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A relativistic degenerate neutron gas in equilibrium with a background of electrons
and protons in a magnetic field exerts its pressure anisotropically, having a smaller
value perpendicular than along the magnetic field. For critical fields the magnetic
pressure may produce the vanishing of the equatorial pressure of the neutron gas.
Taking it as a model for neutron stars, the outcome could be a transverse collapse
of the star. This fixes a limit to the fields to be observable in stable neutron
star pulsars as a function of their density. The final structure left over after the
implosion might be a mixed phase of nucleons and meson condensate, a strange
star, or a ”black cigar”, but no magnetar at all.

1 Introduction. Anisotropic pressures

We argue that a gas of neutral particles having an anomalous magnetic
moment (as a model for neutron stars (NSs)), when placed an in extremely
strong magnetic fields has a non linear (ferromagnetic) response to the exter-
nal field, and is also unstable due to the vanishing of the transverse pressure
for fields strong enough. In this phenomenon quantum effects play an essential
role due to the coupling of the particles’ spins to the microscopic field B seen
by the particles (spin-polarization). This problem was studied for the electron
gas in1. Here we want to explain in more details the arising of anisotropic
pressures, which is an essential point in understanding the problem. We shall
give at first general arguments and concentrate later in the specific calcula-
tions in the one-loop approximation for the thermodynamic potential of the
star configuration.

To fix ideas, there is some external magnetic field which we name as H.
This field induces a magnetization M in the medium (the neutron gas making
up the star) defined by H = B − 4πM(B). Obviously, B is the microscopic
field seen by an electric charge or magnetic dipole, and in most cases in what
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follows we refer to B as the external magnetic field, in the sense of determining
the dynamics of the particles.

The idea of local pressure anisotropy, that is, the occurrence of unequal
principal stresses is a natural consequence of the spatial anisotropy introduced
by external fields, as it is evident to everybody to occur in atmospheric or
ocean pressures, where a preferred direction of increasing (radial) pressure is
due to the (approximately) centrally-symmetric gravity force. This anisotropy
is observed for instance when considering a macroscopic sphere in any of these
fluids. In a small neighborhood of any point inside it, the pressure seems to
be isotropic, but actually it is not so, and it only does not change as we move
on isobar surfaces. But as we move across them, it changes slightly due to
the momentum added by the external gravity force field.

In the case of a gas of electrically charged particles in an external constant
magnetic field B, in classical electrodynamics, it is the Lorentz force F = ev×
B/c the source of an asymmetry in the pressures parallel and perpendicular
to B. By writing ev = j∆V , where ∆V = dx1dx2dx3, calling fi = Fi/∆V as
the i-th component of the force density, and substituting j = c∇ × M, one
has

fi = −(∂iMs)Bs + (∂sMi)Bs (1)

multiplying by ∆V = dx1dx2dx3 and assuming Bs = Bδs3 and ∂Mi/∂x3 = 0
(actually it is also Mi = Mδi3), only the first term in (1) remains as nonzero
and one gets back an expression for the force. For the pressure perpendicular
to the field it results p⊥ = −M · B. This is a classical effect and obviously
p⊥ must be added to the usual kinetic isotropic pressure. As in classical
electrodynamics M is opposite to B, then M·B < 0, and p⊥ > 0. However,
the opposite case occurs when M is parallel to B, which occurs in the quantum
case. Note also that in2 the concept of anisotropic pressure in the case of an
electron gas in a magnetic field is discussed. That paper refers to an earlier
expression for Tµν obtained by Canuto and Chiu4. In2 it is argued that
the anisotropy in pressures is cancelled because the Lorentz force pressure
counterbalances the transverse pressure obtained by the quantum relativistic
contribution. We observe first that if care is taken with the sign in front
of M, the Lorentz force pressure actually expresses the same sort of pressure
anisotropy which occurs in both classical and quantum cases, since it is due to
the spatial anisotropy introduced by the external field. Second, to consider at
the same time both the quantum and classical contributions to magnetization,
and to sum up them is, definitely, nonsense.

Note also that in paper 3 based in the use of the classical stress tensor,
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claims are made against our results in 1, 19. The classical stress tensor is
usually derived starting from the Lorentz force 7. However, when dealing
with a quantum gas, the expression for the Lorentz force is no longer valid,
since in it the effect of the magnetic field on the spin is not taken into account
(the Lenz law is valid). In a degenerate quantum gas the spin coupling to
the magnetic field (which obviously does not obey the Lorentz force equation)
plays a dominant role and the use of the classical stress tensor may lead to
contradictory statements. Obviously, if spin is ignored, one obtain classical
results, as those of equation 2 of 3. These are in correspondence with the
classical collapse case considered below.

2 The energy-momentum tensor

Based on more fundamental grounds, one may write the general structure
of the energy-momentum tensor of a system in an external field in the same
way as one can guess the general structure of other tensors, as the polarization
operator tensors5. In an external field Fµν , in addition to the basic vectors
four-velocity of the medium, uµ, and particle momentum kµ, we have two ex-
tra vectors Fµνkν , F 2

µνkν , to form a basis of independent vectors. From them
we may build a set of basic tensors, which together with the tensors δµν , Fµν ,
F 2

µν serves as a basis in terms of which we can expand any tensor structure
related to the particle dynamics, in particular, the energy-momentum tensor.
But to eliminate tensor structures containing off-diagonal terms which would
correspond to unwanted shearing stresses in the rest frame u = (0, 0, 0, u4),
we exclude some of them, i.e. kµkν , kνFµλkλ, Fµν , uµkν , or any of its combi-
nations. By following the arguments used in5, we conclude that we are left in
the present case with three basic tensors:δµν , F 2

µν , uµuν . Thus, the structure
of the energy-momentum tensor is expected to be of form

Tµν = aδµν + bF 2
µν + cuµuν (2)

where a = p, is the isotropic pressure term, b = M/B and c = U + p. In the
present case the second of these tensors can be written in a simpler form as
F 2

µν = −B2δ⊥µν .
The coupling of the spin dipole moment of neutrons in an external mag-

netic field B produces a loss of rotational symmetry of the particle spectrum
(in what follows we will consider B along the x3 axis). From the spectrum,
which is expressed in terms of B, by following the standard methods of temper-
ature quantum field theory, we obtain the thermodynamical potential density
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Ω = Ω(B), and from it all the thermodynamic properties of the system, in
particular its magnetization, M(B) = −∂Ω/∂B. We may write then

Ω = −
∫

MdB − p0, (3)

where p0 = Ω(0) is the zero field pressure term. One must emphasize that
in the quantum relativistic case Ω depends on B nonlinearly. One finds that
the dependence of the energy spectrum upon momentum is not rotational
invariant. This fact determines a reduction of the symmetry of the other-
wise isotropic thermodynamic properties of the system, as pressure, which is
expected to be axially-symmetric for the reasons pointed out above. By us-
ing Green functions method, it is found that the energy-momentum tensor of
matter in an external constant magnetic field obeys the general structure (2),
(i.e., since neutrons are composed from charged quarks), and thus we have1,

Tµν = (T∂Ω/∂T +
∑

µi∂Ω/∂µi)δ4µδ4ν + 4FµλFνλ∂Ω/∂F 2 − δµνΩ, (4)

where i run over the species involved. Below we will take i = n, p, e. Expres-
sion (4) in the zero field limit reproduces the usual isotropic energy-momentum
tensor Tµν = pδµν − (p + U)δ4µδν4. From Eq.(4) the spatial components are
T33 = P3 = −Ω, T11 = T22 = P⊥ = −Ω − BM.

By writing M = (H − B)/4π, one may write formally Ω = − 1
8π B2 +

1
4π

∫
HdB−p0. We remind that as Ω ≡ F−G, the last expression is consistent

with what would be obtained in the classical non-relativistic case6 where F =
F0 +

∫
HdB/4π is the Helmholtz free energy and G = F +

∫
MdB + p0

= G0 + B2/8π as the Gibbs free energy. Due to our definition of M, our
last term is given in terms of B and not in terms of H. As we have also
−Ω − BM = − 1

8π B2 + 1
4π

∫
BdH + p0, we observe then that one can write

Tij as

Tij = S(B)ij − T M
ij (B,H), (5)

where S(B)ij = 1
4π [BiBj − 1

2 (B2)δij ] is the Maxwell stress tensor for the
microscopic field B, and T M

ij (B) = 1
4π [HiBj − (

∫
BdH)δij ] is the Minkowski

tensor for nonlinear media. Note that it reduces to the usual expression for
H depending linearly on B7. If H = 0, B = 4πM and Tij = S(B)ij .

Once we assume the existence of local anisotropy, two main questions
arise: a) where does it come from? b) in what manner the overall properties
of both local isotropy and anisotropy relate in between? These issues were
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extensively reviewed by Herrera and Santos8 in a general relativistic approach,
who present several physical mechanisms for its origin, in both extremely
low and very high density systems, which may include astrophysical compact
objects. In the case of highly dense systems, it was pointed out that ”exotic”
phase transitions could occur during gravitational collapse, the problem we
are concern herewith in this Talk. More recently, Mak and Harko9 present a
class of exact solutions of Einstein’s equations, corresponding to anisotropic
stellar configurations which can describe realistic neutron stars.

Note, nonetheless, that Herrera and Santos8,9 did not take into account
the dynamical effects of the strong (and superstrong) magnetic fields sup-
posed to exist in the core of canonical neutrons stars, see for instance1,10,11,12.
Thence, the contention of this work is to address this open issue. The novel
results obtained point out to the occurrence of new processes in the (rela-
tivistic) astrophysics of compact objects that were not manifest in previous
papers.

3 Classical and Quantum Collapses

In Ref.1 we found that a relativistic degenerate electron gas placed in a
strong external magnetic field B is confined to a finite set of Landau quantum
states. As the field is increased, the maximum Landau quantum number is
decreased, favoring the arising of a paramagnetic or ferromagnetic response
through a positive magnetization M, up to the case in which only the ground
state is occupied. The gas then becomes one dimensional, and in consequence
the pressure transverse to the field vanishes for fields B = −Ω/M. Thus, the
electron gas becomes unstable due to the decrease of the transverse pressure
for fields strong enough, and the outcome is a collapse.

For neutrons, the magnetization is always positive, and (as in the elec-
tron gas case) is nonlinear, leading to a sort of ferromagnetic behavior. For
fields strong enough the pressure transverse to the field, P⊥ = −Ω − BM, is
considerably decreased and may vanish. If we assume that extremely magne-
tized NSs, or magnetars13, have fields H ∼ 1015 G, and that inside the star
B increases by following a dipole law B(r′) = Bsurf/r3, we expect near its
surface fields from 1016 −1017G up to values of order 1020G in its core, where
it is maintained self-consistently, (H = 0). For fields of this order of mag-
nitude superdense matter composed of neutral particles having a magnetic
moment may undergo a transverse collapse since P⊥ vanishes. As discussed
below, the resulting object (depending on the macroscopic properties of the
imploding NS) may be a hybrid,14 a strange star (through an induced phase
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transition14,15) but no any magnetar. We do not enter into the details of the
mechanism for producing the self-consistent field, but a possible source is a
condensate of the ρ vector meson or through neutron spin-spin ferromagnetic
coupling (see below), or even by diquark condensation.

In the classical and diamagnetic cases M < 0, then H > B and P⊥ >
P3. This leads to the oblatening effect described above. But for the strong
quantum case, the coupling of the spin magnetic dipole with B plays the main
role, and M > 0, leading to the para- or ferromagnetic effects. The situation
then is reversed and P⊥ is smaller than P3 in the amount BM and it vanishes
for 1

8π B2 = 1
4π

∫
BdH + p0, leading conversely, to a prolate configuration.

In classical electrodynamics16 it is suggested that the pressure is given by
the sum of the Maxwell stress tensor Sµν plus an isotropic pressure p0 term. In
the case of a constant magnetic field parallel to the x3 axis, the total pressure
tensor reads Tij = p0δij + Sij or P3 = p0 − H2/8π and P⊥ = p0 + H2/8π.

Obviously, this anisotropic pressure is to be compensated by the gravita-
tional pressure by distributing also anisotropically matter in the body, leading
to isobaric spheroidal or ellipsoidal surfaces, an effect which is similar to the
oblateness of the Sun, Earth and planets due to the effective decrease of
the transverse gravitational force-induced pressure by the centrifugal force17.
Thus, in the classical case, for the extreme limit of flattening, one gets P3 = 0
and p0 = B2/8π, and thence the body would collapse as a disk or a ring per-
pendicular to the field. Starting from general relativistic considerations it has
been reported recently10 the existence of a maximum field for having station-
ary configurations. This field induces a toroidal configuration, which is topo-
logically equivalent to a ring. In the quantum case, for degenerate fermions,
as M > 0, it is P⊥ = −Ω − BM which is decreased by increasing B. As the
NS is in equilibrium under the balance of neutron and gravitationally-induced
pressures, the body stretches along the direction of the magnetic field. Thus,
for any density there are values of the field B strong enough, such that these
pressures cannot compensate each other leading to a collapse perpendicular
to the field for P⊥ = 0. This implosion is driven by the same mechanism
described in1 for electrons, where the transverse pressure vanishes when con-
fined to the Landau ground state. We do not enter in the quantitative study
of this collapse here, which would lead to a special sort of hybrid or strange
stars,14,15 or black cigars.

Our previous considerations are approximation-independent. For going
to an specific model, we shall start in the next section from the free particle
spectrum for neutral particles in a magnetic field.
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4 Neutron Gas in a Magnetic Field

In dealing with a quantum gas in an external field we shall assume that
the currents, which are classical sources of the field, are localized in a specific
(relatively small) volume of space, out of the region occupied by the quantum
system, or that the source of the external field H is not classical but quantum,
as it may be produced from ferromagnetic coupling of spin of nucleons or
Bose-Einstein condensation of charged particles having a magnetic moment,
as some mesons and diquarks. Formally the problem is equivalent as to have
the quantum gas placed among the poles of a big magnet which creates a
magnetic field H.

As in the case of the electron-positron gas1, the basic dynamics in our
present case is described by the Dirac equation in the external field (in place
of the Lorentz force), leading to the energy eigenvalue spectrum18. This energy
depends on the microscopic magnetic field B through some interaction field in
the initial Lagrangian. As in standardized models, the system is composed by
fermions (in addition to neutrons, a certain amount of electrons and protons
is demanded by Pauli’s Principle) and bosons (photons, mesons) as quanta
of the fields. The external field contributes with virtual particles, expressed
through the Euler-Heisenberg vacuum terms arising in the regularization of
the quantum vacuum terms appearing in the calculation of the basic statistical
quantity, the thermodynamical potential Ω, which is built from the particle
spectrum. The thermodynamical potential is the sum of two terms, Ω =
Ωst +Ω0, the finite statistical term Ωst plus the vacuum field contribution Ω0,
which is divergent. In the process of regularization, it absorbs the classical
field energy B2/8π. The only way the field B can influence the particle
dynamics, and in consequence the pressure, is through its coupling with them.
This coupling is expressed by appropriate terms in the field Lagrangian which
will appear later on in the particle spectra. Note in addition that if the
coupling constant is turn to zero, the particles would not feel any pressure
coming from the external field.

For free neutrons in a magnetic field we get the eigenvalues

En(p,B, η) =

√
p2
3 + (

√
p2
⊥ + m2

n + ηqB)2, (6)

where p3, p⊥ are respectively the momentum components along and per-
pendicular to the magnetic field B, q = 1.91Mn, where Mn is the nuclear
magneton, η = 1,−1 are the σ3 eigenvalues corresponding to the two orienta-
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tions of the magnetic moment (parallel and antiparallel) with respect to the
field B. The expression (6) shows manifestly the change of spherical to axial
symmetry with regard to momentum components.

The partition function Z = Tr(ρ) is obtained from the density matrix

describing the model ρ = e−β
∫

d3x(H(x)−
∑

µiNi). Here µi, i = 1, 2, 3 are the
chemical potentials associated to lepton, baryon and electric charge conser-
vation, (where µn = µ2, µp = µ2 + µ3, µe = µ1 + µ3 and µυ = µ1). The
thermodynamical potential can be written as Ω = −β−1lnZ. If we assume
the temperature T = β−1 ∼ 10−7 erg, degeneracy for fermions is guaranteed
if T � µi − mi. Usually the eigenvalues of H contain the contribution from
neutrons, protons, electrons and some meson species, and the densities are
Ni = −∂Ω/∂µi, where i = n, p, e... We name Ω =

∑
i Ωi, M =

∑
i Mi the

total thermodynamical potential and magnetization, respectively.
A standard procedure is to work in the mean field approximation in which

the meson fields σ, ρ, ω are taken as constant, as done in papers,11,12 through
which the mass spectrum of baryons is corrected and strong repulsive in-
teractions between them is found. However, for simplicity we will keep the
spectra in the tree approximation to obtain the one-loop approximation for
Ω, and neglect the statistical contribution from meson terms in Ω as com-
pared with those of fermions (since for them miβ ∼ 103 − 104) except for
fields B ≤ Bcρ = m2

ρ/e ≈ 1020G, since the contribution of ρ vector meson
condensate to M becomes relevant and in analogy of W±-s1, leads to a self-
consistent spontaneous magnetization B = 4πM = 2πeNρ

√
m2

ρ − eB. This
prevents vacuum instability for B > Bcρ, but for such fields the magnetic
pressure:

∫
MdB − MB = −B2/8π overwhelms the kinetic pressure term

p0 (of order 1036 dynes/cm2) leading to P⊥ < 0, and the star is definitely
unstable.

5 The thermodynamical potential

One can obtain an expression for the neutron thermodynamic potential
in the one-loop approximation as Ωn = Ωsn + Ω0n, where

Ωsn = − 1
4π2β

∫ ∞

0

p⊥dp⊥dp3 ln
[
f+(µn, β)f−(µn, β)

]
, (7)

where f±(µn, β) = (1+e−(En∓µn)β) accounts respectively for the contribution
of particles and antiparticles (in the degenerate case, only particles contribute

International Workshop on Strong Magnetic Fields and Neutron Stars 104



to Ω).
The neutron vacuum term (see Ref.19) has an Euler-Heisenberg-like form

as

ΩV n =
1

4π2

∫ ∞

0

dyy−3e−(m2
n+q2B2)y[cosh(qBmy) − 1 − (qBmy)2/2!]

+
qB

2π2

∫ ∞

0

dyy−2

∫ ∞

0

dwe−[(w+mn)2+q2B2]y (8)

[sinh(2qB(w + mn)y) − (2qB(w + mn)y) + (2qB(w + mn)y)3/3!]

It can be shown19 that the more significant term in (8) is the first one, which
for fields of order 1017 G leads to ΩV n ∼ 1030 erg·cm−3 and is negligible
small as compared with Ωsn up to B ∼ 1018 G. Thus, we neglect it in a first
approximation in what follows.

Having an equation relating the chemical potentials, and demanding
conservation of both baryonic number Nn + Np = NB and electric charge
Np + Ne = 0, in principle one may solve exactly the problem in terms of
the external field as a parameter. However, we shall focus our discussion on
the properties of the equation of state. (Our expressions for the spectra and
densities of neutrons and protons are similar to those of on neutron gas in a
magnetic field20, but we get different equations of state). In place of using
(7), to calculate the thermodynamical quantities in the degenerate ideal gas it
is simpler to calculate first the density Nn = (2π)−2

∫
dp3p⊥dp⊥θ(µn − En),

where θ(z) is the step function Fermi distribution, and En is Eq.(6). From
Nn we obtain Ω = −

∫
Nndµn. We have thus

Nn = N0

∑
η=1,−1

[
f3

3
+

ηy(1 + ηy)f)
2

− ηyx2

2
s

]
, (9)

where x = µn/mn, (mn(x − 1) is the usual Fermi energy), and y = qB/m.
We define the functions f ≡ f(x, ηy) =

√
x2 − (1 + ηy)2, s ≡ s(x, ηy) =

(π/2− sin−1(1+ ηy)/x), L ≡ L(x, ηy) = ln(x+ f(x, ηy))/(1+ ηy). For Ωn we
get

Ωn = −Ω0

∑
η=±1

[
xf3

12
+

(1 + ηy)(5ηy − 3)xf

24
+

(1 + ηy)3(3 − ηy)
24

L − ηyx3

6
s

]

(10)
while for the magnetization, given as Mn = −∂Ωn/∂B, we have
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Mn = −M0

∑
η=±1

η

[
(1 − 2ηy)xf

6
− (1 + ηy)2(1 − ηy/2)

3
L +

x3

6
s

]
,

where N0 = m3
n/4π2 ∼ 2.04 × 1039, Ω0 = N0mn ∼ 3.0 × 1036, and M0 =

N0q ∼ 2.92 × 1016, and one can write Mn = M+
n (η = −1) −M+

n (η = +1),
and obviously, Mn ≥ 0. In the limit B = 0 Eq.(9) and Eq.(10) reproduce
the usual density and thermodynamic potential of a relativistic Fermi gas at
zero temperature. We see that M is a nonlinear function of B and we have
the magnetic response as ferromagnetic (a fully ferromagnetic response would
require to include also the spin-spin coupling contribution.

If we include both the normal and the anomalous magnetic moment for
electrons, one can give a common formula for the spectrum of electrons and
protons in the external field B as18:

Ee,p =

√
p2
3 + (

√
2eBn + m2

e,p + ηqe,pB)2, (11)

where qe = αe/4πme, qp = 2.79Mn. For neutrons, the critical field at which
the coupling energy of its magnetic moment equals the rest energy is Bcn =
1.57×1020. For protons Bcp = 2.29×1020G, while for electrons, Bce = m2

e/e ∼
1013G is the usual QED critical field. It was shown in 1 that for fields of that
order and densities around 1030 cm−3 all electrons are in the Landau ground
state, and the system show the instability which arises from the vanishing of
the transverse pressure. For densities and magnetic fields above these critical
values, the stability of the electron gas is doubtful (see Ref. 19 and references
quoted therein).

For the proton gas, by defining xp = µp/mp, yp = qp/mp, b = 2e/m2
p,

then yp = 2.79e/2m2
p. We name also g ≡ g(xp, B, n) =

√
x2

p − h(B,n)2 and

h ≡ h(B,n) = (
√

bBn + 1 + ηypB). Thus for the proton thermodynamical
potential we get

Ωp = −
eBm2

p

4π2

∑
n

∑
±η

[
xpg − h2 ln(xp + g)/h

]
, (12)

and for its density: Np = eBmp

2π2

∑
n

∑
±η g(xp, B, n). The magnetization is

then given by

Mp =
em2

p

4π2

∑
n

∑
±η

{
xpg −

[
h2 + (ηyp + (bn/2

√
bBn + 1))

]
× ln (xp + g) /h

}
,
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where the coefficients of these formulae are N0 = empB/2π2 ∼ 4.06 × 1019B,
Ω0 = N0mpB ∼ 6.1 × 1016B, and M0 = N0mp = Ω0/B. The maximum
occupied Landau quantum number n may be given as nmax = (xp−ηypB)2−
1/bB.

For B � Bcp, so that ypB � 1, and xp ≥ 1, one can take approximately
nmax ∼ (x2

p − 1)/bB, and for fields large enough nmax = 0. As xp ∼ xn, the
proton density decreases with increasing B, favoring the inverse beta decay.
For fields B ∼ mp/qp and xp 	 1, nmax ≥ 1, and thus large Landau num-
bers are again occupied. However, for xn, xp ≥ 1 the dominant longitudinal
pressure, density and magnetization comes from the neutron gas.

6 Condition for zero transverse pressure and collapse

We observe at first that the limiting case: P⊥ = 0 can be figured out from
the spectrum described by Eq.(6), since the contribution from η = −1 terms is
dominant. Then, if one approximates the second term inside the square root as
[mn + (p2

⊥/2mn − qB)]2, the term in parenthesis accounts for the transverse
kinetic energy. This term decreases as B increases. By taking p⊥ ∼ pF ,
where pF is the Fermi momentum, and equating the parenthesis to zero, we
obtain a functional relation between µn and B leading to the vanishing of
the transverse kinetic energy density, (the spectrum behaving in that region
as that for unidimensional motion parallel to B, i.e, En 


√
p2
3 + m2

n), and
in consequence the transverse pressure vanishes. A more accurate result is
obtained, however, from the equation: T⊥ = 0.

In Figure 1 we have drawn the equation P⊥n = −Ω−BM = 0 in terms of
the variables Nn, Bcore. We observe that there is a continuous range of values
of Nn, and Bcore for which the collapse takes place. The transverse compres-
sion of the whole mass of the star, due to flux conservation, lead to an increase
of B and the mechanism of collapse is enhanced. In our previous calculations
we have not considered spin-spin coupling, which would lead to Heisenberg
ferromagnetism and would increase the magnetization to M′ = κM, where
κ is the internal field parameter. If κ >> 1 our previous estimate is largely
exceeded. As a rough approximation, we assume the exchange interaction J
of order of the repulsive forces among neutrons 11,12 as few hundreds of MeV,
and the number of nearest neighbors as z ∼ 10. By dividing their product
by the dipole interaction energy, one gets in the core κ 
 zJ/Nnq2

n ∼ 104,
which means a spontaneous magnetization B ∼ κM =1020G. This means our
previous calculations are a lower bound of the more realistic case, and the
vanishing of P⊥ is expected to occur safely at values of B smaller than those
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Figure 1. The instability condition: P⊥ = 0. A neutron star having a configuration such
that its dynamical stage would be represented by a point above the central curve in this
plot would be unstable to transversal collapse, since P⊥ ≤ 0 there.

depicted in Fig.1. As above-mentioned, values of B ∼ 1020 G would be needed
to keep self-consistently the field B throughout ρ condensation. For such fields
the magnetic coupling of quarks with B becomes of the order of their bind-
ing energy through the color field producing a deconfinement phase transition
leading to a quark (q)-star, a pressure-induced transition to uds-quark matter
via ud-quark condensates, as discussed in15,14.

7 Magnetar Formation and Stability

Next we briefly review the standard theory of magnetars and show why
they cannot survive after reaching the claimed extremely strong magnetic
fields (ESMF). We then present prospectives for a hybrid or strange star to
appear as a remnant of the quantum magnetic collapse of a NS. According to
Duncan and Thompson13, NSs with very high dipole magnetic field strength,
BD ∼ [1014 − 1015] G, may form when (classical) conditions for a helical dy-
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namo action are efficiently met during the seconds following the core-collapse
in a supernova (SN) explosion13. A newly-born NS may undergo vigorous
convection during the first 30 s following its formation21. If the NS spins
(differentially) sufficiently fast (P ∼ 1 ms) the conditions are created for
the α − Ω dynamo action to be built (which may survive depletion due to
turbulent diffusion). Collapse theory shows that some pre-supernova stellar
cores could endow enough spin so as to rotate near their Keplerian equato-
rial velocity, the break-up spin: ΩK ≥ ([23 ]3GNM/R3)1/2, after core bounce.
Under these conditions, fields as large as B ∼ 1017( P

1ms )G may be generated
as long as the differential rotation is dragged out by the growing magnetic
stresses23,13. For this process to efficiently operate the ratio between the spin
rate (P ) and the convection overturn time scale (τcon), the Rossby number
R0, should be ≤ 1 (R0 	 1 should induce less effective mean-dynamos13).
In this case an ordinary dipole Bsat ∼ [1012 − 1013]G may be built by inco-
herent superposition of small dipoles of characteristic size λ ∼ [13 − 1]km and
Bsat = (4πρ)1/2λ/τcon 
 1016G. At such fields, the huge rotational energy of
a f ≥ 1kHz NS is leaked out via magnetic braking, and an enormous energy
is injected into the SN remnant which may explain the power of a plerion.

As shown above, at the end of the SN core collapse we are left with a NS
with an ESMF strength and a huge matter density ρ ∼ [1014 − 1012] gcm−3.
As illustrated in Figure 1, those are the conditions for the quantum instability
to start to dominate the dynamics of the young neutron star pulsar. At this
stage, the magnetic pressure inwards may overpass the star’s energy density at
its equator and the collapse becomes unavoidable. As the collapse proceeds,
higher and higher densities are reached till the point the supranuclear density
may reverse the direction of implosion. A hybrid or strange star may form.
¿From that moment, the sound wave generated at the core bounce builds
itself into a shock wave travelling through the star at VSW ∼ c/

√
3 kms−1.

Although the ESMF strength could be quite large as the collapse advances, the
huge kinetic energy (E ∼ 1051 erg, the mean energy obtained in simulations
of SN driven by the prompt shock21) carried away by the shock wave may
counterbalance it, and even surpass it, i.e., its ram pressure will equal the
magnetic pressure:

ρejectV
2
SW ≥ B2

8πµ0

(
R

rA

)6

, (13)

at the Alfvén radius:
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rA =
(

2π2

Gµ2
0

)1/7 [
B4R12

Mṁ2

]1/7

, (14)

(see further details in22). Then the ESMF lines are pushed out, and finally
broken, from rA ∼ 80 km onwards, into the SN remnant surroundings as
a violent explosion that dissipates a large part of the magnetic flux (Φ ∼
B2r2

A) trapped inside the magnetar magnetosphere. This is analogous to the
mechanism operating during a solar flare or a coronal mass-ejection, where the
very high B in the ”Sun-Spot” is drastically diminished (see also Kluźniak and
Ruderman 199823). Although the process is quite fast, the large amount of
matter ejected from the star at such large velocities drains out the dipole field
of the remnant below the quantum electrodynamic limit of BQED ∼ 1013G.
Since all the differential rotation has been dragged up to build up the ESMF,
then nothing else remains to make it to grow to its pre-collapse value. Thus
no such ultra high B should reappear. We may be left with a sub-millisecond
strange star15 or a hybrid star14 with ”canonical” field strength.

8 Conclusions

We conclude by claiming that if a degenerate neutron gas is under the
action of a superstrong magnetic field B ≤ Bc, for values of the density
typical of NS, its transverse pressure vanishes, the outcome being a transverse
collapse. This phenomenon establishes a limit to the magnetic field expected
to be observable in a neutron star pulsar, as a function of its density, and
suggests a possible end in the evolution of highly magnetized neutron stars as a
mixed phase of nucleons and (π±, π0,K±,K0, K̄0, σ, ρ±, ω) meson condensate,
a strange star or a black cigar, but no any magnetar.

9 Acknowledgment

The authors thank J. Arponen, M. Chaichian, J. Ellis, A. Green, K.
Kajantie, C. Montonen, A.E. Shabad, and A. Zepeda for useful comments
and suggestions. The financial support of the Academy of Finland under the
project No. 163394 is greatly acknowledged.

International Workshop on Strong Magnetic Fields and Neutron Stars 110



References

1. M. Chaichian, S. Masood, C. Montonen, A. Pérez Mart́ınez, H. Pérez
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