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In the presence of strong magnetic field reported to have been observed on the
surface of some neutron stars and on what are called magnetars, a host of physical
phenomena, from the birth of a neutron star to the free streaming neutrino cooling
phase, will be modified. In this review we discuss the effect of a magnetic field on
the equation of state of high density nuclear matter by including the anomalous
magnetic moment of the nucleons into consideration. We would then go over to
discuss the neutrino interaction process in strong as well as in weak magnetic
fields. Neutrino processes are important in studying the propagation of neutrinos
and energy loss. Their study is a prerequisite for the understanding of the actual
dynamics of supernova explosion and on the stabilization of radial pulsation modes
through the effect on bulk viscosity. The anisotropy introduced in the neutrino
emission and through the modification of the shape of the neutrino sphere may
explain the observed pulsar kicks.

1 Introduction

Large magnetic fields ∼ 1014 Gauss have been reported to exist on the
surface of pulsars. Recent observations 1 of γ-ray repeaters and spinning X-
ray pulsars (magnetars) hints to the existence of fields in excess of 1014 Gauss.
It then follows from the Scalar Virial theorem that the fields in the core could
even reach a value as large as 1018 Gauss. There is, however, an upper limit on
the magnetic field discussed by Chandershekhar beyond which the magnetic
energy exceeds the gravitational energy and the star is no longer stable. In
the presence of such magnetic fields, neutron star properties in all its phases,
from its evolution from protoneutron star to cold neutrino emitting phase,
would be modified. This arises because in the presence of a magnetic field,
the motion of the charged particles is quantized in a plane perpendicular to
the magnetic field and the charged particles occupy discrete Landau levels.
This has the effect of not only modifying the energy eigenvalues but also the
particle wave functions. The quantum state of a particle in a magnetic field
is specified by its momentum components pz, py, spin s and Landau quantum
number ν. The anomalous magnetic moments of protons and neutrons further
modify the energy eigenvalues. The time scales involved during all phases of
neutron stars, from their birth to neutrino burst through thermal neutrino
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emission from the trapped neutrino sphere to the freely streaming neutrino
cooling phase, are large compared to the interaction time scales of strong,
electromagnetic and weak interactions and the matter is in β equilibrium.
The magnetic field would modify the equilibrium and all neutrino interaction
processes including scattering, absorption and production.

The strategy then is to solve first the Dirac equation for all particles in
the presence of a magnetic field including their anomalous magnetic moments,
to obtain the energy eigenvalues, to construct the Grand Partition Function
taking into account strong interactions in some model dependent way and to
obtain the equation of state (EoS) of nuclear matter. The next step is to
calculate the scattering cross-sections for all neutrino processes by using the
exact wave functions and by modifying the phase space integrals for arbitrary
values of degeneracy, density, temperature and magnetic field. The various
phenomenon that we will address are :

1. Composition of matter in neutron stars, proton fraction, effective nucleon
mass, and others.

2. Cooling of neutron stars in the free streaming regime.

3. Neutrino transport in neutron and collapsing stars which is an essential
prerequisite for an understanding of supernova explosion, structure of
protoneutron star and observed pulsar kicks.

4. Damping of radial oscillations and secular instability through the calcu-
lation of bulk viscosity.

2 Nuclear Matter Composition

For determining the composition of dense, hot, magnetized matter, we em-
ploy a relativistic mean field theoretical approach in which the baryons (pro-
tons and neutrons) interact via the exchange of σ−ω−ρ mesons in a constant
uniform magnetic field. Following Ref.2, in a uniform magnetic field B along
the z axis corresponding to the choice of the gauge field Aµ = (0, 0, xB, 0),
the relativistic mean field Lagrangian can be written as

L =
∑

ψ̄B

[
iγµD

µ −mB + gσBσ − gωBγµω
µ − gρB τ3B γµ ρ

µ + κBσµνF
µν

]
ψB

+
1
2

[
(∂µσ)2 − (m2

σσ
2)
]
− 1

4
ωµνω

µν +
1
2
m2

ωωµω
µ − 1

4
ρµνρ

µν

+
1
2
m2

ρρµρ
µ − U(σ) − 1

4
FµνFµν +

∑
l

ψ̄l(iγµD
µ −ml)ψl (1)
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in the usual notation, withDµ = ∂µ+ieAµ and κB as the anomalous magnetic
moment given by

κp =
e

2mp

[
gp

2
− 1
]

;κn =
e

2mn

gn

2
(2)

where gp = 5.58 and gn = −3.82 are the Lande’s g-factor for protons and
neutrons, respectively. Replacing the meson fields in the relativistic mean
field approximation by their density dependent average values < σ0 >,< ω0 >
and < ρ0 >, the equations of motion satisfied by the nucleons in the magnetic
field become

[−iαx
∂

∂x
+ αy(py − eBx) + αzpz + β(mi − gσ < σ0 >) − iκiαxαyB]fi,s

= (Ei − U i
0)fi,s(x) (3)

where

Up,n
0 = gωN < ω0 > ±gρN

2
< ρ0 > . (4)

These equations are first solved for the case when the momentum along the
magnetic field direction is zero and then boosting along that direction till the
momentum becomes pz. For the neutrons and protons we thus get

En
s =

√
m∗2

n +
−→
p2 + κ2

nB
2 + 2κnBs

√
p2

x + p2
y +m∗2

n

= En
s − Un

0 (5)

and

Ep
ν,s =

√
m∗2

p + p2
z + eB(2ν + 1 + s) + κ2

pB
2 + 2κpBs

√
m∗2

p + eB(2ν + 1 + s)

= Ep
ν,s − Up

0 (6)

where 2ν = (2n + 1 + s), with ν and n being integer known as Landau and
principal quantum numbers, respectively. s = ±1 indicates whether the spin
is along or opposite to the direction of the magnetic field and m∗

B = mB −gσσ
is the effective baryon mass. The energy spectrum for the electrons is given
by

Ee
ν,s =

√
m2

e + p2
z + (2ν + 1 + s)eB . (7)

The mean field values < σ0 >, < ω0 > and < ρ0 > are determined by
minimizing the energy at fixed baryon density nB = np+nn or by maximizing
the pressure at fixed baryon chemical potential µB . We thus get

< σ0 >=
gσ

m2
σ

(ns
p+ns

n) ;< ω0 >=
gω

m2
ω

(nn+np) ;< ρ0 >=
1
2
gρ

m2
ρ

(np−nn) (8)
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where ni and ns
i (i=n,p) are, respectively, the number and scalar number

densities for protons and neutrons. In the presence of the magnetic field, the
phase space volume is replaced by∫

d3p

(2π)3
−→ eB

(2π)2

νmax∑
ν=0

(2 − δν,0)
∫

dpz . (9)

The expressions for the number and scalar number densities for neutrons and
protons are, respectively, given by

nn =
1

(2π)3
∑

s

∫
d3p

1 + eβ(En
s −µ�

n)
(10)

ns
n =

m�
n

(2π)3
∑

s

∫
d3p

En
s (1 + eβ(En

s −µ�
n))

(11)

np =
eB

2π2

∑
s

∑
ν

∫ ∞

0

dpz

1 + eβ(Ep
ν,s−µ�

p)
(12)

ns
p =

eB

2π2
m�

p

∑
s

∑
ν

∫
dpz

Ep
ν,s(1 + eβ(Ep

ν,s−µ�
p))

(13)

and the net electron and neutrino number densities are

n̄e =
eB

2π2

∑
(2 − δν,0)

∫
dpz

[
1

(1 + e(β(Ee
ν − µe)))

− µe ↔ (−µe)

]
(14)

n̄νe
=

1
(2π)3

∫
d3p

[
1

(1 + eβ(Eνe−µνe ))
− µνe

↔ (−µνe
)

]
. (15)

The thermodynamic potentials for the neutron, proton, electron and neutrino
are

Ωn = − 1
β(2π)2

∑
s

∫
d3p ln[1 + e−β(En

s −µ�
n)] (16)

Ωp = − 1
β(2π)2

∑
s

∑
ν

∫
dpz ln[1 + e−β(Ep

ν,s−µ�
p)] (17)

Ωe = − 1
β(2π)2

∑
s

∑
ν

∫
dpz ln[1 + e−β(Ee

ν,s−µe)] (18)

Ωνe
= − 1

β(2π)2

∫
d3p ln[1 + e−β(Eνe−µνe )] (19)
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and the thermodynamic potential for the system is

Ω = −1
2
m2

ωω
2
0 − 1

2
m2

ρρ
2
0 +

1
2
m2

σσ
2 + U(σ) +

B2

8π
+
∑

i

Ωi (20)

where i = n, p, e, νe. The various chemical potentials are determined by the
conditions of charge neutrality and chemical equilibrium. In later stages of
core collapse and during the early stages of protoneutron star, neutrinos are
trapped and the chemical potentials satisfy the relation µn = µp + µe − µνe

.
These situations are characterized by a trapped lepton fraction YL = Ye +Yνe

where Ye = (ne−ne+)/nB is the net electron fraction and Yνe
= (nνe

−nν̄e
)/nB

is the net neutrino fraction.
The evolution of a protoneutron star begins from a neutrino-trapped si-

tuation with YL ∼ 0.4 to one in which the net neutrino fraction vanishes
and chemical equilibrium without neutrinos is established. In this case, the
chemical equilibrium is modified by setting µνe

= 0. In all cases, the condition
of charge neutrality requires

np = n̄e . (21)

In the nucleon sector, the constants gσN , gωN , gρN , b and c are determined
by fitting the nuclear matter equilibrium density n0 = 0.16fm−3, the binding
energy per nucleon (∼ 16MeV ), the symmetry energy (∼ 30 − 35MeV ), the
compression modulus (200MeV ≤ k0 ≤ 300MeV ) and the nucleon Dirac
effective mass M∗ = (0.6 − 0.7) × 939MeV at n0. Numerical values of the
coupling constants so chosen are :

gσN

mσ
= 3.434fm−1 ;

gωN

mω
= 2.694fm−1 ;

gρN

mρ
= 2.1fm−1 ;

b = 0.00295 ; c = −0.00107 .

3 Weak Rates and Neutrino Emissivity

The dominant mode of energy loss in neutron stars is through neutrino
emission. The important neutrino emission processes leading to neutron star
cooling are the so called URCA processes

n −→ p+ e− + ν̄e ; p+ e−+ −→ n+ νe . (22)

At low temperatures, for degenerate nuclear matter, the direct URCA process
can take place only near the fermi energies of participating particles and
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simultaneous conservation of energy and momentum require the inequality

pF (e) + pF (p) ≥ pF (n)

to be satisfied in the absence of the magnetic field. This leads to the
well known threshold3 for the proton fraction Yp = np

nB
≥ 11% thus lead-

ing to strong suppression in nuclear matter. This condition is satisfied for
nB ≥ 1.5n0 ( where n0 = 0.16fm−3, is the nuclear saturation density), in a
relativistic mean field model of interacting n-p-e gas for B = 0. The standard
model of the long term cooling is the modified URCA process:

(n, p) + n −→ (n, p) + p+ e− + ν̄e ; (n, p) + p+ e− −→ (n, p) + n+ νe (23)

which differ from the direct URCA reactions by the presence in the initial
and final states of a bystander particle whose sole purpose is to make possi-
ble conservation of momentum for particles close to the Fermi surfaces. For
weak magnetic fields, the matrix element for the process remains essentially
unaffected and the modification comes mainly from the phase space factor.
Treating the nucleons non-relativistically and electrons ultra-relativistically,
the matrix element squared and summed over spins is given by∑

|M |2 = 8G2
F cos2 θc(4m∗

nm
∗
p)EeEν [(1 + 3g2

A) + (1 − g2
A) cos θc] (24)

where gA = 1.261 is the axial-vector coupling constant. The emissivity ex-
pression is given by

Ėν =

[∏
i

∫
1

(2π)32Ei
d3pi

]
Eν

∑
|M |2(2π)4δ4(Pf − Pi)S (25)

where the phase space integrals are to be evaluate over all particle states.
The statistical distribution function is S = fn(1 − fp)(1 − fe), where the f ′is
are the Fermi-Dirac distributions. We can now evaluate the emissivity in the
limit of extreme degeneracy, a situation appropriate in neutron star cores by
using the standard techniques to perform the phase space integrals 2

Ė =
457π
40320

G2
F cos2 θc(1 + 3g2

A)m∗
nm

∗
peBT

6
νmax∑
ν=0

(2 − δν,0)
1√

µ2
e −m2

e − 2νeB
(26)

where νmax = Int(µ2
e −m2

e/2eB). In the limit of a vanishing magnetic field,
the sum can be replaced by an integral and we recover the usual expression,
i.e. the one for the case B = 0

Ėν(B = 0) =
457π
20160

G2
F cos2 θc(1 + 3g2

A)m∗
nm

∗
pµeT

6 . (27)
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Modified URCA processes are considered to be the dominant ones for neutron
star cooling. Similarly the energy loss expression with the appropriate electron
phase space, for the modified URCA process ĖURCA is calculated to be

ĖURCA =
11513
60480

G2
F cos2 θc

2π
g2

Am
∗3
n m

∗
p

(
f

mπ

)4

αURCAT
8

×
νmax∑
ν=0

(2 − δν,0)

(
1√

µ2
e −m2

e − 2νeB

)
(28)

where f is the π − N coupling constant (f2 � 1) and αURCA has been esti-
mated to be equal to 1.54. The above equation in the B → 0 limit goes over
to the standard result4

ĖURCA(B = 0) =
11513
30240

G2
F cos2 θc

2π
g2

Am
∗3
n mp

(
f

mπ

)4

αURCA µeT
8 . (29)

In the case of super strong magnetic fields such that B > Be
c (with Be

c =
4.41 × 1013 Gauss) all electrons occupy the Landau ground state at T = 0
which corresponds to a ν = 0 state with electron spins pointing in the direction
opposite to the magnetic field. Charge neutrality now forces the degenerate
non-relativistic protons also to occupy the lowest Landau level with proton
spins pointing in the direction of the field. In this situation we can no longer
consider the matrix elements to be unchanged and they should be evaluated
using the exact solutions of the Dirac equation. Further, because nucleons
have anomalous magnetic moment, matrix elements need to be evaluated for
specific spin states separately. The electron in the ν = 0 state has energy
Ee =

√
m2

e + p2
ez and the positive energy spinor in the ν = 0 state is given by

Ue,−1 =
1√

Ee +me




0
Ee +me

0
−pez


 . (30)

Protons are treated non-relativistically and the energy in the ν = 0 state is
Ep � m̃p + P 2

z

2m̃p
+Up

0 and the non-relativistic spin up operator Up,+1 given by

Up,+1 =
1√
2m̃p

(
χ+

0

)
(31)

where m̃p = m∗
p − κpB. For neutrons we have

Ψn,s(r) =
1√

LxLyLz

e−ipn,s·rUn,s(En,s) (32)
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Un,s =
1√
2m∗

n

(
χs

0

)
, (33)

and En,s � m∗
n +−→pn

2 −κnBs+Un
0 in the non-relativistic limit. The neutrino

wave function is given by

Ψν(r) =
1√

LxLyLz

e−ipν·rUν,s(Eν) . (34)

Here Uν,s is the usual free particle spinor, χs is the spin spinor and the wave
function has been normalized in a volume V = LxLyLz. Using the explicit
form for the spinors given above we can now calculate the matrix element
squared and summed over neutrino states to get∑

|M†
+M+| = |K+|24(4m∗

nm̃p)(1 + gA)2(Ee + pez)(Eν+pνz
) (35)

and ∑
|M†

−M−| = |K−|216(4m∗
nm̃p)g2

A(Ee + pez)(Eν − pνz) . (36)

The neutrino emissivity is calculated by using the standard techniques for
degenerate matter and we obtain

Ė =
457π
40320

G2
F cos2 θceB

m̃pm
∗
n

pF (e)
T 6

[
(1 + gA)2

2
θ

(
p2

F (n,+)
)
exp

(−p2
F (n,+)
2eB

)

+θ
(
p2

F (n,+) − 4p2
F (e)

)
exp

(−(p2
F (n,+) − 4p2

F (e))
2eB

)

+2g2
ApF (n,+) −→ pF (n,−)

]
, (37)

where pf (n,+) and pF (n,−) are the neutron Fermi momenta for spins along
and opposite to the magnetic field direction respectively and are given by

p2
F (n,±)
2m∗

n

= µn −m∗
n − Un

0 ± κnB

2m∗
n

. (38)

We thus see as advertised that in the presence of quantizing magnetic field
the inequality pF (e) + pF (p) ≥ pf (n) is no longer required to be satisfied for
the process to proceed, regardless of the value of the proton fraction and we
get a non-zero energy loss rate.
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4 Bulk Viscosity of Magnetized Neutron Star Matter

The source of bulk viscosity of neutron star matter is the deviation from β
equilibrium, and the ensuing non-equilibrium reactions, implied by the com-
pression and rarefaction of the matter in the pulsating neutron star. These
important reactions are the URCA and the modified URCA processes. Since
the source of bulk viscosity is the deviation from β equilibrium, these reac-
tions are driven by the non-zero values of ∆µ = µn − µp − µe. We calculate
the bulk viscosity of neutron star matter in the presence of a magnetic field
for direct URCA processes in the linear regime, i.e. ∆µ << kT . The bulk
viscosity ζ is defined by5

ζ = 2
(
dW

dt

)
av

1
v0

(
v0
∆v

)2 1
ω2

. (39)

Here v0 is the specific volume of the star in equilibrium configuration, ∆v is
the amplitude of the periodic perturbation with period τ = 2π

ω and v(t) =
v0 + ∆v sin(2πt/τ). The quantity (dW

dt )av is the mean dissipation rate of
energy per unit mass and is given by the equation(

dW

dt

)
av

= −1
τ

∫
P (t)

dv

dt
dt . (40)

The pressure P (t) can be expressed near its equilibrium value P0, as

P (t)=P0+
(
∂P

∂v

)
0

∆v+
(
∂P

∂np

)
0

∆np+
(
∂P

∂ne

)
0

∆ne+
(
∂P

∂nn

)
0

∆nn . (41)

The change in the number of neutrons, protons and electrons per unit mass
over a time interval (0, t) due to URCA reactions (23) is given by

−∆nn = ∆np = ∆ne =
∫ t

0

dnp

dt
dt . (42)

The net rate of production of protons, dnp

dt , is given by the difference between
the rates Γ and Γ of the URCA reactions. At equilibrium, the two rates
are obviously equal and the chemical potentials satisfy the equality ∆µ =
µn − µp − µe = 0. A small volume perturbation brings about a small change
in the chemical potentials and the above inequality is no longer satisfied; now
∆µ is not zero and consequently the reaction rates are no longer equal. The
net rate of production of protons will thus depend upon the value of ∆µ. In
the linear approximation, ∆µ

kT � 1, the net rate can be written as

dnp

dt
= Γ − Γ = −λ∆µ . (43)
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Using the thermodynamic relation ∂P
∂ni

= −∂µi

∂v and employing the above
result we obtain

δP = P (t) − P0 = −∂(∆µ)
∂v

∫ t

0

λ∆µ(t)dt . (44)

The change in the chemical potential ∆µ(t) arises due to modifications in the
specific volume ∆v and in the concentration of various species, viz, neutrons,
protons and electrons. Thus

∆µ(t) = ∆µ(0) +
(
∂∆µ
∂v

)
0

∆v +
(
∂∆µ
∂nn

)
0

∆nn +
(
∂∆µ
∂np

)
0

∆np +
(
∂∆µ
∂ne

)
0

∆ne (45)

and we arrive at the following equations for ∆µ:

d∆µ
dt

= ωA
∆v

v0
cos(ωt) − Cλ∆µ (46)

where

A = v0

(
∂∆µ
∂v

)
0

C = v0

(
∂∆µ
∂np

+
∂∆µ
∂ne

− ∂∆µ
∂nn

)
0

. (47)

Since for small perturbations, λ, A and C are constants, equation (46) can be
solved analytically to give

∆µ =
ωA

ω2 + C2λ2

∆v

v0

[
− Cλe−Cλt + ω sin(ωt) + Cλ cos(ωt)

]
(48)

and we obtain the following expressions for ζ

ζ =
A2λ

ω2 + C2λ2

[
1 − ωCλ

π

1 − e−Cλτ

ω2 + C2λ2

]
. (49)

Given the number densities of these species in terms of their respective che-
mical potentials, one can determine the coefficients A and C; given the rates
Γ1 and Γ2 for the two URCA processes, one can determine λ and hence ζ for
any given baryon density and temperature. For weak magnetic fields, seve-
ral Landau levels are populated and the matrix elements remain essentially
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unchanged and one needs to account for the correct phase space factor. For
non-relativistic degenerate nucleons, the decay rate constant λ is given by 6

λ =
17

480π
G2

F cos2θc
T 4(1 + 3g2

A)eBm∗
pm

∗
n θ

(
pF (p) + pF (e) − pF (n)

)

×
νmax∑
ν=0

[2 − δν,0]
1√

µ2
e −m2

e − 2νeB
. (50)

For a strong magnetic field, electrons are forced into the lowest Landau level.
Using the exact wave functions for protons and electrons in the lowest Landau
level and carrying out the energy integrals for degenerate matter, the decay
constant λ is given by6

λ =
17

960π
G2

F cos2θc
eB

m∗
nm

∗
p

pF (p)
T 4[4g2

A + (gv + gA)2]

[
exp

(
− [p2

F (n) − 4p2
F (e)]

2eB

)

×θ
(
p2

F (n) − 4p2
F (e)

)
+ exp

(
− p2

F (n)
2eB

)
θ

(
pF (n)

)]
.

It is clear from above that in the case of completely polarized electrons and
protons, the direct URCA decay rate always gets a non-zero contribution
from the second term in the last square bracket, irrespective of whether the
triangular inequality pF (e) + pF (p) ≥ pF (n) is satisfied or not.

5 Neutrino Opacity in Magnetized Hot and dense Nuclear
Matter

We calculate the neutrino opacity for magnetized, interacting dense nu-
clear matter for the following limiting cases: a) nucleons and electrons, highly
degenerate with or without trapped neutrinos, b) non-degenerate nucleons,
degenerate electrons and no trapped neutrinos and finally, c) when all parti-
cles are non-degenerate. The important neutrino interaction processes which
contribute to opacity are the neutrino absorption process

νe + n→ p+ e (51)

and the scattering processes

νe +N → νe +N

νe + e→ νe + e (52)
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both of which get contributions from charged as well as neutral current weak
interactions. For the general process

ν(p1) +A(p2) → B(p3) + l(p4) . (53)

The cross-section per unit volume of matter or the inverse mean free path is
given by

σ(E1)
V

= λ−1(E1) =
1

2E1

∏
i=2,3,4

dρi Wfi f2(E2)[1−f3(E3)] [1 − f4(E4)] (54)

where dρi = d3pi

(2π)32Ei
is the density of states of particles and the transition

rate is given by Wfi = (2π)4δ4(Pf − Pi) |M |2.

Weak Magnetic Field: for a weak magnetic field, several Landau levels are
populated, the matrix element remain essentially unchanged and one needs to
account only for the correct phase space factor. We first consider the neutrino-
nucleon processes. In the presence of weak magnetic fields, the matrix element
squared and summed over initial and final spins in the approximation of treat-
ing nucleons non-relativistically and leptons relativistically is given by∑

|M |2 = 32G2
F cos2θc

m�
pm

�
n

[
(C2

V + 3C2
A) + (C2

V − C2
A)cosθ

]
EeEν (55)

where CV = gV =1, CA = gA =1.23, for the absorption process; CV =
−1, CA = −1.23, for neutrino scattering on neutrons and CV = −1 +
4sin2θw =0.08, CA =1.23, for neutrino proton scattering. We now obtain
the neutrino cross-sections in the limits of extreme degeneracy or for non-
degenerate matter.

Degenerate Matter: the absorption cross-section for highly degenerate
matter can be calculated by using (78) in (79) by the usual techniques and
we get for small B7

σA(Eν , B)
V

=
G2

F cos2θc

8π3
(g2

V + 3g2
A)m∗

pm
∗
nT

2

(
π2 + (Eν−µν)2

T 2

)
(
1 + e

(µν−Eν )
T

) eB

×
[
θ

(
pF (p)+pF (e)pF (n)−pF (ν)

)
+

[pF (p)+pF (e)−pF (n)+pF (ν)]
2Eν

×
(
θ

(
pF (ν)−|pF (p)+pF (e)−pF (n)|

))]νmax∑
ν=0

(2−δν,0)
1√

µ2
e−m2

e − 2νeB
. (56)
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The case of freely streaming, un-trapped neutrinos is obtained from the above
equation by putting µν =0 and replacing µe by (µe+Eν). When the magnetic
field is much weaker than the critical field for protons, only electrons are
affected and the neutrino-nucleon scattering cross-section expression remain
unchanged by the magnetic field. The numerical values are, however, modified
due to changed chemical composition. The cross-sections are given by

σνN (Eν)
V

=
G2

F cos2θc

16π3
(C2

V + 3C2
A)m∗

N
2T 2µe

(
π2 + (Eν−µν)2

T 2

)
(
1 + exp (Eν−µν)

T

) . (57)

If neutrinos are not trapped, we get in the elastic limit

σνN (Eν)
V

=
G2

F cos2θc

16π3
(C2

V + 3C2
A)m∗

N
2T 2Eν . (58)

The neutrino-electron scattering cross section is

σνe

V
� 2G2

F cos2θc

3π3
(C2

V + C2
A)

µ2
eTE

2
ν

1 + e−β(Eν−µν)
, (59)

which in the un-trapped regime goes over to

σνe

V
� 2G2

F cos2θc

3π3
(C2

V + C2
A)µ2

eTE
2
ν . (60)

Non-Degenerate Matter: we now assume the nucleons are non-relativistic
and non-degenerate such that µi/T � −1 and thus the Pauli-blocking factor
1− fN (Ei) can be replaced by 1; the electrons are still considered degenerate
and relativistic. The various cross-sections are given by

m
σA(Eν , B)

V
= � G2

F cos2θc

2π
(C2

V + 3C2
A)nn(Eν +Q)

1
1 + e−β(Eν+Q−µe)

× eB

νmax∑
ν=0

(2 − δν,0)
1√

(Eν +Q)2 −m2
e − 2νeB

(61)

where nN is the nuclear density and Q = mn −mp.

σνN (Eν , B)
V

� G2
F cos2θc

4π
(C2

V + 3C2
A)nNE

2
ν . (62)

If the electrons are also considered non-degenerate, we get

σA

V
� G2

F cos2θc

π
(g2

V + 3g2
A)nNE

2
ν

σνN

V
� G2

F cos2θc

4π
(C2

V + 3C2
A)nNE

2
ν (63)
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σνe

N
� 4G2

F cos2θc

π3
T 4Eν(CV + CA)2 . (64)

Quantizing Magnetic Field: for quantizing magnetic field, the square of
the matrix elements can be evaluated in a straight forward way 7 and we get

|M |2A = 8G2
F cos

2θcm
∗
2m

∗
3(E4 + p4z)

[
(gV + gA)2(E1 + p1z) + 4g2

A(E1 − p1z)
]

× exp

[
− 1

2eB
((p1x + p2x)2 + (p3x + p4y)2)

]
; (65)

|M |2νp = 16G2
F cos2θc

C2
Am

∗
2
2(p1 · p4 + 2p1zp4z)

× exp

[
− 1

2eB
((p4x + p1x)2 + (p4y − p1y)2)

]
; (66)

|M |2νe = 16G2
F cos2θc

[
(C2

V + C2
A)((E1E4 + p1zp4z)(E2E3 + p2zp3z)

−(E1p4z + E4p1z)(E2p3z + E3p2z)) + 2CV CA((E1E4 + p1zp4z)

× (E2p3z + E3p2z) − E1p4z + E4p1z)(E2E3 + p2zp3z))

]

× exp

(
− 1

2eB
((p4x − p1x)2 − (p4y − p1y)2)

)
. (67)

The absorption cross-section is now given by

σA(E1, B)
V

=
1

2E1Lx

∫
d3pz

(2π)32E2

∫ eBLx/2

−eBLx/2

∫ ∞

−∞

dp3ydp3z

(2π)22E3

×
∫ eBLx/2

−eBLx/2

∫ ∞

−∞

dp4ydp4z

(2π)22E4
(2π)3δ(Py)δ(Pz)δ(E) |M |2

× f2(E2)[1 − f3(E3)][1 − f4(E4)] . (68)

The corresponding scattering cross-sections are obtained by interchanging the
particle 2 with 4. Performing the integrals, we have

σA(E1, B)
V

� eB

2E1

1
(2π)3

1
8

∫
dE2

dp3z

E3

dp4z

E4
δ(E) |M |2

×f2(E2)[1 − f3(E3)][1 − f4(E4)] . (69)

To make further progress, we consider the cases of extreme-degeneracy
and non-degeneracy separately.
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Figure 1. Variation of Yp, Yn and m∗
p with nB for B = 0, 5 × 105 and Bκ = 5 × 105 where

in Bκ the effect of anomalous magnetic moment has been included.

Degenerate Matter: for strongly degenerate matter, particles at the top of
their respective fermi-seas alone contribute and in this approximation we get7

σA(Eν ,B)
V � G2

F cos2θc

(2π)3 eB
m∗

nm∗
p

pF (ν)Eν

T 2

2

(π2+( Eν
T )2)

(1+e−Eν /T )

[
(gV + gA)2(Eν + pνz)

+4g2
A(Eν − pνz)

][
exp

(
− [pF (n)+pF (ν)]2

2eB

)
θ

(
pF (n) + pF (p)

)

+exp
(
− [pF (n)+pF (ν)]2−4p2

F (e)
2eB

)
θ

(
[pF (n) + pF (ν)]2 − 4p2

F (e)
)]

. (70)
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The case of freely streaming neutrinos is obtained by putting pF (ν) = 0
everywhere.

σνp(Eν , B)
V

� G2
F cos

2θc

(2π)3
m∗

p
2

p2
F (p)

g2
AT

E2
ν

2
eB

2
(1 + 2cos2θ) (71)

σνe(Eν , B)
V

� G2
F cos

2θc

8π
T 2eBµν

[
(C2

V + C2
A)(1 + cos2θ) − 4CV CAcosθ

]
.

Non-Degenerate Matter: similarly performing the integrals in the non
degenerate limit, the various cross sections are

σA(Eν , B)
V

� G2
F cos

2θc

4π
eB cosθ nN

1
e−(Eν+Q−mue)β + 1

[((gV + gA)2 + 4g2
A) + ((gV + gA)2 − 4g2

A)] (72)

σνp(Eν , B)
V

� 2G2
F cosθc

2C2
A

2π
E2

νnp (73)

σνe(Eν , B)
V

� G2
F

π
neTEν

[
(C2

V + C2
A)(1 + cos2θ) − 4CV CAcosθ

]
. (74)

We see that in the neutrino free case (Yνe
= 0), the neutrino absorption

cross section, i.e. the direct URCA process which is highly suppressed for
degenerate matter in the absence of the magnetic field, proceeds at all densities
for the quantizing magnetic field.

6 Results and Discussion

We first calculate the composition of matter for arbitrary magnetic fields
for both the neutrino free and neutrino trapped cases over a wide range of
density and temperature. We find that the effect of magnetic field is to raise
the proton fraction and is pronounced at low densities. The effect of including
the anomalous magnetic moment also becomes significant at field strengths
∼ 105Bc

e which can be seen from Fig.1 where we have plotted the proton
fraction and the effective nucleon mass as a function of density. We then
calculate the effect of the magnetic field on neutrino emissivity for the direct
URCA process and find that this effect is not important at weak magnetic
fields. However, for the interesting case of quantizing magnetic field capable
of totally polarizing the electrons and protons, we see from Fig.2 that the
threshold for direct URCA process is evaded and the emissivity is enhanced
by up to two orders of magnitude and develops anisotropy.
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Figure 2. Neutrino emissivity as as function of Baryon density for B = 0 and B = 105,
when the electrons and protons are completely polarized

γ-ray burst events, if they arise due to pulsations and the maximum
rotation frequency, are influenced by the bulk viscosity of neutron star matter
through: 1) damping of radial oscillations and 2) by influencing gravitational
radiation reaction instability limiting maximum rotation rate. In Fig.3 we
plot the bulk viscosity as a function of baryon density for different values
of the magnetic field and find that the effect of the magnetic field is very
pronounced at low densities where only the lowest Landau level contributes
and the direct URCA process is no longer inhibited. We also find that the
viscosity decreases very rapidly with density.

Neutrinos emitted during the cooling of protoneutron star have a mo-
mentum ∼ 100 times the momentum of pulsars and therefore, one percent
anisotropy in neutrino emission would give a kick velocity consistent with
observation. This can occur in two different ways since the neutrino disper-
sion relations in magnetized medium are modified. Firstly, due to neutrino
scattering reactions on polarized electrons and protons and secondly 8 due to
matter induced MSW νe ↔ ντ neutrino oscillations in the presence of a mag-
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Figure 3. Bulk viscosity as a function of Baryon density at T = 1 MeV for different values
of the magnetic field

netic field when the ντ sphere develops asymmetry and the resonant surface
gets distorted and the neutrinos escaping from different depths emerge with
different energies. In Figs.4 and 5 we have plotted the neutrino absorption
and scattering mean free paths with density for different values of the tem-
perature and magnetic field for both the free streaming and trapped regimes.
In Fig.6 we show the variation of the absorption mean free path with density
and observe substantial decrease in addition to developing anisotropy with
magnetic field which is particularly pronounced at low densities.
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Figure 4. Variation of absorption mean free path with Baryon density. The first figure is
for un-trapped degenerate matter and the second figure for trapped degenerate matter.

To conclude, we find that the effect of quantizing magnetic field and of the
inclusion of anomalous magnetic moment of nucleons is to increase the proton
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Figure 5. Variation of neutrino scattering mean free path with baryon density; the left
panel is for un-trapped matter and the right panel is for trapped matter

fraction and lower the effective nucleon mass so as to evade the threshold for
the direct URCA processes to proceed. This results in the enhancement of
neutrino emission and bulk viscosity. This also has the effect of substantially
decreasing the neutrino absorption mean free path in addition to developing
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Figure 6. Variation of neutrino absorption mean free path with Baryon density for un-
trapped non-degenerate matter.

anisotropy.
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