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In this work, a few models of the Universe which include, in particular, dark ener-
gy are presented. In some of them, dark energy is considered to be only a slowly
rolling scalar field (quintessence), while in others, its presence is simulated through
a negative cosmological constant. The scalar field is minimally coupled to gravity
and does not interact with matter, so these models are to be used after decoupling
of radiation and matter. However, this ansatz, and a proper normalization, allow
to find new general classes of solutions for the cosmological equations. The inclu-
sion of the negative cosmological constant results in the possibility of the future
gravitational collapse of the universe; this inclusion solves the horizon problem
which prevents the consistent formulation of string theory.

1 Introduction

From 1998 on, several important discoveries in astrophysics gave rise to
the so called New Cosmology1,2. Based on observation, this branch of cosmolo-
gy states, among other aspects, a flat (with a critical density) and accelerating
Universe. Moreover, it states that the energy budget is, for dark energy, 2/3
and for matter, 1/3 (mostly dark matter).

The leading candidates to be identified with dark energy are the vacuum
energy, parameterized by a cosmological constant, quintessence, simulated by
a slowly rolling scalar field (the quintessence field), and a network of light and
frustrated topological defects.

The cosmological constant can be incorporated into the quintessence po-
tential as a constant which shifts the minimum of the potential, where the
quintessence field rolls towards. Conversely, the minimum of the potential
can itself also be regarded as a part of the cosmological constant. The most
common procedure for separating these ingredients is to incorporate the, —
probably nonzero —, minimum of the potential into the cosmological constant
and then set that minimum equal to zero. The cosmological constant can be
provided by assuming different modelings for the vacuum energy, such as the
vacuum energy of quantum fields, the potential energy of classical fields and
it may also even be associated to the intrinsic geometry of the Universe. So
far, there are no sufficient reasons to set the cosmological constant (or the
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minimum of the quintessence potential) equal to zero.
The main point of this work is to draw attention to the fact that, as shown

in Ref.3, the ultimate fate of the Universe is, in a rather general context, more
sensitive to the presence of the cosmological constant Λ field (the minimum
of the potential) than to any other matter content. We have proved this
assertion in some of the models we have work out in our research team in Las
Villas Central University, Cuba.

On the other hand, the conception of an eternally accelerating Universe
seems to be, because of the impossibility of formulating a corresponding S-
matrix, not completely consistent with the predictions of String Theory. In
a de Sitter space, the presence of an event horizon, corresponding to causally
disconnected regions of space, implies the absence of asymptotic particle states
which are needed to define transition amplitudes in order to build up the
components of the S matrix. The inclusion of a negative cosmological constant
in our models warrants that the present stage of accelerated expansion will be,
eventually, followed by a period of collapse into a final cosmological singularity
(AdS universe), thus eliminating this problem.

This contribution contains, basically, the main aspects related to our ap-
proach to this problem (for the details see Refs.4,5).

2 The Model

Our modelling is, in general grounds, a 3-component pie:

• Pressureless matter or dust (baryons and cold dark matter).

• Scalar field (quintessence with an exponential potential).

• A cosmological constant Λ.

The scalar field is minimally coupled and non-interacting with matter, so
the action is:

S =
∫

d4x
√−g{ c2

16πG
(R− 2Λ) + Lφ + Lm} (1)

where Λ is the cosmological constant, Lm is the Lagrangian for the matter
degrees of freedom and the Lagrangian for the quintessence field is given by

Lφ = −1
2
φ,nφ,n − V (φ) . (2)

This model cannot be used to simulate the very beginning of the Universe,
but only the period after decoupling of radiation and dust. Thus, we do not
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take into account here aspects as inflation, creation of matter, nucleosynthe-
sis, among others. In the theoretical treatment, we apply the technique of
adimensional variables (see Ref.4) which allows to determine the integration
constants without any additional assumption. We use the dimensionless time
variable τ = H0t, where t is the cosmological time and H0 is the present value
of the Hubble parameter. In this case, a(τ) = a(t)/a(0) is the scale factor.
Then we have that, at present (τ = 0)

a(0) = 1 ; ȧ(0) = 1 ; H(0) = 1 . (3)

We assume a homogeneous, flat and isotropic Universe. The field equa-
tions derivable from (1) are

(
ȧ

a

)2

=
2
9
σ2

{
ρm0
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+
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φ̇2 + V (φ) +
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σ2

}
(4)
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and

φ̈ + 3
ȧ

a
φ̇ + V ′(φ) = 0 (6)

where the mathematical symbol dot means derivative with respect to τ , while
the prime means derivative with respect to φ. Moreover, in these expressions

V (φ) = B2e−σφ (7)

σ2 =
12πG

c2
(8)

with ρm0 denoting, in the previous expression, the present density of matter
and B2 a generic constant. We stress that the particular choice of σ shown in
equation (8) allows for general exact integrations of the previous differential
equations. Indeed, this choice has been used in the context of an inflationary
theory6,7,8,9, and in the Rubano-Scudellaro model4,10. Applying the Noether
Symmetry Aproach6,7,11,12, it can be shown that, with new variables, defined
as

a3 = uv (9)

and

φ = − 1
σ

ln(
u

v
) (10)
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we can simplify the field equations and their formulations became similar to
the ones used in Ref.10. With these new variables, the field equations (4-6)
may be written as the following pair of equations (from now on we use, in our
formulation, the energy density ΩΛ instead of the cosmological constant Λ):

ü =
9ΩΛ

4
u (11)

and

v̈ =
9ΩΛ

4
v + σ2B2u . (12)

In the following, we analyze two cases.

Case I: Λ = 0 ⇒ ΩΛ = 0.

The solutions of the equations (11) and (12) are

u(τ) = u1τ + u2 (13)

and

v(τ) =
σ2B2

6
u1τ

3 +
σ2B2

2
u2τ

2 + v1τ + v2 . (14)

To find the integration constants we use Eqs. (3) and the field equations
evaluated at τ = 0, introducing the deceleration parameter of the Universe
q0. Finally, using Ωm0 + ΩQ0 + ΩΛ = 1, the above integration constants can
be written in the following way:

u
(±)
2 = ±

√
3

2

√
2(2− q0)− 3Ωm0

σ2B2
; (15)

v
(±)
2 =

1

u
(±)
2

; u
(±)
1 [±] =

3 + [±]
√

3
2

√
2(1 + q0)− 3Ωm0

2
u

(±)
2 ; (16)

and

v
(±)
1 [±] =

3− [±]
√

3
2

√
2(1 + q0)− 3Ωm0

2u
(±)
2

(17)

where q0 = −(1+Ḣ(0)) is the present value of the deceleration parameter and
(±) and [±] allow, in principle, for the four different branches of the solution.

International Workshop on Strong Magnetic Fields and Neutron Stars 290



Case II: Λ 6= 0 ⇒ ΩΛ 6= 0.

The solutions of the field equations (11) and (12) are, in this case,

u(τ) = u1 sin(1.5
√
−ΩΛτ) + u2 cos(1.5

√
−ΩΛτ) (18)

and

v(τ) =
{

v2 − σ2B̄2

9ΩΛ
u2 − σ2B̄2

3
√−ΩΛ

u1τ

}
cos(1.5

√
−ΩΛτ)

+
{

v1 − σ2B̄2

9ΩΛ
u1 +

σ2B̄2

3
√−ΩΛ

u2τ

}
sin(1.5

√
−ΩΛτ) (19)

where u1, u2, v1 and v2 are the integration constants. Applying the same
procedure of case I, the integration constants result in

u
(±)
2 = ±

√
3(2− q0 − 1.5Ωm0 − 3ΩΛ)

2σ2B̄2
; (20)

v
(±)
2 =

1 + σ2B̄2

9 ΩΛ
u2

2

u
(±)
2

; (21)

u
(±)
1 [±] =

{√3− [±]
√

1 + q0 − 1.5Ωm0}√−3 ΩΛ

u
(±)
2 , (22)

and

v
(±)
1 [±] =

2−√−ΩΛ v
(±)
2 u

(±)
1 [±]√−ΩΛ u

(±)
2

(23)

respectively; here the null subscripts indicate present values, and we recall
that Ωi are component densities (in units of the critical density; m stands for
matter, Q for the quintessence field and Λ for the cosmological constant).

3 Analysis of the Results

We see from the expressions for the integration constants that, in both
cases, our solutions have several branches. We have chosen here the “all-
pluses” branch, in which upper plus signs are preferred over lower minus
ones.
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Because
√

1 + q0 − 1.5Ωm0 must be real, the following constrain on the
present value of the deceleration parameter holds:

q0 ≥ −1 + 1.5Ωm0 . (24)

It can be noticed that the constants (and, consequently, the solutions) depend
on 4 parameters: Ωm0 , ΩΛ, q0 and B2. As can be seen from Eq. (8), σ2 is
fixed and equal to 3/2 in our units (8πG = c = 1). In this normalization, we
have considered the present value of the critical density of the Universe, ρc0 =
9H(0)2/2 σ2 = 3. We have chosen Ωm0 = 0.3 and q0 = −0.44, which values
are perfectly acceptable for most available models. Though we have made
calculations for several values of ΩΛ in the range −0.01 a −0.30, for simplicity
we present here results for ΩΛ = −0.15, bearing in mind that our predictions
change just a little for other values of this quantity. Concerning B2, it was
shown in analytical studies, that the relevant cosmological magnitudes we have
studied are independent of this quantity. That is the case of the scale factor,
the Hubble and deceleration parameters and the energy density, pressure and
the state parameter of the quintessence field. However, it can be easily shown
that B2 can be of the order of the critical density of the Universe. It can
also be shown a relation between this parameter and the present value of the
scalar field φ0:

φ0 = − 1
σ

ln
2− q0 − 1.5Ωm0 − 3ΩΛ

B̄2
. (25)

Above considerations lead us to choose for subsequent calculations B2 = 1,
which just means a determined rescaling in φ0. We postpone for further
investigations the question of whether we need finely tuned initial conditions
to get a determined value of φ0.

Now we mainly explore the dynamics of this model for case II, in which
we have a non vanishing cosmological constant, making the comparison with
case I (one should notice however, that the following plots correspond to a
non-zero Λ: case II).

Fig. 1 shows the evolution of the scale factor for ΩΛ = −0.15. For the
above values of the other parameters, we have obtained a collapsing Universe,
independently of the value of ΩΛ. We also see that with the decrease (modular
increase) of ΩΛ, the time of collapse diminishes. In case I, for which ΩΛ = 0,
just a look at the polynomial solutions (13) and (14), bearing in mind Eq.
(9), make us suspect that it occurs an eternal acceleration of the Universe,
which is not shown here for the sake of brevity. Fig. 2 shows the behavior of
the deceleration parameter as a function of the redshift z. In agreement with
Turner and Riess13 and other authors, this figure shows that the acceleration
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Figure 1. This plot of scale factor versus time shows a collapsing universe. Conversely, if
Λ = 0, the accelerated expansion is eternal

is a relatively recent phenomenon, with the transition from the decelerated
phase to the accelerated one occurring at redshift near 0.5. However, as
follows from Fig. 1, acceleration is not eternal: in the future we will have
q > 0 again, which would give rise to the collapse of the Universe. Fig.
3 shows the energy densities of matter and dark energy (quintessence field
plus cosmological constant, i.e., effective quintessence). In the literature it is
widely accepted that using an exponential potential leads to a dark energy
density which scales like matter, which implies a constant ratio of quintessence
to matter energy density, at least in the matter domination regime. But this
is a consequence of assuming the state parameter ω of dark energy almost
perfectly constant, which in our case is far from being true, as seen in Fig. 3.
We appreciate that matter dominates in a redshift interval by 0.4 to 1.6, which
is roughly consistent with the decelerated universe shown in Fig. 2. For higher
redshifts, dark energy dominates, but Fig. 4 (state parameter of effective
quintessence versus redshift) shows that in that epoch its state parameter is
positive. This points at a past epoch in the evolution when gravity of the dark
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Figure 2. The acceleration is a rather recent phenomenon, as can be seen in this graphic of
deceleration parameter versus redshift.

energy was attractive, which is consistent with the deceleration, and with the
increase of the deceleration parameter at higher redshifts (given the fact that
then both matter and dark energy have attractive gravity).

4 Conclusions

In a recent paper 3 it was pointed out that the ultimate fate of the evolu-
tion of our Universe is much more sensitive to the presence of the cosmological
constant than any other matter content. In particular, the universe with a
negative cosmological constant will always collapse eventually, even though
the cosmological constant may be nearly zero and undetectable at all at the
present time. Our results support the very general assertions of Ref.3, we have
shown that in our model, for a determined region of the parameter space, the
universe collapses if there is a non-vanishing cosmological constant, at differ-
ence of the eternal accelerated expansion for the case in which Λ = 0. This
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Figure 3. Matter energy density dominates in a redshift interval from 0.4 to 1.6 (roughly).

also favors the consistent formulation of string theory, as explained in the
introduction.

We continue working on this kind of models and pretend to check them
with several astrophysical observations, such as supernovae, CMB, structure
formation, etc. Some preliminary results are encouraging. It is also our
interest to check the stability of the solutions found, especially in the case in
which we have the cosmological constant, which implies a three component
system. This implies the realization of a phase-space analysis, instead of
the phase-plane for a two component system. Finally, it is our intention to
include radiation in these models to be able to explore the early Universe,
before decoupling of matter and radiation.
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