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Observatoire de la Côte d’Azur, Nice, France
pacheco@obs-nice.fr

In this work we review a few topics related to the determination of properties of
neutron stars: the modeling of the equation of state of nuclear matter (EoS) at
T = 0 and at finite T ; the role of vacuum corrections in the EoS at high density
and, finally, neutron stars as potential sources of gravitational waves. In the first
part of this contribution, we consider a relativistic model for nuclear matter and
neutron stars with a suitable parametrization of the nonlinear couplings involving
mesons and baryons. For appropriate choices of the parameters, the model recovers
current QHD models. We apply and test our framework on the description of static
properties of neutron stars and we show that, for other sets of parameters, our ap-
proach gives consistent new physical results. In the second part, nuclear matter at
finite T is studied in the framework of an effective many-body RFT and the Som-
merfeld approximation, considering moreover the fundamental baryon octet and
leptonic degrees of freedom, trapped neutrinos, chemical equilibrium and charge
neutrality of the star. Our predictions include the determination of the mass of
protoneutron stars, a description of structural aspects of the nuclear matter phase
transition via an analysis of the behavior of the specific heat and, — through the
inclusion of quark degrees of freedom —, of the properties of a hadron-quark phase
transition in hybrid stars. In the third part, on the basis of the modified relativis-
tic Hartree approximation, applied to the Walecka σ-ω model, and the relativistic
Hartree approximation, employed in the nonlinear Boguta-Bodmer model, the role
of vacuum corrections in nuclear matter is investigated. Mathematical constraints
between the parameters of these formulations show that, after including hyperon
and lepton degrees of freedom, electric charge neutrality and chemical equilibrium,
their predictions for global static properties of neutron star matter exhibit ex-
pressive differences. In the forth part of this contribution we review, on basis of
the planned sensitivity of present laser interferometers (VIRGO or LIGO I) and
those of the next generation (LIGO II), the potential detectability of gravitational
waves generated by oscillations excited during a phase transition from hadronic
matter to deconfined quark-gluon matter in the core of a neutron star considering
respectively a Boguta-Bodmer based model and the MIT bag model. We conclude
that the maximum distance probed by the detectors of the first generation is well
beyond M31, whereas the second generation detectors will probably see phase tran-
sition implications at distances two times larger, but certainly not yet attaining
the Virgo cluster.
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Introduction

In the last few decades, studies on the internal structure, composition, dy-
namics and evolution of protoneutron stars, neutron stars, pulsars, hybrid and
strange stars became central topics for theoretical and experimental research.
The first pulsar was observed1 in 1967 and characteristic observational fea-
tures allowed its identification as a rotating neutron star. Since then, nuclear
models have been more widely employed, than the past, in the description
of the holly graal of modern physics, the equation of state (EoS) of dense
matter. As under the pull of gravity the energy density in the core of these
compact stars is thought to strongly exceed the density of ordinary nuclear
matter, predictions on the structure of the stars depend sensitively on the EoS
provided by model calculations. Combined with the equations of the general
relativistic metric, predictions on the mass, radius, crust extent and moment
of inertia of the stars are then susceptible to the comparison to observation2.
The models should also provide the description of other relevant dynamical
properties of these compact stars as the rotational period, the emission of
neutrinos and gravitational waves and the phase transition of hadron matter
to a quark-gluon plasma. Presently, the best mass determination of neutron
stars corresponds to the binary pulsar PSR 1913+16, for which the mass is
M = 1.444M¯. Other estimates based on quasi-periodic oscillations, observed
in the X-ray emission of low mass binaries suggest values up to 2.0− 2.2M¯;
these results are however quite uncertain due to the modelling dependence on
the data analysis. More recently, from new radial velocity data, the mass of
the neutron star associated to the X-ray source in the system Vela X-1 was
recalculated3 with a larger accuracy than preceding estimates: the resulting
value is 1.86 ± 0.16M¯. For a given family of stars, a stiffer EoS predicts
higher limiting mass and larger radii (R > 10− 12 km).

From the theoretical point of view, quantum chromodynamics (QCD)
should in principle provide the most profound delineation of the complex
baryonic composition of neutron stars. However, as is well known, the strongly
nonlinear behavior of QCD at the hadronic energy scales inhibits any practical
calculation. This limitation has lead theorists to search for phenomenological
effective descriptions of the structure of nuclear matter at the high density
domain as, for instance, the approach developed by J.D. Walecka4, quantum
hadrodynamics (QHD). QHD is a relativistic quantum field theory based on a
local lagrangian density with the nucleon and the scalar-isoscalar, attractive,
σ-meson and the vector-isoscalar, repulsive, ω-meson as the relevant effective
mean-field degrees of freedom. This model provides a consistent theoretical
framework for the description of bulk static properties of strong interacting
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many-body nuclear systems under the extreme conditions of pressure and
density as the ones found in neutron stars. An alternative approach, the
nonlinear model of J. Boguta and A.R. Bodmer5 was developed to improve the
description of some of the static properties of nuclear matter, more precisely,
the nucleon effective mass, M∗, and the compression modulus of symmetric
nuclear matter, K. With cubic and quartic self-interaction scalar terms, the
model has two additional parameters which allow and provide sufficient flexi-
bility to reproduce, at saturation density, currently accepted values for the
compression modulus of symmetric nuclear matter and the nucleon effective
mass6,7,8.

In the following we review a few topics related to the determination of
properties of neutron stars: the modelling of the equation of state of nuclear
matter (EoS) at T = 0 and at finite temperature, in sections 1 and 2; the role
of vacuum corrections in the EoS at high density, in section 3, and, finally, in
section 4, neutron stars as potential sources of gravitational waves.

1 A Parameterized Class of Nonlinear Relativistic Models

We proposed recently6,7 a phenomenological lagrangian with nonlinear
meson-baryon couplingsa:

L = Lfree +
∑

B

ψ̄B

(
g?

λσBσ − g?
βωBγµωµ − 1

2
g?

γ%Bγµτ · %µ

)
ψB . (1)

This lagrangian density describes a system of eight baryons (B = p, n, Λ, Σ−,
Σ0, Σ+, Ξ−, Ξ0) coupled to three mesons (σ, ω, %) and two leptons (e, µ) (in
the present case we have assumed b = c = 0; for the details see Ref.7) with
new coupling constants:

g?
σλB ≡ m?

λBgσ ; g?
ωβB ≡ m?

βBgω ; g?
%γB = m?

γBg% ;

m?
nB ≡ (1 +

gσσ

nMB
)−n ; n = λ, β, γ . (2)

aW. Koepf et al.9 have studied the contribution of the scalar term LσN = Mm̄?(σ)ψ̄ψ
in the strong interacting lagrangian density. N.K. Glendenning et al.10 have analyzed
a coupling term of the type m̄? = (1 − (gσσ/2M))(1 + (gσσ/2M))−1 , obtaining, at
saturation density, for the nucleon effective mass, M∗/M = 0.796 and for the compression
modulus of nuclear matter, K = 265MeV . From the relation M∗/M ∼ 1 − (gσσ/M),
the experimental results suggest, at nuclear saturation density, M∗/M ∼ 0.70, giving
gσσ/M ∼ 0.3. Thus, these different models just add scalar self-coupling correction terms
to the minimum coupling expression of the Walecka model.
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(a) (b)

Model λ β γ
Walecka 0 0 0
ZM 1 0 0
ZM3 1 1 1

m̄?(σ) M∗/M K(MeV )

1− gσσ
M 0.55 545

1− tanh( gσ

M σ) 0.71 410
exp(− gσσ

M ) 0.80 265
(1 + gσσ

M )−1 0.85 233
Table 1. On the left ((a)) we show values of λ, β and γ for different QHD models (ZM and
ZM3 refer to the models of J. Zimanyi, S.A. Moszkowski11). On the right ((b)), values of the
nucleon effective mass and compression modulus of symmetric nuclear matter, at saturation
density, for different types of couplings between the scalar mesons and the nucleon fields
(see Ref.9) are shown.

We assume λ, β and γ as real and positive numbers (the range of best phe-
nomenology). Thus, this approach corresponds to a rescaling of standard
scalar, vector and isovector coupling terms; for instance,

gσσψ̄ψ → g?
σψ̄σψ =

gσσ(
1 + gσσ

λM

)λ
ψ̄ψ . (3)

Similar interaction terms may be associated to the vector and isovector
sectors of the lagrangian density. Table 1 exhibits on the left the cor-
respondence between this and other current models and on the right val-
ues for the nucleon effective mass (M∗) and compression modulus of sym-
metric nuclear matter (K) for different types of scalar meson-baryon cou-
plings. From the eigenvalues of the Dirac equation, the baryon Fermi en-
ergy is: µB(k) = g?

ωBω0 +g?
%B%03I3B +

√
k2

F,B +(MB−g?
σBσ)2. For instance, the

corresponding expressions for the scalar and vector potentials are, respec-
tively, S = −m∗

λgσσ and V = m∗
βgωω0 . We see from these results combined

with the definitions of the effective coupling constants that this model allows
the controlling on the intensity of the scalar, vector and isovector mean-field
potentials. Variations of the parameters permit to obtain values of S, V, M∗

and K which correspond to the intermediate regions of values of Walecka,
ZM3 and ZM models. Indeed, the range of possible values for the parameters
of the theory is not very large. Due to the form of the new couplings, there
occurs a rapid convergence to exponential forms: for λ and/or β = γ > 2 the
results of this model do not strongly differ from the results of the model with
exponential couplings

g?
σλB

λ→∞−→ e
− gσσ

MB gσ ; g?
ωβB

β→∞−→ e
− gσσ

MB gω ; g?
%γB

γ→∞−→ e
− gσσ

MB g% . (4)

In the following, we consider two cases: case S (scalar), with variations of λ
keeping β = γ = 0; it contains the results of the Walecka and ZM models (see
table 3); case S-V (scalar-vector), with variations of λ, keeping β = γ = λ;
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Model ( gσ

mσ
)2 ( gω

mω
)2 ( gρ

mρ
)2 M?/M K S V

ZM 7.94 2.84 5.23 0.85 224 -140 84
ZM3 19.57 13.45 9.06 0.71 159 -267 204

Table 2. Values of coupling constants, nucleon effective mass, compression modulus of nu-
clear matter and scalar and vector potentials at saturation density (ZM and ZM3 models)
(see Ref.6,7). (( gi

mi
)2 are given in fm2 and K, S, and V in MeV .)

λ log(εc) M? R? S z Y
A

NBT K M?

M
R

g/cm3 (M¯) (km) (MeV) (×1058) (MeV)

0 15.18 2.77 13.17 936 0.623 0.27 0.40 566 0.537 0.931
0.07 15.38 2.17 10.89 923 0.554 0.34 0.30 258 0.694 0.957
0.15 15.52 1.77 9.59 857 0.479 0.35 0.24 216 0.779 0.965
0.30 15.52 1.59 9.61 669 0.399 0.27 0.21 214 0.822 0.969
0.60 15.49 1.58 9.86 480 0.377 0.22 0.21 223 0.843 0.970
1.00 15.47 1.59 9.98 401 0.372 0.20 0.21 224 0.850 0.970
1.50 15.47 1.59 9.98 366 0.373 0.20 0.21 226 0.854 0.971
∞ 15.47 1.59 10.00 350 0.373 0.20 0.21 228 0.856 0.971

Table 3. Stellar properties for the S case: εc - central density;M? - star mass; R? - star
radius; S - scalar potential in the star center; z - redshift; Y/A is the hyperon/baryon ratio
and NBT is the total baryonic number. All this quantities are evaluated for the neutron
star with the maximum mass in the sequence. Moreover we show values for the compression
modulus K and the nucleon effective mass M?/M at saturation density and the relativistic
coefficient R (see Ref.6,7).

Walecka and ZM3 models belong to this category (see table 4). (Walecka
model belongs to both categories because in this model the λ, β and γ pa-
rameters are null.)

In the determination of the EoS for neutron stars, we take into ac-
count chemical equilibrium, baryon number and electric charge conservation.
Combining the resulting EoS with the Tolman-Oppenheimer-Volkoff (TOV)
equations12,13 we obtain values for static properties of neutron stars. Typical
results in our approach can be found in Figs. 1 and 2. In particular, the ZM
model predicts a maximum mass of approximately 1.6M¯. The ZM3 model is
very soft and predicts a very small maximum neutron star mass, ∼ 0.72M¯.
It may be surprising, at a first glance, that the maximum neutron star mass
for the Walecka model with hyperons (2.77M¯) exceeds the well known result
(2.6M¯) found in Ref.4 for stars just composed of neutrons, since the addi-
tion of hyperons produces the softening of the EoS, lowering the resulting star
mass. This apparent contradiction can be explained by the extreme sensibility
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λ log(εc) M? R? S z Y
A

NBT K M?

M
R

g/cm3 (M¯) (km) (MeV) (×1058) (MeV)

0 15.18 2.77 13.17 936 0.623 0.27 0.40 566 0.537 0.931
0.07 15.24 2.56 12.39 960 0.602 0.30 0.37 417 0.561 0.936
0.15 15.33 2.30 11.38 985 0.574 0.34 0.32 311 0.587 0.941
0.30 15.51 1.83 9.58 1011 0.516 0.39 0.25 218 0.630 0.949
0.60 15.62 1.07 8.08 891 0.282 0.35 0.14 169 0.682 0.955
1.00 15.31 0.72 9.76 577 0.128 0.10 0.09 159 0.710 0.959
1.50 15.18 0.67 10.21 468 0.113 0.04 0.08 156 0.728 0.961
∞ 15.14 0.66 10.31 431 0.110 0.03 0.08 155 0.738 0.961

Table 4. Stellar properties for the S-V case. Same correspondences as in table 3.
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Figure 1. On the left, neutron star mass as a function of the central density in Walecka
(solid line), ZM (dashed line) and ZM3 (dotted line) models. On the right, radial distri-
bution of the different leptonic and baryonic species in the ZM model.

of this kind of theory on the specific choice of the values of the binding energy
and saturation density. With our choice for these quantities, which is widely
used in the recent literature, we get for the mass of a star composed only by
neutrons the value of 3.05M¯, that is, a difference of almost a half solar mass!
Using a4 = 33.6 MeV , we obtain 2.33M¯ for the mass of a neutron star with
the inclusion of hyperons and leptons. In this way, extrapolation for neutron
star densities from the fitting of B and ρ0 at saturation needs more precision
on the choice of these quantities. Our results indicate the same saturation of
the electron chemical potential at ∼ 200 MeV for the ZM and Boguta-Bodmer
models with universal coupling. ZM3 model predicts, in the comparison to
the other models, higher values for the mean-field expectation value of the %
meson potential, −g%%03, due to the large value for the ratio g%/m% in this
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Figure 2. On the left panel: maximum mass of a neutron star sequence (universal coupling)
as a function of the λ parameter, for cases S (full line) and S-V (long dashed line). On
the right panel: dependence of the maximum neutron star mass of a sequence with the
compression modulus (left) and nucleon nonlinear mass at saturation (right). Solid line
corresponds to the S case and dashed line to the S − V case.

model. The known problem of negative effective mass manifests itself dra-
matically in our results for the Walecka model. The nucleon effective mass
is a dynamical quantity that expresses the screening of the baryon masses by
the scalar meson condensate. As we add more and more baryonic species we
open the possibility for the scalar potential |S| to become larger than the free
baryon masses MB (see Ref.6,7):

M?
B =


MB−

∑

B′ 6=B

g2
σ

m2
σ

M?
B′

π2

∫
k2dk√

k2+M?
B′

2


/


1 +

(
gσ

mσ

)21
π2

∫
k2dk√

k2 + M?
B

2


 . (5)

We cannot interpret the vanishing of the effective baryon mass as a signal of a
phase transition to a quark-gluon plasma because our lagrangian model does
not contain these underlying degrees of freedom. Additionally, at such high
densities and strong meson fields we have already reached the critical density
where the production of virtual baryon-antibaryon pairs is favored. In fact,
this behavior of the effective baryon mass may indicate that the mean field
approximation is being pushed to its limits of applicability. Finally, our results
indicate that Walecka’s baryonic distribution stabilizes after ρ ∼ 1.0fm−3 and
all species appear up till ρ ∼ 0.7fm−3 which is approximately the density
for which |S| exceeds MB . The lepton populations never vanish in the ZM
distribution and even at ρ ∼ 1.2fm−3 baryonic species are still emerging.
Essentially, these differences are due to the strength of the scalar potential in
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these two models, since a particle is created only when the condition

qBµn − qe,Bµe ≥ g?
ωBω0 + g?

ρB%03I3B + (MB − g?
σBσ)

is satisfied.
Having considered nuclear matter at T = 0 in the following we review

a recently developed treatment for nuclear matter at finite T and apply our
modeling in the study of the protoneutron star.

2 Finite Temperature Effective Field Theory for Protoneutron
Stars

In the investigation of properties of nuclear matter at finite T, we consider
a model containing the fundamental baryon octet, lepton degrees of freedom
and trapped neutrinos, σ-, ω- and %-meson fields, chemical equilibrium and
charge neutrality14,15. Moreover, we exceed the limit of hadron degrees of
freedom by including quarks in order to study the phase transition to quark
matter14,15. We focus on a particular process in the evolution of compact
stars preceding the supernova explosion: the formation of a hot and dense
collapsed core or a protoneutron star16, which can reach temperatures as high
as few tens of MeV and which are formed in a type-II supernova explosion,
which then evolves to a cold neutron star, basically through neutrino emission.
Because of its very dense and hot core, the star is able to trap neutrinos,
imparting momentum to the outer layers and then cooling as it reaches a
quasi-equilibrium state. The evolution of protoneutron stars is studied using
the Sommerfeld approximation. Global static properties as masses and radii
are then computed as functions of central density and temperature15.

The lagrangian density of our approach in the hadron sector is based on
equation (1) with b, c 6= 0. The scalar and vector coupling constants in the
theory, gσ and gω, and the coefficients b and c for the nonlinear σ self-couplings
are determined to reproduce, at saturation density, ρ0 = 0.153fm−3, the bind-
ing energy, B = −16.3MeV , the compression modulus, K = 240MeV , of sym-
metric nuclear matter, and the nucleon effective mass, M? = 732MeV . Addi-
tionally, the isovector coupling constant g% is determined from the asymmetry
energy coefficient, a4 = 32.5MeV , in nuclear matter. The hyperon/nucleon
coupling constant ratios χi = gHi/gi, with i = σ, ω, are constrained through
the binding energy of the Λ-hyperon in nuclear matter, from hypernuclear
spectroscopy and the lower bound of the mass of a neutron star. Neutrinos
are included in our formulation, at chemical equilibrium, via the lepton frac-
tion ratio YL = (ρe + ρν)/ρB , where ρe, ρν and ρB represent, respectively, the
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electron, neutrino and baryon densities. We extract the lepton fraction YL

from the study of the gravitational collapse of the core of these stars.
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Figure 3. On the left panel: protoneutron star maximum mass as a function of temperature
for Yl = 0.4 (solid line) and YL = 0 (dotted line). On the right panel: specific heat as a
function of baryon density for T=10MeV.

The temperature dependence of the star mass is shown in Fig. 3 on the
left panel and represented qualitatively by

M ≈ MT=0

(
1 +

π2κ2T 2

ε2F

)
(6)

where εF and κ denote the Fermi energy and Boltzmann constant, respec-
tively. As a novel feature, we find an absolute limiting value for the pro-
toneutron star mass, followed by a subsequent decrease of its mass with the
increase of temperature (for the details see Ref.15). A liquid-gas phase tran-
sition is predicted in various relativistic nuclear models such as Walecka’s
QHD-I, Boguta-Bodmer and others when symmetric nuclear matter or pure
neutron matter are considered. However, for asymmetric nuclear matter with
the inclusion of the % meson, this phase transition disappears. In this case,
the energy used to generate the liquid-gas phase transition is now used in
hyperon production processes, resulting in a phase transition of asymmetric
nuclear matter into hyperon matter. As a signal of this phase transition, dis-
continuities on the specific heat can be found as a function of temperature.
This phase transition is similar to the corresponding one which appears in
the super-conductivity phenomena of electronic systems with the formation
of Cooper pairs, where discontinuities are also found instead of singularities,
as in a Van der Waals liquid-gas phase transition, characterizing the former
as a continuous phase transition as shown in Fig. 3, on the right panel.
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Additionally, in order to describe the quark matter EoS and the hadron-
quark phase transition, we make use of the MIT bag model17. (for more
details see Ref.15); the phase transition is determined via the Gibbs criteria18

which require that, at constant temperature, pressure and chemical potential
of both, hadron and quark phases are related for a given conserved overall
baryon number. In Fig.4 on the left panel, the plateau reflects the Gibbs
condition of the phase transition. The inclusion of quarks has a significant
impact on the maximum mass of a neutron star; hybrid stars may develop a
QGP core, which may extend several kilometers lowering its maximum mass
due to the stiffening of the EoS. At even higher central densities we can find
other classes of stars, for instance strange and quark stars, which are basically
formed by deconfined quark matter with a thin (1 km) crust of nuclear matter.
Finally, the results of Fig. 4, on the right panel, show that the Sommerfeld
approximation is sufficient.

As the next topic of our study, we consider the role of self-couplings of the
σ scalar meson in a QHD effective modelling of nuclear matter and neutron
star matter.
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Figure 4. On the left panel: equation of state for the hadron-quark phase transition for
a bag constant B = 100MeV/fm3(solid line), B = 131.2MeV/fm3 (dotted line) and
B = 150MeV/fm3 (dashed line). On the right panel: EoS corresponding to the Walecka
model for T = 50 MeV and 10 MeV (upper and lower curves, respectively). Solid lines:
exact results; dashed and dotted lines: first and second order corrections of the Sommerfeld
approximation.

3 The Role of Self-Couplings of Scalar Mesons in Neutron Star
Matter

Applying non-perturbative expansions to many-body systems, as for in-

International Workshop on Strong Magnetic Fields and Neutron Stars 220



stance the relativistic Hartree approximation19, the simplest contributions to
the baryon propagator are second-order tadpole diagrams. Feynman rules
allow to express the second-order corrections to the baryon propagator in
terms of second-order self-energy terms associated to scalar and vector meson
fields. Self-consistency may be achieved by making use of interacting baryon
and meson propagators in the nuclear medium to determine the scalar and
vector self-energies. Dyson equation for the baryon propagator can be for-
mally solved and the resulting expression is the sum of two terms: a divergent
contribution which involves the propagation of virtual positive- and negative-
energy quasi-nucleons, and a term which allows for quasi-nucleon holes inside
the Fermi sea, which represents a correction to the former for the Pauli ex-
clusion principle. Divergences then arise from a sum over all occupied states
in the negative-energy sea of quasi-baryons. Walecka’s mean field results for
the energy density can then be achieved by dropping all divergent contri-
butions from anti-baryons in the full interacting baryon propagator which
renders the integrals for the scalar and vector self-energies finite. To have a
hint on the role of vacuum corrections in neutron star matter, In the follow-
ing we consider the relativistic Hartree approximation (RHA), applied to the
Boguta-Bodmer model and the modified relativistic Hartree approximation
applied to the Walecka model.

In the RHA, the divergent integrals over the occupied negative-energy
states may be rendered finite by including appropriate scalar counterterms in
the lagrangian density

L = a1σ +
1
2!

a2σ
2 +

1
3!

σ3 +
1
4!

σ4 (7)

(in this approach, only the scalar sector gives divergent contributions) and by
defining a convenient set of renormalization conditions. Thus, in the RHA
applied to the Walecka model, the resulting energy density E [W ]

RHA
is the sum

of the mean-field contribution, E [W ]

MF A
, and the one-loop vacuum correction,

∆E [W ]

RHA
, caused by a shift in the single-particle nucleon spectra due to scalar

meson self-interactions: E [W ]

RHA
= E [W ]

MF A
+ ∆E [W ]

RHA
, with

∆E [W ]

RHA
= −γ

∫

Dirac Sea

d3k

(2π)3
√

k2 + M?2 (8)

= − 1
4π2

[
M∗ 4ln

M∗

M
+M3 (gσσ)− 7

2
M2 (gσσ)2+

13
3

M (gσσ)3− 25
12

(gσσ)4
]

.

Applying the RHA to the Boguta-Bodmer model it follows: E [BB]

RHA
=
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µ
M ( gσ

mσ
)2 ( gω

mω
)2 ( g%

m%
)2 K(MeV ) M∗

M

0.50 10.098 2.131 5.314 135.13 0.874
0.70 11.563 4.921 4.945 153.59 0.781
0.90 11.805 8.090 4.418 578.97 0.674
1.00 10.019 6.464 4.706 457.25 0.729
1.10 9.025 5.073 4.923 350.60 0.776
1.30 8.193 3.326 5.165 239.24 0.834

Table 5. Coupling constants, compression modulus of symmetric nuclear matter (K) and
effective nucleon mass ratio (M∗/M), at saturation density, from the Walecka-MRHA model
for different ratios µ/M .

µ
M ( gσ

mσ
)2 ( gω

mω
)2 ( g%

m%
)2 b× 100 c× 100 K(MeV ) M∗

M

0.50 10.117 2.131 5.314 5.8942 −7.1348 135.13 0.874
0.70 11.557 4.921 4.945 1.7229 −3.6160 153.59 0.781
0.90 11.794 8.090 4.418 0.1626 −1.0692 578.97 0.674
1.00 10.015 6.464 4.706 0.0010 −0.0045 457.25 0.729
1.10 9.024 5.073 4.923 0.1456 0.9551 350.60 0.776
1.30 8.198 3.326 5.165 1.1540 2.6188 239.24 0.834

Table 6. Coupling constants, compression modulus of nuclear matter (K) and the effective
nucleon mass ratio (M∗/M) from the Boguta-Bodmer-RHA model for different ratios µ/M .

E [W ]

MF A
+ U(σ) + ∆E [W ]

RHA
+ ∆E [BB]

RHA
. In this expression

∆E [BB]

RHA
=

m4
σ

(8π)2

[
(1+φ12)

2 log (1+φ12)−φ12−
3
2
φ2

12
− 1

3
φ2

1
(φ1 +3φ2)+

1
12

φ4
1

]
(9)

which denotes the RHA vacuum corrections due to the scalar meson self-
coupling terms; in this expression: φ12 ≡ φ1 + φ2 ; φ1 = (2bM2g2

σχ)/m2
σ ;

φ2 = (3cM2g2
σχ2)/m2

σ ; χ = gσσ/M ; U(σ) = 1
3!

bM(gσσ)3 + 1
4!

c(gσσ)4 .

The renormalization procedure outlined before requires implicitly an ar-
bitrary scale, µ. Using the on-shell renormalization scheme, with the choice
µ = M , one is left with the results19 obtained by S.A. Chin. In the minimal
subtraction renormalization scheme, µ can be optimized as a free parame-
ter, leading to the MRHA20,21. In this approach the energy density for the
Walecka model becomes E [W ]

MRHA
= E [W ]

MF A
+ ∆E [W ]

RHA
+ ∆E [W ]

MRHA
with

∆E [W ]

MRHA
=

M

π2

(
1− µ

M
+ ln

µ

M

)
(gσσ)3 +

1
4π2

ln
µ

M
(gσσ)4 . (10)

Our motivation is to find analytical relations between the b and c parameters
of the Boguta-Bodmer-RHA and the Walecka-MRHA models for vacuum cor-
rections in nuclear matter. Equating the expressions for the energy density
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Figure 5. On the left panel: the relation between the parameters b and c. On the right
panel: compression modulus (K) of symmetric nuclear matter as a function of effective
mass (M∗/M). Solid line refers to points in table (6); dotted line refers to the left relation
on (11); dashed line refers to the parabolic relation on (11).

at saturation density, we have found8, for a given value of µ

b = − 3
π2

(1− eπ2c + π2c) or, since c << 1, we have b ∼ 3π2

2
c2 . (11)

Some of our results can be found in tables 5 and 6. Our study indicates
that these two approaches render similar expressions for the EoS of nuclear
matter up to the fifth order in the scalar meson field self-interaction terms.
We find the two models yield, at lower densities, similar results for the bulk
static properties of nuclear matter. However, at increasing baryon density,
the predictions of the models start to deviate significantly from each other,
as for instance in the predictions for the maximum mass of a neutron star or
in the role of hyperon degrees of freedom in dense matter. The results also
indicate that, with increasing density, scalar meson self-couplings beyond the
fourth order seem to play a significant role.

As the final topic of this overview, we consider in the following neutron
stars as potential sources of gravitational waves (GWs).

4 GW Emission from Phase Transitions in Neutron Stars

The first generation of large gravitational interferometric detectors as the
French-Italian VIRGO and the American LIGO, should be fully operational
within one or two years. The best signal-to-noise (S/N) ratio that can be
achieved from these detectors implies the use of matched-filter techniques, that
require a priori the knowledge of the signal waveform. Thus, the identification
of possible sources for gravitational waves having a well defined signal is a
relevant problem in the detection strategy.
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Neutron stars are certainly one of the most popular potential sources
of gravitational waves (GWs), since they can emit by different mechanisms.
Here we concentrate our discussion to non-radial oscillations, a mechanism
which was discussed in the late sixties22. One of the difficulties with this
mechanism concerns the energy source necessary to excite the oscillations.
The elastic energy stored in the crust and released by tectonic activity was
recently considered23, but the maximum available energy is likely to be of
the order of 1044−45 erg. Thus, even if all this energy would be converted
into non-radial modes, the maximum distance that a signal could be seen by
a laser interferometer like VIRGO is only about 3.0 kpc23. This prediction
depends, of course, on the adopted EoS, which fixes the mode frequencies and
damping time-scales. A considerable amount of energy would be available if
the neutron star undergoes a phase transition in the core. For instance, if
quark deconfinement occurs, then the star will suffer a micro-collapse, since
the EoS of quark matter is softer than that of hadronic matter and the new
equilibrium configuration will be more compact, having a larger binding en-
ergy. The energy difference, reduced by the energy absorption of the phase
transition, is partially used to excite mechanical modes, which have energy
dissipated by different channels. The structural rearrangement suffered by a
“cold” star occurs on a dynamical timescale of the order of milliseconds24,
which is much shorter than the gradual transition expected to occur in hot
protoneutron stars25. Radial modes excited by the micro-collapse do not ra-
diate GWs, but an important coupling with rotation exists26 and, if the star
rotates, the oscillations will be damped not only by dissipation of the mecha-
nical energy into heat but also by the emission of GWs.

In a recent work27, the detectability of GWs generated by oscillations
excited during a phase transition in the core of a neutron star is reviewed.
Neutron star properties were computed using a description of the hadronic
matter based on the work of J. Boguta and A.R. Bodmer5, including the fun-
damental baryon octet, the isovector meson % and lepton degrees of freedom
(see Ref.27 for details). Hybrid models, including a quark-gluon core, with the
same baryonic number as the pure hadron configuration were also computed
using the MIT bag model. The maximum energy available to excite mecha-
nical oscillations in the star or to be converted into heat was estimated as
the energy difference of both configurations, with and without a quark-gluon
core. Then, using the planned sensitivity of present laser interferometers like
VIRGO (or LIGO I) and those of the next generation (LIGO II), the maxi-
mum volume of space that can be probed by these experiments was calculated,
as an indication for the potential detectability of these sources of GWs.

Inspection on Table 7, where we show some of the results of our
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ν0 Pcrit τgw Q Dmax Dmax

(kHz) (ms) (ms) - (V IRGO) (LIGOII)

1.62 1.64 87.0 442 4.9 10.2
1.83 1.25 27.0 155 6.4 13.5
2.06 1.13 17.0 110 6.0 12.8
2.32 1.06 11.5 84 5.1 11.1
2.72 1.00 8.4 72 3.6 5.7

Table 7. Oscillation parameters: the damping timescale τgw is given for the critical period;
maximum distances for VIRGO (V) and LIGO II (L) are in Mpc.

calculations27, indicates that the maximum distance probed by detectors of
first generation (VIRGO, LIGO I) is about 6.4 Mpc, well beyond M31, whereas
the second generation (LIGO II) will probably see phase transition events at
distances two times larger, but certainly not yet attaining the Virgo cluster.
The small probed volume and the rapid rotation required for this mechanism
to be efficient result in a low event rate, imposing severe limitations on the
detectability of such a signal27.

Concluding Remarks

The topics we have considered in this overview represent just first at-
tempts towards a more profound comprehension on the physical properties of
neutron stars. Our main findings are substantiated by a few phenomenological
results. However, more involved calculations based on improved microscopic
models are needed to strengthen our present knowledge on these topics, which
should include, as an example, in the spirit of the Brown-Rho scaling, a den-
sity dependence of the coupling constants in the models, rotation and the
presence of strong magnetic fields28. Investigations along these and other
lines are presently in progress.
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