, in this scenario no gravitational waves will
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be emitted and this could be a possibility to discriminate both evolutionary
paths.

8 Additional Effects

Additional effects and/or scenarios may improve, or not, the detection
of gravitational waves from compact stars. An important aspect is related
to the color super-conducting phase. As, in principle, this new phase would
turn the equation of state even softer, enlarging the energy release during the
astrophysical phase transition, we decided to analyze such a phase.

The super-conducting quark phase may be described by the thermody-
namical potential25

ΩCFL = ΩFree − 3
π2

∆2µ2 +B . (21)

The resulting equation of state was evaluated and the TOV equations
lead to a smaller radius star, as expected, but also to a less massive star, both
for the gravitational and for the baryonic masses. This additional results do
not change significantly the properties of gravitational wave emission as we
have previously expected; however, we still expect an improved understanding
about high-density matter properties to better describe such a phase.

The conversion from a neutron star to a strange star, instead of a hy-
brid star, is a more catastrophic event and may release much more energy,
being detectable from longer distances. This kind of transition was studied
by Bombaci18, in order to describe the emission of γ-ray bursts. Applying
our results to describe the emission of gravitational waves we got the results
shown in table 2, which leads to one of the most promising gravitational wave
generators.

Table 2. Properties of a NS→SS conversion and the maximum distances for VIRGO (V)
and LIGO II (L) are in Mpc

Mbar MSS RSS DV irgo
max DLigo

max

1.0749 0.6445 8.40 15.47 34.63
1.3202 0.7804 8.87 20.01 44.79
1.5724 0.9241 9.30 24.27 54.33
1.8342 1.0727 9.68 28.20 63.13
2.1045 1.2210 9.98 32.07 71.79
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9 Conclusions

Summarizing, in the framework of a nuclear many-body theory and the
MIT bag model, the phase transition from hadron to quark matter was de-
scribed by considering screening effects and the equation of state was deter-
mined. We applied the resulting EoS to the TOV equations also considering
the effects of an intense magnetic field. The results obtained are in good
agreement with previous results obtained by many authors. As a tool for
gravitational wave emission, we considered the mechanism described in Ref.7,
where a phase transition occurs inside a compact star and releases energy. Ac-
cording to the results, such an event would be detected as far as 13 Mpc with-
out considering magnetic fields and 15 Mpc for compact star with B=1018G.
Considering a NS→SS transition, we obtained a much larger distance of up
to 71 Mpc.
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