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It is shown explicitly using the MIT bag model that in the presence of ultra-strong
magnetic fields, a nucleon either flattens or collapses in the direction transverse
to the external magnetic field in the classical or quantum mechanical pictures,
respectively, which gives rise to some kind of mechanical instability. Alternatively,
it is here argued that the bag model of confinement may not be applicable in this
strange situation.

1 Introduction

One of the oldest subjects in physics, “the effect of strong magnetic fields
on dense matter”, has gotten a new life after the observational discoveries of
a few strongly magnetized exotic stellar objects- known as magnetars 1,2,3,4,5.
These uncommon objects are believed to be strongly magnetized young neu-
tron stars and their strong magnetic fields are supposed to be the possible
sources of X-rays from anomalous X-ray pulsars (AXP) and low energy γ-
radiation form the soft gamma-ray repeaters (SGR). It is believed that such
objects may also act as the central engine for gamma ray bursts (GRB). The
measured value of the magnetic field strength at the surface of these objects
are ∼ 1014−1015G. Then it can be shown by the scalar virial theorem that the
magnetic field strength at the core region may go up to 1018G. These objects
are also assumed to be too young compared to the decay/expulsion time scale
of magnetic fields from the core region. Now, in the presence of such intense
magnetic fields, most of the physical properties of dense stellar matter, for
example, the equation of state and the quark-hadron phase transition must
change significantly6,7,8. Moreover, some of the physical processes9,10, in par-
ticular, weak and electromagnetic decays and reactions, neutrino opacities and
others, at the core region of compact neutron stars, will also be affected in the
presence of ultra-strong magnetic fields. The transport properties (e.g, shear
and bulk viscosities, thermal and electrical conductivities) of dense neutron
star matter also change both qualitatively and quantitatively in the presence
of a strong magnetic field11,12. Furthermore, these intense magnetic fields
could cause structural deformation of the exotic objects. In the classical gen-
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eral relativistic theory, it is shown, by use of the Maxwell stress tensor that
such exotic objects get flattened13,14,15 for the macroscopic field Bm, whereas
in the quantum mechanical scenario they collapse in the direction transverse
to the magnetic field16,17. In the case of an ultra-strong magnetic field, the
structure of these objects could become either disk-like (in a classical picture)
or cigar-like (in a quantum mechanical scenario) from their usual spherical
shapes. In the extreme case, they may be converted into black disks or black
strings. Therefore, in some sense, these strange stellar objects become me-
chanically unstable in the presence of ultra-strong magnetic fields. Long ago,
Chandrasekhar and Fermi in their studies on the stability of magnetized white
dwarfs explained the possibility of such strange behavior18. Their conclusions
are also valid for strongly magnetized neutron stars, where the white dwarf
parameters have to be replaced by typical neutron star parameters; the upper
limit of the magnetic field strength for a stable typical neutron star is found
to be 1018G. In a recent work we have shown that if the magnetic field is
extremely high to populate only the zeroth Landau level (with fully polarized
spin states) of electrons, then stable neutron star/protoneutron star matter
can not exist if the β-equilibrium condition19,20 holds. It was also shown
by Bander and Rubinstein21, in the context of the stability of neutron and
protons in a strong magnetic field, that in presence of an extremely strong
magnetic field, protons become unstable by gaining effective mass, whereas
neutrons, loosing effective mass, become stable. In their calculations, a del-
icate interplay between the anomalous magnetic moments of neutron and
proton makes neutrons stable and protons unstable: then, decays of protons
into neutrons via e+ and neutrino emission can occur.

In this article, following the recent work of Mart́ınez et al16,17 and Kohri et
al22, we show that even nucleonic (proton or neutron) bags cannot be stable in
the presence of ultra-strong magnetic fields: they either collapse or elongate in
the transverse direction of the corresponding one to the ultra-strong external
magnetic field. We have shown that either the nucleons are mechanically
unstable or the bag model calculations are not suitable for the conditions
referred to above. In this work we have therefore studied the mechanical
stability of a neutron or a proton placed in an ultra-strong magnetic field. On
the other hand, in Ref.21, Bander and Rubinstein have studied the stability of
these objects from the effective mass point of view and showed that neutrons
are much more stable energetically than protons in this situation.

This paper is organized in the following manner: in section 2, we review
very briefly the MIT bag Lagrangian approach of color confinement. In sec-
tion 3, we discuss the collapse of nucleons following the ideas of Mart́ınez et
al16,17. In section 4, on basis of the model proposed by Kohri et al 22 in the
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context of anisotropic e+e− pressure, we show that nucleons get flattened in
the transverse direction of the magnetic field. The conclusions and discussions
are presented in the last section.

2 Color Confinement- a Brief Overview

To study the mechanical stability of neutron/proton bags in the presence
of ultra-strong magnetic fields, taking a flat space-time coordinate, we have
considered the MIT bag model of quark confinement23,24,25. We have taken
into account both the gluonic interaction of quarks and the bag pressure B to
confine quarks within the bag. Before we go into the detailed discussion on
the mechanical instability problem of nucleonic bags in the presence of intense
magnetic fields, we give a brief overview of the MIT bag model lagrangian
approach to obtain the pressure balance at the surface of the nucleons. The
usual form of the MIT bag lagrangian density is

L
MIT

=
(
i
{
ψ̄γµ∂µψ − (∂µψ̄)γµψ

}
+ gψ̄

λa

2
γµV a

µ ψ − ψ̄mψ

− 1
4
F a

µνF
µνa −B

)
θv(x) − 1

2
ψ̄ψ∆s (1)

where g is the strong interaction coupling constant, the λa’s are the SU(3)
generators, with a = 1, 2, ...8, the gluonic color index, Vµ

a is the gluonic field
four vector, F a

µν is the corresponding field tensor, m is the current mass of
quarks, B is the bag constant, θv = 1 inside the bag and θv = 0 outside
the bag, ∂θv/∂x

µ = nµ∆s, ∆s is the surface delta-function and nµ is the
space-like unit vector normal to the surface. The sum over flavor and color
quantum numbers carried by quarks has not been shown explicitly. To obtain
the pressure balance at the bag surface, we consider the energy momentum
tensor of the bag

Tµν = −gµνL +
(

∂L
∂(∂µψ)

∂νψ + ∂νψ̄
∂L

∂(∂µψ̄)

)

= −gµνL +
i

2
(
ψ̄γµ∂νψ − (∂νψ̄)γµψ

)
θv . (2)

Using the condition of energy-momentum conservation, ∂µT
µν = 0, we have

B∆sn
ν +

i

2
(
ψ̄γµ∂νψ − (∂νψ̄)γµψ

)
nµ∆s = 0 (3)
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and

∂µ

(
ψ̄ψ∆s

)
= 0 . (4)

Now, considering the surface boundary condition, given by (obtained from
standard Euler-Lagrange equation)

inµγ
µψ = ψ (5)

we obtain, on the bag surface,

Bnµ =
1
2
∂

∂xµ
(ψ̄ψ) . (6)

This equation is nothing but the pressure balance equation. Since nµnµ = −1,
we have on the bag boundary

B = −1
2
nµ∂

µ(ψ̄ψ) . (7)

In case of a spherical bag, nµ ≡ (0, r̂), this pressure balance equation reduces
to

B = −1
2
∂

∂r
(ψ̄ψ) (8)

which means that the outward pressure of the quarks is exactly balanced by
the inward vacuum pressure B on the surface of the bag.

3 Collapse of Nucleonic Bags

Now we shall consider the nucleonic bag (either neutron or proton) as
an interacting thermodynamic system in equilibrium. The constituents are
valance quarks, sea quarks and gluons. Then, the total kinetic pressure of the
system is given by

Pin = P
(v)
in + P

(s)
in + P

(g)
in (9)

where v, s and g denote the valance quarks, sea quarks and gluonic contri-
butions, respectively. As discussed before, this internal kinetic pressure has
to be balanced by the external bag pressure to maintain the stability of the
system. Then we can write down the effective thermodynamic potential per
unit volume of the system as

−Ω = Pin −B (10)
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and it should be zero. Following Mart́ınez et al16,17, in the presence of an
ultra-strong magnetic field of strength Bm, the thermodynamic potential per
unit volume reduces toa

T ν
µ =

(
T
∂Ω
∂T

+
∑

r

µr
∂Ω
∂µr

)
g4

µg
ν
4 + 4FµλF

νλ ∂Ω
∂F 2

− gν
µΩ . (11)

Hence, the longitudinal component of pressure (along the direction of the
field) is given by

Tzz = P|| = −Ω = 0 (12)

while the transverse part of the total pressure is

Txx = Tyy = P⊥ = −Ω −MBm = P|| −MBm (13)

where M is the effective magnetic dipole moment density of the bag. Since
Ω = 0, nucleons will therefore be inflated or collapsed in the transverse direc-
tion in the presence of an ultra-strong magnetic field depending on the overall
sign of M. The system will collapse if M is positive; else it will be inflated
in the transverse direction. In order to have an order of magnitude estimate
of extra in/outward pressure, we choose the contribution to M from valance
quarks only (in fact, the valance quarks contribute only in the evaluation of
the magnetic dipole moment of the nucleons). The magnetic dipole moment
density of the ith component (i = u or d quarks) is given by

Mi = − ∂Ωi

∂Bm
(14)

and the total value is given by

M =
∑

i=u,d

Mi (15)

where

Ωi =
giqiBm

4π2

νmax∑
ν=0

∑
s=±1

[
µi(µ2

i −M2
i,ν,s)

1/2−M2
i,ν,s ln

(
µi + (µ2

i −M2
i,ν,s)

1/2

Mi,ν,s

)]

(16)
is the thermodynamic potential density of the component i; in these expres-
sions, gi and qi are respectively the degeneracy and charge of the ith species,

M2
i,ν,s = {(p2

⊥ +m2
i )

1/2 + sQiBm}2 , (17)

aWe have chosen the gauge Aµ ≡ (0,−yBm/2, xBm/2, 0), so that Bm is a constant mag-
netic field along the Z-axis.
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mi is the current quark mass (= 5MeV), p⊥ = (2νqiBm)1/2 is the transverse
component of momentum and Qi is the anomalous magnetic dipole moment of
the ith quark species (Qu = 1.852µN and Qd = −0.972µN , µN is the nuclear
magneton). The maximum value of Landau quantum number is given by

ν(i)
max =

[
(µ2

i − sQiBm)2 −m2
i

2qiBm

]
(18)

where [ ] indicates an integer less than the decimal number inside the brackets.
To obtain the chemical potentials for the u and d quarks, we have made the
following assumptions. The ith quark species density within the nucleon is
given by

ni =
giqiBm

2π2

νmax∑
ν=0

∑
s=±1

(µ2
i −M2

i,ν,s)
1/2 =

N0(i)
V

(19)

where NO(i) is the number of ith quarks species in the system. Therefore,
NO(i)=NO(u)=1 for neutrons and 2 for protons. Similarly, NO(i)=NO(d)=2
for neutrons and 1 for protons and V is the nucleonic volume. We further
assume that r = 0.8fm as the radius of the nucleons. Solving numerically,
we have obtained the chemical potentials µi’s for both u and d quarks and
hence we have evaluated the magnetic dipole moment per unit volume for the
system. In Fig.(1) we have plotted MBm for various values of Bm for both
neutrons and protons. The product MBm is always positive and oscillatory
in the strong field regime (≥ 1017G). The system will therefore collapse in the
transverse direction and becomes ellipsoidal with cylindrical symmetry. The
minor axes lengths b will therefore oscillate with the strength of the magnetic
field in particular, above 1017G. Now, in the study of the mechanical stability
of strongly magnetized neutron stars in a quantum mechanical scenario, it has
been shown that the system will either be inflated or collapsed if the mag-
netic dipole moment is negative or positive, respectively. It has further been
shown that neutron matter always behaves like a paramagnetic material with
M > 0; as a result, in the quantum mechanical picture a strongly magne-
tized neutron star always collapses in the transverse direction. Therefore, we
can infer that the conclusion drawn for such macroscopic objects like neutron
stars is also valid in the microscopic level, e.g. neutrons or protons. We can
then conclude that in a strong magnetic field, not only neutron stars, even
their constituents, neutrons and protons, become mechanically unstable. Al-
ternatively, one could conclude that the bag model is perhaps not applicable
in such strange situation; in that case, the use of a bag model for magnetized
quark stars is also questionable. Therefore, the investigations of this section
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show that both neutrons and protons become cigar-like and in the extreme
case they may reduce to what is called black-strings.

4 Flattening of Nucleons

In this section we shall evaluate the longitudinal and transverse parts
of the kinetic pressures following Ref.22. We choose the gauge Aµ ≡
(0, 0, xBm, 0) so that 	Bm ≡ (0, 0, Bm). Then, the solution of the Dirac equa-
tion is given by

ψ = exp(−iEnt)
(
φ
χ

)
(20)

where φ and χ are the upper and lower components. The upper component
is given by

φ = exp(ipyy + ipzz)fnζs, (21)

where n = 0, 1, 2, ... are the Landau quantum numbers and s = ±1, the spin
quantum numbers, so that

ζ1 =
(

1
0

)
(22)

ζ−1 =
(

0
1

)
(23)

fn(x, py) =
1

(2nn!π1/2)1/2
exp

(
−ξ

2

2

)
Hn(ξ) (24)

ξ = (qiBm)1/2(x− py/(qiBm)) and Hn(ξ) is the Hermite polynomial of order
n. The lower component of Dirac equation is given by

χ =
	σ.(	p− qi 	A)
En +mi

φ , (25)

and the energy eigenvalue is En = (p2
z + m2

i + qiBm(2n + 1 − s))1/2. Then,
we have from the first part of Eq.(2),

Tµ
ν = diag(En,−P̂x,−P̂y,−P̂z) (26)

whereas all the off-diagonal terms are zero. Thus, it is very easy to show

P̂x = P̂y =
(
n+

1
2
− s

2

)
qiBm

En
, P̂z =

p2
z

En
; (27)
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these are called the dynamic pressure22 components. The ensemble average
of these pressures are given by (at T = 0)

Px = Py =
(qiBm)2

2π2

[νmax]∑
ν=0

ν(2 − δ0ν) ln
{
µi + (µ2

i −m2
ν)1/2

mν

}
(28)

which correspond to the transverse part, with 2ν = 2n + 1 − s and m2
ν =

m2
i + 2qiBmν. Similarly, we have the longitudinal component

Pz =
qiBm

4π2

[νmax]∑
ν=0

(2 − δ0ν)
[
µi(µ2

i −m2
ν)1/2 − ln

{
µi + (µ2

i −m2
ν)1/2

mν

}]
.

(29)
Following the same numerical techniques as followed in the previous section,

Figure 1. Variation of MBm with Bm/B
(c)(e)
m for neutrons (indicated by the symbol n)

and protons (indicated by the symbol p).

in Figs.(2) and (3) we have plotted the longitudinal and transverse compo-
nents of the kinetic pressure with various magnetic field strengths for protons
and neutrons, respectively. The curves in both figures show that the longitu-
dinal part of the kinetic pressure is zero and/or very low for a high magnetic
field strength, whereas the transverse part is high for intense magnetic fields.
These two components saturate to some constant value for a low or moderate
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Figure 2. Variation of the kinetic pressure (P 1/4 in MeV) with Bm/B
(c)(e)
m for protons.

Curve a is for longitudinal and b is for transverse components of the kinetic pressures,
respectively.

magnetic field strength, which indicates that the system reduces to a pressure
isotropic configuration at low magnetic fields (as we generally see in conven-
tional thermodynamic systems). Therefore, according to this model, at very
high magnetic field strength, the system (neutron or proton) becomes oblate
in shape and in the extreme case it reduces to a black disk.

5 Conclusions

In conclusion, we have studied the mechanical stability of neutrons and
protons in a compact neutron star in the presence of a strong quantizing
magnetic field. We have followed two entirely different approaches. In the
so called quantum mechanical picture, in which the interaction of magnetic
dipole moments of quark constituents with the external magnetic field has
been considered, the shapes of both neutron and proton become of prolate-
type from their usual spherical nature. The effect is more prominent at the
high field limit (> 1016G). On the other hand, in the classical picture, both
systems acquire oblate shapes; the effect is again prominent for high magnetic
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Figure 3. Variation of the kinetic pressure (P 1/4 in MeV) with Bm/B
(c)(e)
m for neutrons.

Curve a is for longitudinal and b is for transverse components of the kinetic pressures,
respectively.

fields. In the classical picture, it has been observed that such anisotropy of the
kinetic pressure is automatically removed at moderate (≥ 1015−16G) values
of the magnetic field strength and both systems become mechanically stable.
However, in the quantum mechanical picture, there is always an extra in-word
pressure in the transverse direction even for moderate values of the magnetic
field strength. This is because of the non-zero finite values of MBm in the
systems, but the effect is not so significant. Therefore, the behavior of bulk
objects like neutron stars and their constituents, e.g., neutrons and protons
(which are of microscopic in size) are almost identical in an external strong
magnetic field.
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ph/9711216; D.G. Yakovlev and A.D. Kaminkar, The Equation of States
in Astrophysics, eds. G. Chabrier and E. Schatzman P.214, Cambridge
Univ. Press, 1994; V.G. Bezchastnov and P. Haensel (astro-ph/9608090),
Phys.Rev. D54, 3706 (1996).

10. V.G. Bezchastrov and P. haensel, Astro-ph/9608090. Esteban Roulet;
JHEP, 9801, 013 (1998) (hep-ph/9711206).

11. D.G. Yakovlev and D.A. Shalybkov, Sov. Astron. Lett. 16, 86 (1990);
D.G. Yakovlev and D.A. Shalybkov, Astrophys. Space Sc. 176, 171
(1991); D.G. Yakovlev and D.A. Shalybkov, Astrophys. Space Sc. 176,
191 (1991).

12. Sutapa Ghosh, Sanchayita Ghosh, Kanupriya Goswami, Somenath
Chakrabarty, Ashok Goyal, Int. Jour. Mod. Phys. D11, 843 (2002).

13. K. Konno, T. Obata and Y. Kojima, Astron. Astrophys. 356, 234 (2000).
14. K. Konno, T. Obata and Y. Kojima, astro-ph/0001397.

International Workshop on Strong Magnetic Fields and Neutron Stars 61



15. See also T. W. Baumgarte and S. L. Shapiro, astro-ph/0211339.
16. M. Chaichian et al, Phys. Rev. Lett. 84, 5261 (2000) (hep-ph/9911218).
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