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We show that all the thermodynamic functions of a relativistic free electron gas
in the background of a uniform magnetic field can be conveniently and simply
expressed in terms of the Hurwitz zeta function. Known results on the behavior
of the magnetized electron gas are rederived in the new formalism.

1 Introduction

The study of the thermodynamic properties of degenerate relativistic elec-
tron gases in strong magnetic fields is very relevant to understand the physics
of various compact astrophysical objects, such as magnetic white dwarfs and
neutron stars. Several aspects of this problem have been considered in the
literature in the past 35 years1,2,3,4.

Here we propose a novel analytical approach, which is completely relativis-
tic, and makes no a priori assumptions about the magnitude of the magnetic
field or the electron number density. We obtain simple closed-form expressions
for the thermodynamic functions, which can be used as the starting point for
expansions in different regimes or for numerical work. We reproduce, in a
unified way, many of the results scattered in the literature.

Only a summary of the results is given here. More details can be found
in reference5.

2 The System to be Studied

We shall consider a gas of electrons confined to a volume V in the back-
ground of a uniform magnetic field B = Bẑ. In order to maintain charge
neutrality we assume that the whole system is immersed in a background of
uniformly distributed positive charge. We make no assumptions on the size of
the magnetic field, the electron number density n or the electron chemical po-
tential µ, but we do assume that the temperature is small in comparison with
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the chemical potential, so that the gas can be considered to be degenerate.
To first approximation we shall neglect the Coulombic interactions be-

tween the electrons. This is a good approximation in the ultra-relativistic
limit, µ � m (m is the electron mass), the kinematical limit to be found in
compact astrophysical objects such as neutron stars and, to a lesser extent, in
white dwarfs. In this limit the ratio between the typical Coulombic repulsion
energy between neighboring electrons and their typical kinetic energy is of
the order of the electromagnetic coupling constant, α. In order then to work
consistently to zeroth order in α, we shall also neglect the QED correction to
the gyromagnetic ratio of the electron and simply work with g = 2.

Under the assumptions of the last paragraph the many-body problem
simplifies enormously. Each electron moves independently of the rest, see-
ing only the background magnetic field. Its motion is described by Dirac’s
equation. For our thermodynamic purposes, only the energy spectrum of the
one-electron system in the background of a uniform magnetic field is relevant.
The solution to this problem is well known6. In Landau’s gauge, in which
the vector potential is everywhere perpendicular to some plane containing
the magnetic field, the energy eigenstates are characterized by four quantum
numbers: pz (momentum component along B), p⊥ (momentum component
along A), a non-negative integer n = 0, 1, 2, . . . that labels the wavefunction
in the direction perpendicular to the plane defined by B and A, and an inte-
ger λ = ±1 which denotes the spin parallel or antiparallel to B. The energy
levels can be described in terms of Landau bands,

Ej(pz) =
√

p2
z + m2 + (2eB) j , (1)

where j is the non-negative integer defined by j = n + (λ + 1)/2. The energy
levels (1) are highly degenerate, due to their independence on p⊥ and their
dependence on n and λ only through the single combination j. The number of
states gj(pz)dpz for given j and momentum along B between pz and pz +dpz,
in a system of electrons confined to a finite cubic box of volume V , is given
by

gj(pz)dpz = gj
eB

4π2
V dpz , (2)

with gj = 1 for j = 0 and gj = 2 for j �= 0. Natural units, for which the speed
of light c, Planck’s constant h̄ and Boltzmann’s constant k are all equal to
one, will be used throughout.
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3 The Thermodynamic Potential

All the equilibrium thermodynamic properties of a system, such as the
density, pressure or magnetization, can be derived from the grand potential
function. For our ideal Fermi gas in a uniform background magnetic field this
is given by

Ω(T,B, V, µ) = −T
∑
α

ln
(
1 + e−(Eα−µ)/T

)
, (3)

where µ is the chemical potential and the sum is over all 1-particle orbitals α.
The B dependence is implicit in the orbital energies Eα and their associated
level degeneracies. In terms of the grand potential density ω ≡ Ω/V one has

p = −ω, n = −∂ω/∂µ, M = −∂ω/∂B , (4)

for the pressure, density and magnetization, respectively.
Written in full form, the object to be computed has the daunting form

ω = −T
eB

4π2

∞∑
j=0

gj

∞∫
−∞

dpz ln

(
1 + exp

[
−
√

p2
z + m2 + (2eB)j − µ

T

])
. (5)

4 The Density of States for the Relativistic Landau Problem

Instead of organizing the sum over energy eigenstates as in Eq.(5), in
terms of Landau bands, labelled by the integer j, it is more convenient to
recast the sum in terms of an integral over a single energy value, by finding
the density of states in energy space, as is the standard procedure in statistical
mechanics. The latter, g(E), is defined so that g(E)dE is the number of states
with energies between E and E + dE.

In terms of the density of states, the expression for the grand potential
density has the much simpler form

ω = −T

∫ ∞

m

g(E)
V

ln
(
1 + e−(E−µ)/T

)
dE . (6)

For the problem at hand, it is clear that for any given value of E only
a finite number of bands will contribute states to g(E), since they start at a
“floor” equal to

Emin
j =

√
m2 + (2eB) j . (7)
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A straightforward calculation yields the following expression for g(E):

g(E) =
V

4π2
(2eB)1/2E

�qE�∑
j=0

gj
1√

qE − j
, (8)

where we have defined the auxiliary dimensionless variable

qE =
E2 − m2

2eB
, (9)

whose integer part, �qE�, labels the last Landau band whose floor is below E.
The finite sum in Eq. (8) can be expressed in closed form in terms of the

Hurwitz zeta function7 ζ( 1
2 , q) as

�qE�∑
j=0

gj
1√

qE − j
= 2H1/2(qE) , (10)

where

Hz(q) ≡ ζ(z, {q}) − ζ(z, q + 1) − 1
2
q−z , (11)

and where {q} = q − �q� is the fractional part of q. Despite the minus
signs in Eq. (11), the function H1/2(qE) must clearly be positive definite and
monotonically increasing for qE > 0. The oscillatory first term in Eq. (11)
has, for z = 1/2, an integrable singularity at {q} = 0 which is related to the
accumulation of momentum states at the floor of each Landau band.

Therefore, we have obtained the following closed form expression for the
density of states for the relativistic Landau problem:

g(E) =
V

2π2
(2eB)1/2EH1/2

(
E2 − m2

2eB

)
. (12)

5 Finite Temperature From Zero Temperature

Although we could simply use our closed form expression (12) for the
density of states in expression (6) for the grand potential density and obtain
thereby a single variable definite integral expression for ω, which could be
used, together with Eq.(4), to compute numerically the thermodynamic func-
tions of the system, we show next that the analytic treatment of the problem
can be extended much further.

International Workshop on Strong Magnetic Fields and Neutron Stars 66



In the first place, we remind the reader that any thermodynamic function
of the form of Eq. (6) or

Q(T, µ) =
∫ ∞

m

q(E)g(E)
1

e(E−µ)/T + 1
dE , (13)

can be obtained in terms of its zero-temperature limit by a sort of convolution
integral. For instance, if ω0(EF) denotes the zero-temperature limit of the
grand potential density (6),

ω0(EF) ≡ lim
T→0

ω(T, µ = EF) , (14)

then one can show that

ω(T, µ) =
∫ ∞

−µ−m
T

ω0(µ + Tx)h(x)dx , (15)

where h(x) is the Fermi-Dirac hump,

h(x) =
ex

(ex + 1)2
=

1
4 cosh2(x/2)

. (16)

In the degenerate regime we are interested in T � µ − m and the lower
limit of integration in Eq.(15) can be replaced by −∞ with negligible error.
Additionally, if the function ω0(µ + Tx) varies slowly under the hump (this
may not be the case if there are oscillatory terms, as we will see below),
then it can be expanded in a Taylor series around µ and the resulting terms
integrated one by one to obtain the well-known small temperature expansion,

ω(T, µ) = ω0(µ) +
π2

6
T 2 ω′′

0 (µ) +
7π4

360
T 4 ω

(4)
0 (µ) . . . (17)

6 Zero-temperature Results

Our next task is to compute the grand potential density in the limit
of zero-temperature. At zero temperature, the chemical potential is simply
called the Fermi energy, EF. The logarithm in Eq. (6) simplifies to

lim
T→0

− T ln
(
1 + e−(E−EF)/T

)
=
{

E − EF for E < EF

0 for E > EF , (18)

so that

ω0(EF, B) =
∫ EF

m

g(E)
V

E dE − EF

N

V
, (19)
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where N is the total number of electrons contained in the volume V .
At this point it is convenient to introduce some dimensionless variables:

b ≡ B

B0
=

2eB

m2
, (20)

which measures the magnetic field strength in units of the natural strength
B0 = m2/2e ≈ 2.2 × 1013 Gauss (half of the Schwinger field); and

εF = EF/m, pF =
√

ε2
F − 1, (21)

which measure the Fermi energy and momentum in units of the electron mass,
respectively. pF corresponds to the maximum momentum in the direction of
the magnetic field to be found in the gas at zero temperature (this state
belongs to the band j = 0) and the integer �p2

F/b� labels the last occupied
Landau band.

Substituting expression (12) into (19) we obtain the following closed ex-
pression for the zero-temperature grand potential density:

ω0(εF, b) = − m4

4π2
b5/2

∫ p2
F/b

0

H−1/2(q)√
1 + bq

dq , (22)

with

H−1/2(q) = ζ(− 1
2 , {q}) − ζ(− 1

2 , q + 1) − 1
2
√

q . (23)

From this result and using (4) we obtain the number density as

n0(εF, b) =
m3

2π2
b3/2 H−1/2

(
p2

F

b

)
, (24)

and the magnetization as

M0(εF, b) =
em2

2π2

{
b3/2

∫ p2
F/b

0

H−1/2(q)
[

2
(1 + bq)1/2

+
1

2(1 + bq)3/2

]
dq

− b1/2 p2
F

εF

H−1/2

(
p2

F/b
)}

. (25)

The thermodynamic functions at zero-temperature display the well-known9

oscillatory behavior associated to the Landau band structure of the electron
energy spectrum, as is shown in figure 1.
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Figure 1. Electron number density at T = 0 as a function of b, for two fixed values of the
Fermi energy, εF = 1.3 (lower curve) and εF = 1.5 (upper curve).

7 The Hurwitz Zeta Function

The Hurwitz zeta function ζ(z, q) is one of the least known of the special
functions of mathematical physics. For Re z > 1 and q �= 0,−1,−2, . . . it is
defined by

ζ(z, q) =
∞∑

n=0

1
(n + q)z

. (26)

This defines an analytic function in the region Re z > 1, which can be ana-
lytically continued to the whole complex plane except at z = 1, where it
has a simple pole with unit residue. Although the variable q can take any
complex value except a non-positive integer, only real values of q are relevant
for the work presented here, and we shall assume henceforth that q is real and
nonnegative.

The resulting Hurwitz zeta function has several simple functional and
analytic properties7,8. Of prime importance for the results presented here is
the functional relation,

ζ(z, q) =
1
qz

+ ζ(z, q + 1) , (27)
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whose iterated version,

ζ(z, q) − ζ(z, q + N + 1) =
N∑

n=0

1
(n + q)z , (28)

allowed us to express the density of states g(E) in terms of the function H1/2

in Eq.(12).
Other properties of the Hurwitz zeta function that we found useful are

the derivative formula
∂

∂q
ζ(z, q) = −z ζ(z + 1, q) , (29)

the asymptotic expansion (z ∈ C, q → ∞)

ζ(z, q) ∼ 1
z − 1

q1−z +
1
2
q−z +

∞∑
k=0

B2k+2

(2k + 2)!
(z)2k+1

qz+2k+1
, (30)

where Bk are the Bernoulli numbers and (a)k is the Pochhammer symbol, and
the Fourier expansion (Re z ≤ 0 y 0 ≤ q ≤ 1)

ζ(z, q) =
2Γ(1 − z)
(2π)1−z

×
{

sin
(πz

2

) ∞∑
n=1

cos(2πqn)
n1−z

+ cos
(πz

2

) ∞∑
n=1

sin(2πqn)
n1−z

}
. (31)

Note that Riemann’s zeta function ζ(z) is just a special case of the Hurwitz
zeta function, ζ(z) = ζ(z, 1).

8 Small Field Expansions

From the closed form expressions (22), (24) and (25), and with the aid of
the various properties of the Hurwitz zeta function just shown, it is possible to
obtain explicit expansions for the zero-temperature thermodynamic functions
both in the regimes where the magnetic field is small, b � 1, or where there is a
large number of Landau bands occupied, p2

F/b � 1. These expansions are not
completely trivial to obtain. Consider, for instance, the small magnetic field
limit and focus on the grand potential density given by Eq.(22). First one must
separate the oscillatory and the monotonic contributions, the first associated
with the term ζ(− 1

2 , {q}) in H−1/2(q) and the latter with the other two terms
in (11). For the monotonic contribution, a näıve binomial expansion of the
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square root in the integrand will not work because of the diverging behavior
of the resulting integrals as p2

F/b → ∞. A procedure to obtain the correct
expansion for small b consists in first extracting out a sufficient number of
leading terms in the asymptotic expansion of the zeta function for large q,
such that the remainder is integrable in the limit b → 0 [three terms will do
for ζ(−1/2, q)], and then integrating the subtracted terms explicitly. After all
of this is done, the following expansions are found5:

n0(εF, b) =
m3

2π2

{
2
3
p3

F + b3/2ζ
(− 1

2 ,
{
p2

F/b
})

+
b2

24pF

+ O(b4)...

}
; (32)

ω0(εF, b) = − m4

4π2

{
1
2

cosh−1(εF) +
1
3
εFp3

F − 1
2
εFpF +

b2

12
cosh−1(εF)

+
2

3εF

b5/2ζ
(− 3

2 ,
{
p2

F/b
})

+ O(b7/2) . . .

}
; (33)

M0(εF, b) =
em2

2π2

{
− p2

F

εF

b1/2ζ(− 1
2 , {p2

F/b}) +
b

6
cosh−1(εF)

+
4ε2

F + 1
3ε3

F

b3/2 ζ(− 3
2 , {p2

F/b}) + O(b5/2) . . .

}
. (34)

We note that these expansions have a common generic structure. The oscilla-
tory terms are non-analytic in the expansion variable b and they all have the
common form

bp ζ(−s, {p2
F/b}), (35)

where p = s or p = s + 1 and s = 1
2 , 3

2 , 5
2 , . . .. The first few relevant functions

are plotted in figure 2.
We note also that the leading term in the magnetization at zero tem-

perature is oscillatory, which indicates an oscillatory de Haas – van Alphen
behavior of the magnetization for small fields9.

9 The Magnetization at Finite Temperature

In order to study the persistence of the de Haas – van Alphen effect as
we increase the temperature, we must consider the magnetization at non-zero
temperature. According to the discussion of section 5, the magnetization at
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Figure 2. The functions ζ(z, {q}), for z = −1/2,−3/2,−5/2 (large, medium and small
amplitude, respectively).

finite temperature will be given by

M(T, µ, b) �
∫ ∞

−∞
M0(µ + Tx, b)h(x)dx . (36)

Approximating M0 by its leading term in Eq.(34) we find in the degenerate
regime (T � µ),

M(osc)(T, µ, b) � −em2

2π2

p2
F

µ
b1/2

∫ ∞

−∞
ζ(− 1

2 ,
{
p2

F/b + 2x µT/b
}
)h(x)dx , (37)

which shows that the parameter that controls the size of the oscillations is
µT/b. In fact, one can use the Fourier expansion of the Hurwitz zeta function
given in Eq.(31) to obtain the explicit series expansion

M(osc)(T, µ, b) � −em2

π

p2
F T√
2b

∞∑
r=1

sin(2πr p2
F/b − π/4)√

r sinh(4π2r µT/b)
+ . . . (38)

This result is the relativistic generalization of Landau’s result10,11 for the
non-relativistic electron gas. This generalization has been obtained before in
Refs.3,4. We see that the oscillations are damped out as soon as the parameter
µT/b becomes of order 10−1, that is, when the temperature starts becoming
of the order of the spacing between the Landau bands that start near to the
Fermi surface, b/µ. For higher values of µT/b it is the monotonic piece of the
magnetization which dominates. This behavior is shown in figure 3.
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For typical neutron stars, reasonable values of the physical parameters
are b ∼< O(1), µ � pF ∼ O(102), T ∼> O(10−2). Hence µT/b ∼> O(1) and the
amplitude of the oscillatory magnetization is completely negligible.

Figure 3. Upper and lower envelopes of the magnetization as a function of the temperature,
for fixed chemical potential µ = 100, and magnetic fields b = 0.1, 1 and 10 (lower, medium
and upper curve, respectively).

10 Conclusions

We have developed a closed analytical approach to solve the thermody-
namics of a free gas of electrons immersed in an uniform magnetic field of
arbitrary magnitude. The method is completely relativistic and particularly
useful in the case of a degenerate gas, a likely situation to be met in the in-
terior of white dwarfs, neutron stars, and magnetars. A central role is played
by one of the least known of the special functions of mathematical physics,
the Hurwitz zeta function. Our work provides a unified derivation of several
of the results found scattered in the literature. We reproduce the de Haas-van
Alphen behavior of the magnetization in the relativistic gas and the dilution
of it at high temperatures.
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