
NEUTRON STARS AND NATURALNESS IN EFFECTIVE
NON-LINEAR RELATIVISTIC MODELS

C.A.Z. VASCONCELLOS

Instituto de F́ısica, Universidade Federal do Rio Grande do Sul
91501-970 Porto Alegre, Rio Grande do Sul, Brazil

cesarzen@if.ufrgs.br

M. DILLIG

Institut für Theoretische Physik III, der Universität Erlangen-Nürnberg,
91058 Erlangen, Germany

mdillig@theorie3.physik.uni-erlangen.de

In this work we consider, similarly to the previous contributions to this proce-
edings, a discussion on neutron stars. In the first part of the work, we consider
the fuzzy bag model and a new feature, the requirement of energy-momentum
conservation over the finite smooth surface of the bag. After imposing center-of-
mass and one-gluon exchange corrections, the model parameters are determined
from a consistent fit of the baryon masses of the lowest baryon octet and decu-
plet. As one immediate and crucial consequence, the bag constant B acquires a
radial dependence, whose functional form is completely determined from the inter-
nal consistency of the model. Together with chiral symmetry, respected from the
coupling to the external pion cloud, which induces renormalization effects on the
hadron wave functions and observables, our approach is a first step in modelling,
in a consistent way, the transition of effective hadronic degrees of freedom towards
a deconfined quark gluon plasma at very high densities. In the second part of
this work, the structure of high density nuclear matter is studied in the framework
of a mean-field description of non-overlapping neutron and proton bags with soft
surfaces bound by the self-consistent exchange of the σ, ω and % mesons. As an
application we determine the structure of the EoS for neutron stars. We then con-
sistently include in the formulation lepton degrees of freedom, chemical equilibrium
and baryon number and electric charge conservations and investigate properties of
neutron star matter. In the third part, we study dense hadronic matter in a ge-
neralized relativistic mean field approach which contains nonlinear couplings of
the σ, ω, %, δ fields and compare its predictions for neutron star properties with
results from different models found in the literature. In the forth part of the work,
we confront results based on this multi-baryon lagrangian density modelling and
compare its predictions with estimates obtained within a phenomenological näıve
dimensional analysis based on the naturalness of the various coupling constants of
the theory. Upon adjusting the model parameters to describe bulk static proper-
ties of ordinary nuclear matter, we discuss implications of the approach for dense
hadronic matter, in particular for neutron stars.
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Introduction

In the first part of this contribution we consider a recently developed,
new version of the fuzzy bag model1,2 which incorporates explicitly the con-
servation of energy and momentum over the smooth, finite surface of the bag
causing the bag pressure B to acquire a radial dependence, B = B(r), whose
functional form is completely determined within the consistency of the model.
This feature is missing in relativistic potential models, as well as in the ori-
ginal formulation of the fuzzy bag model3 and its predecessor, the MIT bag
model4: in both versions the non-perturbative QCD vacuum is parameterized
by a constant B in the lagrangian density. As in previous approaches5,6,7,
we consider a bag with an interior region where the quarks are free, a sur-
face region, where the quark wave function is gradually suppressed, and an
exterior region, where the quark wave function vanishes. The physical picture
underlying such a modelling is intuitively very appealing: it combines the
interior region of the bag which corresponds to the perturbative vacuum of
QCD with the exterior region of the non-perturbative vacuum of QCD. The
finite surface region, with a typical scale of about half a fermi, models the
smooth transition region between the two vacua, as expected from a gradual
outside-inside restoration of chiral symmetry. We introduce center-of-mass
and one gluon exchange corrections as well as the pion field to restore chi-
ral symmetry. As a test of the consistency of the model, the masses of the
low-lying baryons are fitted. In section 2, a simplified version of the model
presented in the previous section is applied in the study of the structure of
high density nuclear matter taking into account non-overlapping neutron and
proton bags with soft surfaces bound by the self-consistent exchange of the
σ, ω and % mesons. As an application, we determine the structure of the EoS
for neutron stars. We then consistently include in the formulation lepton de-
grees of freedom, chemical equilibrium and baryon number and electric charge
conservation and investigate properties of neutron star matter8.

In the continuation of the study of neutron star matter we introduce, in
section 3, a recently developed9 generalized relativistic mean field approach
which contains nonlinear couplings of the σ, ω, %, δ fields and compare its pre-
dictions for neutron star properties with the results from current relativistic
models. In section 4, we confront results based on the multi-baryon lagrangian
density described in the previous section and compare its predictions with es-
timates obtained within a phenomenological näıve dimensional analysis based
on the naturalness of the various coupling constants of the theory. Upon ad-
justing the model parameters to describe bulk static properties of ordinary
nuclear matter, we discuss implications of the approach for dense hadronic
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matter, in particular for neutron stars.

1 The Modified Fuzzy Bag Model (MFBM): fitting the masses of
the low-lying baryons

The main idea of the MFBM is to eliminate divergences of physical quanti-
ties as, for instance, in the self-energy of the nucleon, due to the characteristic
sharp surface appearing in standard bag models. To solve this non-physical
difficulty we follow the procedure introduced by Y. Nogami et al3 making
the surface of the bag fuzzy, i.e. we replace the step function θ(R − r) and
the delta function δ(R − r) in the original version of the MIT-Lagrangian,
respectively, by continuous suppression functions F (r) and G(r), which must
represent distribution functions. Just like ∂rθ(R − r) = −δ(R − r), we also
demand dF (r)/dr = −G(r). In our model, the lagrangian density is5

L
F BM

=
i

2
[ψ̄γµ∂µψ − ∂µψ̄γµψ]−B(r)F (r)− ψ̄[mq + (1 + γ0)V (r)]ψ . (1)

In this expression V (r) = 1
2

V0 + Vc(r) is a given spherically symmetric con-
fining potential for a single quark5,6. The quadri-divergence of the energy-
momentum tensor ∂µ T µν = 0 implies ∂r [B(r) F (r)]+

∑
q
ψ̄ (1+γ0) ψ ∂rVc(r) = 0.

We remark that, in contrast to the MIT bag, here the energy-momentum con-
servation is imposed, rather than derived from requiring the action to be
stationary under deformations of the surface of the bag. Moreover, the quark
wave functions and F (r) must be self-consistently determined from a set of
coupled equations for a given Vc(r), which then enforces a radial dependence
on the bag pressure B. We focus on baryons in their ground state (s-wave
quarks); thus, the term ψ̄ (1+γ0) ψ exhibits only a radial dependence which re-
flects the underlying spherical symmetry; for excited states, the admixture of
angular momenta quite naturally leads to an angular dependence in B. From
the equations above it is possible to determine completely the form of B(r) for
a given choice of the suppression function and confining potential. This in-
ternal consistency avoids the high degree of arbitrariness, as shown in various
approaches, and allows a very natural extrapolation from free baryons into
dense hadronic matter, such as encountered in the investigation of neutron
star properties.

By demanding the suppression function and the confining potential to be
continuous for all values of r, we finally find2, in the surface region (charac-
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terized by two radial parameters R0, R1 with R0 < r < R1), B(r) satisfies

B(r) =
1

F(r)

(
B0 − 1

2 π

∑
q

∫ r

R0

dr
u(r)2

r2

dVc(r)
dr

)
. (2)

Due to the continuity of B(r), then, at R = R0, B0 = B(R0). Requiring
the product B(r) F (r) to be finite for all r, from the condition F(R1) = 0,
the expression inside the parenthesis in Eq. (2) has to vanish for r = R1.
Thus, as a consequence of energy-momentum conservation, B(r) is completely
determined for all values of r. The next step of our calculation is to consider
the Euler-Lagrange equations and its solutions. After normalization of the
solutions, we determine the baryon masses, given as the sum of the quark
energies and the volume contribution

M =
∑

q

Eq +
2
3

∑
q

∫ R1

R0

dr r u(r)2
dVc(r)

dr
. (3)

For a more realistic estimate of the masses, we improve this result by including
center-of-mass and one-gluon exchange corrections as well as the pion field to
respect chiral symmetry. As a result, the pion-quark interaction induces renor-
malization effects on the hadronic wave functions and observables. Expecting
only moderate corrections from the pion cloud, the corresponding calculations
are readily performed in a framework similar to the non-relativistic Chew-Low
model of the nucleon-pion interaction (here we neglect both baryon recoil and
the influence from the vacuum due to the presence of anti-baryons)2,6. As
a test of the consistency of the model, we provide in Table 1 our results for
fitting the masses of the low-lying baryons2,6. In Table 2 we have listed the

Table 1. Results for the masses of the low-lying baryons (in MeV ).

baryon N ∆ Λ Σ Σ∗ Ξ Ξ∗ Ω−
experim. 940 1232 1116 1193 1392 1318 1533 1672
theory 961 1232 1138 1195 1381 1312 1497 1671

Table 2. Separate contributions to the total mass of each baryon (in MeV ).

baryon N ∆ Λ Σ Σ∗ Ξ Ξ∗ Ω−
EB 960 960 1125 1125 1125 1289 1289 1453

EBF 300 300 274 274 274 249 249 224
(∆EB)cm -126 -126 -104 -104 -104 -88 -88 -77

(∆EB)M
g -126 126 -126 -82 104 -100 85 71

(∆EB)π -47 -28 -31 -18 -18 -38 -38 0

separate contributions which build up each baryon mass: EB is the sum of the
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energy eigenvalues of each quark, EBF is the volume energy due to the term
B(r) F (r) in the Lagrangian density, (∆EB)cm is the center of mass correction,
(∆EB)M

g is the color magnetic energy, and (∆EB)π is the self-energy due to the
pion-quark interaction. Notice that there is a mean deviation of ∼ 13MeV
between the experimental and the theoretical results in Table (1). This gap
could be lowered by taking also into account the color-electric contribution to
the energy due to one-gluon exchange.

In the following we consider the modelling of neutron star masses and
baryon and lepton populations using the MFBM.

2 The Modified Fuzzy Bag Model (MFBM): modelling the
masses of neutron stars

The starting point of our analysis is the lagrangian density model for-
mulated in Eq. 1 combined with scalar-isoscalar, vector-isoscalar and vector-
isovector meson-quark couplings8:

LF BM=
i

2
[ψ̄qγ

µ∂µψq−∂µψ̄qγ
µψq]−B(r)F (r)−ψ̄q[mq−gq

σσ+(1+γ0)V (r)]ψq

+
i

2
[ψ̄qγ

µ(igq
ωωµ + igq

ρ

1
2
τ · %µ)ψq] +

1
2
∂µσ∂µσ − 1

2
m2

σσ2 (4)

− 1
2
FµνFµν+

1
2
m2

ωωµωµ− 1
4
Lµν ·Lµν+

1
2
m2

%%µ·%µ+
∑

λ

ψ̄λ[iγµ∂µ−mλ]ψλ

with Fµν = ∂µων − ∂νωµ ; Lµν = ∂µ%ν − ∂ν%µ . In these expressions: ψq, σ, ω
and % represent respectively the quark, scalar-isoscalar, vector-isoscalar and
vector-isovector meson fields and gq

σ, gq
ω, gq

% are the corresponding coupling
constants; moreover, as leptons are an important ingredient for maintaining
chemical equilibrium and charge neutrality in neutron stars, these particles
are included in the formalism with ψλ representing lepton fields. In brief
words, the main steps in our formulation involve: a) the determination of the
Euler-Lagrange equations and their solutions for a given confining potential or,
alternatively, for chosen suppression functions F (r) and G(r) (with appropriate
distributional behaviors); b) the calculation of the components of the energy-
momentum tensor in the mean-field approximation (in the following discussion
in this section, the mean fields σ, ω and % fields are denoted respectively by
σ̄, ω̄ and %̄; for the details see8,10); c) the determination of the EoS (EoS) for
nuclear matter.

The Pauli principle induces Fermi motion of the nucleons. Thus the en-
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ergy of a moving bag with momentum k is

ε(k) =
√

M∗2
N + k2 + 3gq

ωω̄ ± 1
2
gq

%%̄ (5)

where (+) refers to protons (p) and (−) to neutrons (n) and M∗
N to the nucleon

effective mass (see discussion below) (N = n, p).
The time-like mean-field component of the vector field is determined by

imposing baryon number conservation from which we get ω̄ = gωρB/m2
ω , with

gω = 3gq
ω, while the σ̄ and %̄ mean-fields are determined from the thermody-

namic condition:(
∂Etot

∂σ̄

)

R,ρ
B

=
(

∂Etot

∂ρ̄

)

R,ρ
B

= 0 ; %̄ =
g%

2m2
%

ρ3 (6)

applied to the total energy per nucleon E
tot

of nuclear matter10. We obtain

σ̄ = − γ

(2π)3m2
σ




∫ kFp

dkp

M∗
p√

M∗2
p + k2

p

(
∂M∗

p

∂σ̄

)

R

+
∫ kFn

dkn
M∗

n√
M∗2

n + k2
n

(
∂M∗

n

∂σ̄

)

R

)
(7)

and

Etot =
γ

ρB(2π)3

(∫ kFp

dkp

√
M∗ 2

p + k2
p +

∫ kFn

dkn

√
M∗ 2

n + k2
n

)

+
m2

σ

2ρB
σ̄2 +

g2
ω

2m2
ω

ρB +
g2

%

8m2
%ρB

ρ2
3 . (8)

The pressure can be found from p = ρ2
B(∂Etot/∂ρB) , from which we get the EoS

of nuclear matter. In this expression, %3 =%p−%n, mσ =550MeV , mω = 783MeV

and m% = 770MeV . Moreover,(
∂M∗

N

∂σ̄

)

R

= −gσ

E
bag

M∗
N

[(
1− Eq

E
bag

R

)
S(σ̄) +

m∗
q

E
bag

]
= −gσCN (σ) (9)

with gσ ≡ 3gq
σSN (0), CN (σ) ≡ SN (σ)/SN (0) and

S(σ̄) =
Eq/2 + Rm∗

q(Eq − 1)
Eq(Eq − 1) + Rm∗

q/2
. (10)

E
bag

is defined, from an equation similar to 3, as

E
bag

= MN =
∑

q

Eq +
2
3

∑
q

∫ R1

R0

dr r u(r)2
dVc(r)

dr
− Z

R
(11)

International Workshop on Strong Magnetic Fields and Neutron Stars 232



where the Z parameter accounts for the energy of the zero-point motion and
m∗

q is the quark effective mass m∗
q = mq − gq

σσ̄. Details on the quark sub-
structure of the nucleons are thus entirely contained in the effective coupling
(∂M∗

N/∂σ̄)R. The coupling constants, gσ = 3gq
σ and gω, are determined to fit

the binding energy of nuclear matter (−16 MeV) at the saturation density,
ρ0=0.17 fm−3. If the nucleon were simply made of three massive consti-
tuent quarks, the nucleon mass in vacuum, MN , and that in the meson con-
densate, M∗

N , would have to satisfy MN ≈ 3mq , M∗
N ≈ 3m∗

q and hence the
effective nucleon mass would be12 M∗

N = MN − gσσ̄ where we have defined
gσ = 3gq

σ. Since one finds, from the expression of the nucleon effective mass,
(∂M∗

N/∂σ̄) = −gσCN (σ), the following self-consistent condition (SCC) then
holds

gσσ̄ = − γgσ

(2π)3m2
σ




∫ kFp

dkp

M∗
p√

M∗2
p + k2

p

(−3gq
σSp(σ) = −gσCp(σ))

R

+
∫ kFn

dkn
M∗

n√
M∗2

n + k2
n

(−3gq
σSn(σ) = −gσCn(σ))

R

)
(12)

with the multiplicity γ = 2 for neutron matter and γ = 4 for nuclear matter.
The effective nucleon mass is, in this case, given by M∗

N = MN − 3gq
σSN (0) σ̄

or equivalently by M∗
N = MN − (CN (σ)/SN (σ)) σ̄ . Neutron star configu-

rations may then be obtained by combining the resulting EoS for nuclear
matter with the TOV equations for the general relativity metrica, chemical
equilibriumb, baryon number and electric charge conservationc. The results
indicate the consistency of our modelling as shown in Fig. 1. In particular,
our results indicate a maximum mass for neutron stars smaller than typical
QHD predictions but far yet from the most acceptable results. We expect to
improve the predictions by considering a more appropriate parameterization
of our modelling.

aThe TOV equations describe the structure of a static, spherical and isotropic star with the
pressure p(r) and the energy density ε(r) correlated from the underlying nuclear model for
an interior mass M(r) inside a sphere of radius r; these equations involve various constraints
and boundary conditions: they must be evaluated for the initial condition ε(0) = εc (central
star density) and M(0) = 0 at r = 0; the radius R of the star is determined under the
condition that on its surface the pressure vanishes (p(r)|r=R = 0).
bChemical equilibrium conditions for neutron stars are: µi = biµn−qi(µ`−µν`) where µi

and µ` stand for the baryon and lepton chemical potentials, respectively; bi is the baryon
number; the baryon and lepton electrical charges are represented by qi.
cBaryon number and electric charge conservation equations: ρB =

∑
B

k3
F,B/3π2 , and∑

B
qe,Bk3

F,B/3π2 −
∑

`
k3

F,`/3π2 .
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Figure 1. On the left panel: compared are the results of the field amplitudes and chemi-
cal potentials for neutron star matter (with the composition n + p + e + µ) in chemical
equilibrium; the results correspond to the MIT bag model (dashed lines) and the fuzzy bag
model with λ = 0.05fm−3 (solid lines). On the right panel: maximum mass of neutron
matter as predicted by the fuzzy bag model with λ = 0.05fm−3 (solid line) compared to
the corresponding results obtained with the Glendenning and MIT bag models.

In the following section, to improve our predictions for global static prop-
erties of neutron stars, we introduce a new QHD model for nuclear star matter
which contains nonlinear self-coupling interaction terms involving the σ and
δ mesons.

3 Nonlinear σ, δ Couplings in a Relativistic Mean Field Theory
for Neutron Stars

As the basic new feature of our approach, we expand the scalar sector
of conventional QHD models, by including in addition to the scalar-isoscalar
σ-meson, the scalar-isovector δ-meson. Such an extension is supported mainly
from the large isospin-asymmetry in neutron matter. Guided by a previous
treatment11, we start in the baryon sector, with a new version of the derivative
coupling model11 which describes a system of baryons coupled to four mesons
(σ, ω, % and δ) and two leptons (e, µ) and which contains a gradient coupling
involving baryons and the scalar-isoscalar and scalar-isovector meson fields.
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M J I n q s

N 939 1/2 1/2 1 0, 1 0

Λ 1115 1/2 0 1 0 −1

Σ 1190 1/2 1 1 −1, 0, 1 −1

Ξ 1315 1/2 1/2 1 −1, 0 −2

σ 800 0 0 0 0 0

ω 782 1 0 0 0 0

% 770 1 1 0 −1, 0, 1 0

δ 980 0 1 0 −1, 0, 1 0

B τ3 M∗
B

p +1 M∗
p = Mp

(
1 +

g?
σpσ+g?

δp
δ3

αMp

)−α

n −1 M∗
n = Mn

(
1 +

g?
σnσ−g?

δn
δ3

αMn

)−α

Λ 0 M∗
Λ = MΛ

(
1 +

g?
σΛσ

αMΛ

)−α

Σ+ +1 M∗
Σ = MΣ

(
1 +

g?
σΣσ+g?

δΣδ3
αMΣ

)−α

Σ0 0 M∗
Σ = MΣ

(
1 +

g?
σΣσ

αMΣ

)−α

Σ− −1 M∗
Σ = MΣ

(
1 +

g?
σΣσ−g?

δΣδ3
αMΣ

)−α

Ξ− −1 M∗
Ξ = MΞ

(
1 +

g?
σΞσ−g?

δΞδ3
αMΞ

)−α

Ξ0 0 M∗
Ξ = MΞ

(
1 +

g?
σΞσ

αΞ

)−α

Table 3. On the left, baryons and mesons considered in this work. The symbols represent:
M : mass; J : spin; I: isospin; n: baryon number; q: electric charge; s: strangeness. On the
right, third component of isospin and effective masses for the baryon fundamental octet.

The lagrangian density in our approach is

L=
∑

B

{
ψ̄B

([
1 +

(gσσ + gδ~τB · ~δ)
αMB

]α

γµ

(
i∂µ−gωωµ +

1
2
g%τB · %µ

)

−
(

1− gσσ

MB

)η

MB

)
ψB +

1
2

(
1+

(gσσ + gδ~τB · ~δ)
βMB

)2β(
1
2
mω

2ωµωµ− 1
4
ωµν

)

+
1
2

(
1+

(gσσ + gδ~τB · ~δ)
γMB

)2γ(
1
2
m2

%%µ ·%µ− 1
4
%µν ·%µν

)


+
(

1
2
∂µσ∂µσ − 1

2
mσ

2σ2

)
+

(
1
2
∂µ

~δ · ∂µ~δ− 1
2
mδ

2~δ2

)

+
∑

λ

ψ̄λ[iγµ∂µ−mλ]ψλ (13)

where ωµν = ∂µων − ∂νωµ and %µν = ∂µ%ν − ∂ν%µ.
The different steps of our formulation may be synthesized in the following.
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B τ3 M∗
B

p +1 M∗
p ' Mp − g?

σpσ − g?
δpδ3

n −1 M∗
n ' Mn − g?

σnσ + g?
δnδ3

Λ 0 M∗
Λ ' MΛ − g?

σΛσ

Σ+ +1 M∗
Σ ' MΣ − g?

σΣσ − g?
δΣδ3

Σ0 0 M∗
Σ ' MΣ − g?

σΣσ

Σ− −1 M∗
Σ ' MΣ − g?

σΣσ + g?
δΣδ3

Ξ− −1 M∗
Ξ ' MΞ − g?

σΞσ + g?
δΞδ3

Ξ0 0 M∗
Ξ ' MΞ − g?

σΞσ

B τ3 g∗κεB

p +1 g∗σαp = gσ

(
1 +

g?
σpσ+g?

δp
δ3

αMp

)−α

n −1 g∗σαn = gσ

(
1 +

g?
σnσ−g?

δn
δ3

αMn

)−α

Λ 0 g∗σαΛ = gσ

(
1 +

g?
σΛσ

αMΛ

)−α

Σ+ +1 g∗
σαΣ+ = gσ

(
1 +

g?
σΣσ+g?

δΣδ3
αMΣ

)−α

Σ0 0 g∗
σαΣ0 = gσ

(
1 +

g?
σΣσ

αMΣ

)−α

Σ− −1 g∗
σαΣ− = gσ

(
1 +

g?
σΣσ−g?

δΣδ3
αMΣ

)−α

Ξ− −1 g∗
σαΞ− = gσ

(
1 +

g?
σΞσ−g?

δΞδ3
αMΞ

)−α

Ξ0 0 g∗
σαΞ0 = gσ

(
1 +

g?
σΞσ

αΞ

)−α

Table 4. On the left, third component of isospin and effective masses for the baryon octet
considered in this work (taking α = 1, η = 0 and gδ = 0, up to first order in σ, or considering
alternatively α = 0 and η = 1.). On the right, as in table 2, however for the scalar coupling
constant (the other effective coupling constants follow a similar pattern).
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Figure 2. On the left, relative populations for nuclear matter and on the right, predictions
for the maximum mass of neutron stars for gδ = 2.39.

We first introduce a re-scaling of the baryons and the ω and % meson fields:

φ →
[
1 +

(gσσ + gδ~τB · ~δ)
αMB

]−α/2

φ (14)

International Workshop on Strong Magnetic Fields and Neutron Stars 236



with φ= ψB , ωµ, %µ. Then we combine these expressions with
the previous ones and define new coupling constants: g?

ασB ≡
m?

αBgσ ; g?
βωB ≡ m?

βBgω ; g?
γ%B ≡ m?

γBg% ; g?
αδB = m?

αBgδ , with m?
κB ≡

(1 + (gσσ + gδτ3Bδ3)/κM)−κ (κ = α, β, γ ), where τ3 is the third component
of the isospin vector ~τ associated to baryon B and σ and δ3 represent the
mean field components of the σ and δ. We obtain

L =
∑

B

ψ̄B

{
γµ

(
i∂µ − g?

ωBωµ − 1
2
g?

%BτB · %µ

)

−
(

1− gσσ

MB

)η

m?
αBMB

}
ψB +

(
1
2
∂µσ∂µσ − 1

2
mσ

2σ2

)

+
1
2
(∂µ

~δ · ∂µ~δ −mδ
2~δ2) +

(
1
2
mω

2ωµωµ − 1
4
ωµνωµν

)

+
(

1
2
m2

%%µ · %µ − 1
4
%µν · %µν

)
+

∑

λ

ψ̄λ (iγµ∂µ −mλ) ψλ . (15)

From this expression, the effective nucleon mass is defined as

M∗
N = MN

(
1− gσσ

MN

)η
[
1 +

(gσσ + gδ~τN · ~δ))
αMN

]−α

. (16)

We notice that for α = 1, η = 0 and gδ = 0, up to first order in σ, the re-
scaled lagrangian gives for the effective nucleon mass the well known Yukawa
minimal coupling

M∗
N ' MN − gσσ . (17)

Similarly, taking α = 0 and η = 1 the same result holds.
The inclusion of the δ meson deserves some comments. Its mass is very

high when compared to the nucleon mass, corresponding to a length scale
of the strong interaction of the order of less than 0.4 Fermi. In most mo-
dels found in the literature, the relevant physical phenomena are restricted to
longer length scales (> 0.5Fermi) with the dynamics at shorter length scales,
— after integrating out the contributions corresponding to heavier meson
degrees of freedom —, implicitly taken into account in the various coupling
parameters of the theory.

Assuming the coupling constants are natural (see discussion in the next
section), it would be possible in a consistent way to truncate in any desired
order any expansion of the lagrangian density just by counting powers of the
expansion parameters. A crucial aspect in order to accomplish convergence is
to assume the expansion parameters are small in the desired physical domain.
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Figure 3. On the left, mass-radius relation for neutron stars and on the right, predictions
for the stellar redshift for gδ = 2.39.

The inclusion of the δ meson in this formalism may represent, — as it may
test the dynamics at shorter length scales, — a more accurate indication of
the degree of naturalness of current effective models. Moreover, similarly to
the σ meson, the δ meson couples to the baryon masses introducing bary-
onic splittings whose signals depend on the value of the third component of
the baryonic isospin. These splittings correspond to mixed attractive and
repulsive strong interaction components into the formalism and may cause a
negative contribution to the symmetry energy of nuclear matter, reducing the
gap between the Fermi energies of baryon isospin multiplets (n and p; Σ+,
Σ0 and Σ−; Ξ−and Ξ0). Its presence may thus imply in an attenuation of
the repulsive interaction with increasing baryon density contributing for the
stability of nuclear matter. Typical results in our formulation are shown in
Figs. 2 and 3. In particular, our predictions for neutron star properties are
in good agreement with the results of Vela X-1.

In the next section we consider the naturalness of effective field theory as
a possible theoretical constraint to the prediction of neutron star observables
in relativistic effective field theory.

4 Naturalness in the Nonlinear σ, δ Self-Coupling Sectors in a
Relativistic Mean Field Effective Theory for Neutron Stars

In building up an effective field theory for the nuclear many-body pro-
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Table 5. Values of coupling constants, nucleon effective mass and compression modulus of
nuclear matter at saturation density (models I (with the δ meson) and II (without the δ
meson) (see Ref.8). (saturation density: ρ0 = 0.16fm−3; binding energy at saturation
density: B(E) = −16MeV ; asymmetry coefficient a4 = 32.5MeV .)

Model ( gσ

mσ
)2 ( gω

mω
)2 ( g%

m%
)2 ( gδ

mδ
)2 M?/M K

(fm2) (fm2) (fm2) (fm2) (MeV)

I 7.50 2.62 10.63 2.39 0.85 224.5
II 7.50 2.62 4.76 0.00 0.85 224.5

blem, a natural way to classify their contributions is to expand the lagrangian
density in terms of the characteristic scales of QCD13,14,15. By restricting the
system to a certain limited physical domain, the relevant physical phenomena
are in general dominated by a few specific long-range degrees of freedom, while
the dynamics at shorter length scales, which corresponds to heavier physical
degrees of freedom, may be integrated out and thus not explicitly taken into
account into the formalism. The effects of these heavier degrees of freedom
are, however, implicitly absorbed in the various coupling parameters of the
theory. While there is strong evidences, from studies of ordinary nuclear mat-
ter, that the expansion in the nonlinear mesonic couplings quickly converges,
— keeping only cubic and quartic order self-couplings of the σ meson field for
instance provides a semi-quantitative fit to nuclear matter data15 —, a con-
trolled and useful extension to significantly higher densities (ρ ≥ 5ρ0) requires
some assumption on the ordering of the expansion coefficients.

For the sake of consistency, expanding the lagrangian density of the ef-
fective theory order by order, we assume the unknown dimensionless coupling
parameters of the theory are natural, i. e. of order unity. This assumption (or
a similar one), naturalness, makes it possible, in a proper and accurate way,
to formally sum up in a compact form, to any desired order, an expansion of
the lagrangian density, — which in principle would contain an infinite number
of terms. Assuming naturalness of the expansion scheme, it necessarily con-
verges for sufficiently low nuclear densities and can be analytically continued
to any desired density of hadronic matter.

Evidently, different expansion organizing schemes are possible: focusing
on quarks degrees of freedom, a fundamental scale in QCD is the renormal-
ization invariant parameter ΛQCD ∼ 200MeV , or the number of colors of
quarks, Nc, reminiscent of the SU(3) symmetry group structure of QCD.
However, when focusing on meson and baryons as effective low energy de-
grees of freedom (equivalently realized in the large Nc limit as a result of
chiral symmetry breaking), the appropriate scales are the low-energy chiral

International Workshop on Strong Magnetic Fields and Neutron Stars 239



parameters of QCD, i. e. the weak pion decay constant fπ or equivalently the
chiral parameter Λ: fπ = 93MeV , Λχ ∼ 1GeV ≤ 4πfπ.

For the accurate development of any effective theory, there is a crucial and
non trivial aspect which should be addressed to as a first step: how to assign
dimension scales to each contribution in the lagrangian density in order to keep
the various coupling constants of the theory both dimensionless and natural?
We follow here the näıve dimensional analysis (NDA), a procedure proposed
by Manohar and Georgi13,16, which assigns a mass scale of appropriate size
to any term in an effective lagrangian density. The NDA procedure when
applied in the formulation of a lagrangian density with nucleons and strongly
interacting mesonic fields may be synthesized as follows: the amplitude of
each strongly interacting field in the lagrangian, i.e. the meson fields, becomes
dimensionless when divided by the pion decay weak constant. Furthermore, to
obtain the correct dimension ((energy)4) for the lagrangian density, an overall
normalization scale f2

πΛ2
χ ' f2

πM2, with M denoting the nucleon mass, has to
be included. Finally, for identical meson fields self-interacting terms of power
n, a symmetrization factor n!, for proper counting, should be included.

A corresponding interaction lagrangian which involves the isoscalar-scalar
meson field σ and the isoscalar-vector meson field ω coupled to the nucleon
field is then defined in effective field theory as 14,15,16

Leff =
∑

i,k

ci,k

i!k!
(

σ

fπ
)i(

ω

fπ
)k

(
∂ or mπ

M

)
(
ψ̄Γψ

f2
πM

)`f2
πΛ2 (18)

with unknown expansion coefficients (coupling constants) ci,k (a direct gen-
eralization of this expression may involve additional mesonic fields such as
the π, % and δ meson fields as well as the photon). In the expression above
ψ represents a baryon field, Γ is a Dirac matrix and derivatives are denoted
by ∂. The coupling constants are dimensionless and of order O(1) if natural-
ness holds. In the natural limit, using the Goldberger-Treiman relation and
the Brown-Rho scaling, the effective field theory gives rise to the so called
exponential coupling:

Leff (ci,k = 1) −→ exp(
σ

M
) exp(

ω

M
)
(

∂ or mπ

M

)
(
ψ̄Γψ

f2
πM

)`f2
πΛ2 . (19)

To proceed with our analysis of naturalness, with a full QCD calculation
presently beyond any reach, we consider the natural limit of the model deve-
loped in the previous section and confront its predictions, for different values
of the parameters α, β, γ and κ, with the corresponding ones in the natural
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limit:

g?
κλB |κ→∞ → exp (

−gσσ + gδ~τ3B · ~δ3

MB
)gλB (20)

with λ = σ, ω, %, δ, which gives in the mean-field approach

L =
∑

B

ψ̄B exp (
−gσσ + gδτ3Bδ3

MB
)
{

γµ

(
i∂µ − gωBωµ − 1

2
g%BτB · %µ

)

−
(

1− gσσ

MB

)η

MB

}
ψB +

(
1
2
∂µσ∂µσ − 1

2
mσ

2σ2

)

+
(

1
2
∂µ

~δ · ∂µ~δ − 1
2
mδ

2~δ2

)
+

(
1
2
mω

2ωµωµ − 1
4
ωµνωµν

)

+
(

1
2
m2

%%µ · %µ − 1
4
%µν · %µν

)
+

∑

λ

ψ̄λ (iγµ∂µ −mλ) ψλ . (21)

The results shown in Figs. 4 and 5 clearly indicate that, if naturalness re-
presents a fundamental constraint in relativistic field theory, it may help to
discriminate current models of neutron star matter. Our results also indicate
that our modelling represents a potential candidate, concerning naturalness,
to constrain neutron star matter observables.

5 Conclusion

The approaches presented in sections 1 and 2 represent first steps in cur-
rent attempts to improve the modelling of quark dynamics and confinement
beyond standard bag model frameworks, bridging the gap to sigma, color-
chromo-dielectric or conventional quark-meson coupling models (for details
see references in2). From its very nature, — in particular its consistency on
formulating the dynamics of the bag surface and its incorporation of chiral
symmetry,— it is a promising step for further detailed extensions and ap-
plications are for example the investigation of baryon form factors at large
momentum transfers, or the immersion of the quark bag into hadronic matter
towards a more realistic investigation of the transition of effective (mesons and
baryons) to constituent (effective) quark and gluons degrees of freedom in the
high density domain of nuclear matter. The results of our nonlinear approach
presented in sections 3 and 4 show that, if naturalness holds, it may repre-
sent an important constraint in effective field theory for the determination of
the mass and other properties of neutron stars. On this respect, our results
indicate, in the comparison with other QHD models found in the literature,
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Figure 4. On the left panel: ratios between the predictions involving values for the effective
nucleon mass as obtained in different models (M∗

Model) and the exponential one (M∗
Exp).

The figure shows the results corresponding to our model (Model A) in comparison to the
results of the ZM and Walecka models. On the right panel: ratios between the predictions
involving values for the EoS of nuclear matter as obtained in different models (PModel)
and the exponential one (PExp). The figure shows the results corresponding to our model
(Model A) in comparison to the results of the ZM, Glendenning and Walecka models.

the potentialities of our modelling to constrain neutron star matter and for
making predictions, in a more consistent way, on global static properties of
neutron stars.
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