





# Diffractive Higgs boson photoproduction in Ultraperipheral Collisions

#### Gustavo Gil da Silveira

gustavo.silveira@ufrgs.br



Defense of dissertation to fulfill the requeriments for the degree of *Doctor in Science* at the Physics Institute, Universidade Federal do Rio Grande do Sul

> Supervisor: Prof. Maria Beatriz Gay Ducati High Energy Physics Phenomenology Group

Gustavo Gil da Silveira

Dissertation defense — 12/jul/2011

#### Outline

- Motivation
- Electroweak theory and the Higgs search
- Particle Diffraction
- Photoproduction mechanism of the Higgs boson
  - Production mechanisms review
  - γp subprocess
  - Phenomenology inside
  - Results for the Tevatron and the LHC
- Application to Ultraperipheral Collisions
  - Results for pp and pA collisions
- Diffractive factorization
  - Single Diffractive production
  - Double Pomeron Exchange
- The scenario for the exclusive Higgs production
- Conclusions

Phys. Rev. D78 (2008) 113005

Phys. Rev. D82 (2010) 073004

Phys. Rev. D83 (2011) 074005 Submitted to Phys. Rev. D

#### Motivation

- The Higgs boson is the ultimate particle to be detected for the consolidation of the Standard Model;
- LHC is expected to discover the Higgs boson in the beginning of its operation;
  - The low luminosity regime is favorable to the diffractive production;
  - The estimation for the S/B ratio is higher than the direct production.
    - The J<sub>z</sub> = 0 spin selecting rule allows the suppression of many background signals.
- Diffractive processes have very clear experimental signatures;
  - ▶ The Double Pomeron Exchange allows the Higgs boson production by the ggH vertex in the mass range of  $M_H \sim 115 160$  GeV;
- Some of the hadron-hadron collisions will <u>not</u> experience strong interactions;
  - Ultraperipheral collisions: due to the long separation of the colliding particles, only electromagnetic interactions will take place.
- This dissertation is devoted to explore a new production mechanism for the Higgs boson in the LHC kinematical regime.

### Outline

- Motivation
- Electroweak theory and the Higgs search
- Particle Diffraction
- Photoproduction mechanism of the Higgs boson
  - Production mechanisms review
  - γp subprocess
  - Phenomenology inside
  - Results for the Tevatron and the LHC
- Application to Ultraperipheral Collisions
  - Results for pp and pA collisions
- Diffractive factorization
  - Single Diffractive production
  - Double Pomeron Exchange
- The scenario for the exclusive Higgs production
- Conclusions

Gustavo Gil da Silveira

Phys. Rev. D78 (2008) 113005

Phys. Rev. D82 (2010) 073004

Phys. Rev. D83 (2011) 074005 Submitted to Phys. Rev. D

#### Weak interactions

First proposal: Relativistic theory by Fermi for the neutron decaying

$$\mathcal{H}=\mathcal{H}^0+rac{G}{\sqrt{2}}\int d^3x \; J^{(L)\dagger}_\mu(x) J^\mu_{(L)}(x)$$

 $J^{(L)}_{\mu} = \sum \bar{u}_L(x)\gamma_{\mu}(1-\gamma_5)u_{\nu_L}(x)$ 

- **Problem #1**: Cross section for the  $\nu \ell$  processes grows with energy;
  - Calculation in higher orders in perturbation theory are necessary.



- QED: vacuum polarization diagrams yields divergencies:
  - It is fundamental to consider a Quantum Field Theory for the description of the interaction by the exchange virtual massless particle.
- **Problem #2**: The Weak Interaction demands a massive mediator particle:

#### non-renormalizable theory

#### Spontaneous symmetry breaking

The Higgs field is defined as

$$\varphi(x) = \frac{1}{\sqrt{2}} \left[ \varphi_1(x) + \imath \varphi_2(x) \right] \qquad \qquad \varphi^*(x) = \frac{1}{\sqrt{2}} \left[ \varphi_1(x) - \imath \varphi_2(x) \right]$$

which obeys the Lagrangian invariant to the SO(2) symmetry group

$$\mathcal{L}_{H} = (\partial^{\mu}\varphi)^{*} \left(\partial_{\mu}\varphi\right) - \left(\mu^{2}|\varphi|^{2} + \frac{\lambda}{3!}|\varphi|^{4}\right)$$

Essential feature: local symmetry transformation

$$\tilde{\varphi}(x) = T(x)\varphi(x) = e^{ig\theta(x)}\varphi(x)$$

 The Lagrangian that satisfies this feature and is invariant to SU(2) is given by

$$\mathcal{L}_{H}=-rac{1}{4}\mathcal{F}^{\mu
u}\mathcal{F}_{\mu
u}+(D^{\mu}arphi)^{*}\left(D_{\mu}arphi
ight)-\mu^{2}|arphi|^{2}-rac{\lambda}{3!}|arphi|^{4}$$

where  $F^{\mu\nu} = \partial^{\nu} a^{\mu}(x) - \partial^{\mu} a^{\nu}(x)$  and  $D^{\mu} = \partial^{\mu} + \imath g a^{\mu}(x)$ .

Gustavo Gil da Silveira

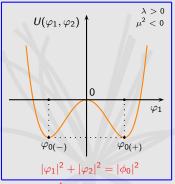
 مر ا

#### Dissertation defense — 12/jul/2011

#### Spontaneous symmetry breaking

The Higgs field is defined as

$$\varphi(x) = \frac{1}{\sqrt{2}} \left[ \varphi_1(x) + \imath \varphi_2(x) \right] \qquad \qquad \varphi^*(x) = \frac{1}{\sqrt{2}} \left[ \varphi_1(x) - \imath \varphi_2(x) \right]$$


which obeys the Lagrangian invariant to the SO(2) symmetry group

$$\mathcal{L}_{H} = (\partial^{\mu}\varphi)^{*} \left(\partial_{\mu}\varphi\right) - \left(\mu^{2}|\varphi|^{2} + \frac{\lambda}{3!}|\varphi|^{4}\right)$$

Essential feature: local symmetry transformation

$$\tilde{\varphi}(x) = T(x)\varphi(x) = e^{ig\theta(x)}\varphi(x)$$

 The Lagrangian that satisfies this feature and is invariant to SU(2) is given by



$$\mathcal{L}_{H}=-rac{1}{4}F^{\mu
u}F_{\mu
u}+(D^{\mu}arphi)^{*}\left(D_{\mu}arphi
ight)-\mu^{2}|arphi|^{2}-rac{\lambda}{3!}|arphi|^{4}$$

where  $F^{\mu\nu} = \partial^{\nu} a^{\mu}(x) - \partial^{\mu} a^{\nu}(x)$  and  $D^{\mu} = \partial^{\mu} + \imath g a^{\mu}(x)$ .

### Higgs mechanism

Selecting a vacuum state, the Lagrangian is changed through  $\varphi_1' = \varphi_1 - \phi_0$ ;

Performing the following transformations

$$\varphi(x) = \frac{1}{\sqrt{2}} \left[ \rho(x) + a \right] \exp[ig\omega(x)/a]$$
$$a_{\mu}(x) = C_{\mu} - \frac{1}{a} \partial_{\mu} \omega(x)$$

one finds

$$\begin{aligned} \mathcal{L}_{H} &= -\frac{1}{4} C^{\mu\nu} C_{\mu\nu} + \frac{1}{2} m_{C}^{2} C^{\mu} C_{\mu} \\ &- \frac{1}{2} \left( \partial^{\mu} \rho \right)^{*} \left( \partial_{\mu} \rho \right) + \frac{1}{2} m_{\rho}^{2} |\rho|^{2} - \frac{\lambda}{4!} |\rho|^{4} - \frac{\lambda \phi_{0}}{3!} + \frac{g^{2}}{2} C^{\mu} C_{\mu} \left( |\rho|^{2} + 2|\rho| |\phi_{0}| \right) \end{aligned}$$

- The spurious field  $\omega(x)$  is subtracted  $\rightarrow$  **Goldstone boson**;
- ► The other fields acquire mass:  $C_{\mu}$ :  $m_C = g |\phi_0| \rightarrow gauge boson$  $\rho: m_{\rho} = \sqrt{-2\mu^2} \rightarrow Higgs boson$

#### renormalizable theory with a massive propagator

#### Electroweak theory

▶ 60-70's: Unification of QED + Weak Interactions

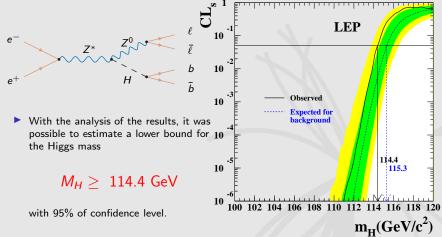
Symmetry group  $SU(2)_L \otimes U(1)_Y$ 

The Electroweak Lagrangian for leptons has the form

$$\mathcal{L}_{EW} = -\frac{1}{4} B^{\mu\nu}_{a} B^{a}_{\mu\nu} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \mu^{2} \varphi^{\dagger} \varphi - \frac{\lambda}{3!} \left( \varphi^{\dagger} \varphi \right)^{2} + \left( D_{\mu} \varphi \right)^{\dagger} \left( D^{\mu} \varphi \right)$$
$$+ \sum_{\ell} \left[ \bar{L}_{\ell} \left( i \gamma^{\mu} D_{\mu} \right) L_{\ell} + \bar{R}_{\ell} \left( i \gamma^{\mu} D_{\mu} \right) R_{\ell} - G_{\ell} \left( \bar{L}_{\ell} \varphi R_{\ell} + \bar{R}_{\ell} \varphi^{\dagger} L_{\ell} \right) \right]$$

\* # 9 9 8

The Higgs mechanism allows one to obtain the mass of the physical fields;


$$\begin{array}{ll} m_e \sim |\phi_0| \ G_e \\ m_\mu \sim |\phi_0| \ G_\mu \\ m_\tau \sim |\phi_0| \ G_\tau \end{array} \qquad \begin{array}{ll} M_Z = 90 \ \text{GeV} \\ M_W = 80 \ \text{GeV} \end{array} \qquad \begin{array}{ll} M_H = \sqrt{-2\mu^2} \end{array}$$

1983: CERN detects the massive electroweak bosons

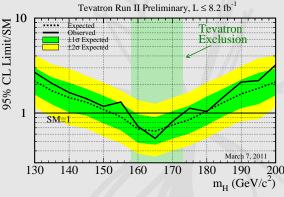
$$M_W = 80.5 \pm 0.5 \text{ GeV}$$
  $M_Z = 95.6 \pm 1.4 \text{ GeV}$ 

#### LEP results

- Final step: detect the Higgs boson!
- The Higgs boson production was investigated with the LEP data for the production mechanism

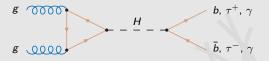


#### New analysis from the Tevatron

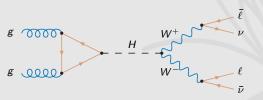

The analyses of the data from the CDF and D0 experiments excluded the possibility for the Higgs boson detection in the range

#### 158 GeV $< M_H < 173$ GeV

with 95% of confidence level;


An estimative for the Higgs mass can be obtained with the study of EW processes

$$M_{H} = 120 {}^{+12}_{-5} {
m GeV}$$




#### Searches in the LHC

- Different production mechanisms can be studied in the LHC kinematical regime;
- Most expected: gluon fusion production + lepton decay channel
  - $M_H < 135$  GeV: Gluon fusion with decay into a  $b\bar{b}$  pair



•  $M_H > 135$  GeV: Gluon fusion with decay into a  $W^+W^-$  pair



The LHC detectors have different acceptances for the decay channels, leading to different analysis.

### Outline

- Motivation
- Electroweak theory and Higgs search

#### Particle Diffraction

- Photoproduction mechanism of the Higgs boson
  - Production mechanisms review
  - γp subprocess
  - Phenomenology inside
  - Results for the Tevatron and the LHC
- Application to Ultraperipheral Collisions
  - Results for pp and pA collisions
- Diffractive factorization
  - Single Diffractive production
  - Double Pomeron Exchange
- The scenario for the exclusive Higgs production
- Conclusions

Gustavo Gil da Silveira

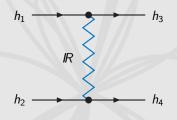
Phys. Rev. D78 (2008) 113005

Phys. Rev. D82 (2010) 073004

Phys. Rev. D83 (2011) 074005 Submitted to Phys. Rev. D

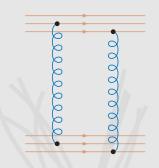
### Regge theory

- 50's: First phenomenological approach to study the hadronic collisions in high energies (before QCD);
- This theory predicted the interactions in the *t*-channel as the exchange of a family of ressonances → Reggeon


$$\alpha(t) = \alpha(0) + \alpha' t$$

The cross section for hadron-hadron scattering with the exchange of a reggeized particle is given by

$$\sigma_{tot} \sim s^{lpha(0)-1}$$


▶ **1960**: the behavior of the hadronic cross section is constant for  $\sqrt{s} = 10-20$  GeV;

- **Pomeron**: particle with intercept  $\alpha(0) \approx 1$ ;
  - Little grow for  $\sqrt{s} \sim 2$  TeV;
  - Current data show that  $\alpha(0) = 1.0808$ .
- **Essential feature**: the Pomeron has the vacuum quantum numbers.

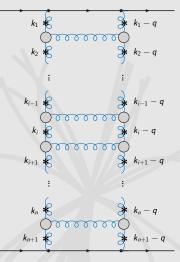


## BFKL/QCD Pomeron

- Description of Regge theory through the degrees of freedom of QCD;
- Pomeron exchange: gluon pair to recover vacuum quantum numbers;
  - Minimal configuration to introduce the Pomeron exchange.
- Study of qq scattering by gluon exchange;
- The diagrams that contribute are:
  - One-loop diagram;
  - Radiative correction;
    - Real gluon emission;
    - Virtual gluon emission.

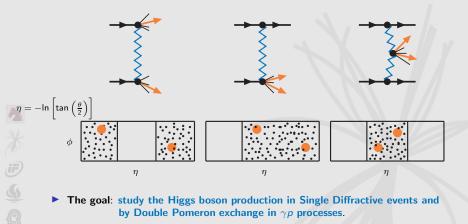





### BFKL gluon ladder

- Accounting for all orders in perturbative theory: gluon ladder;
  - The propagator of a reggeized gluon is

$$D_{\mu
u}(s_i,k_i^2) = -\imath \frac{g_{\mu
u}}{k_i^2} \left(\frac{s}{\vec{k}^2}\right)^{lpha_g(t)-s}$$


where  $\alpha_g(t)$  is seen as its trajectory;

- This results in the BFKL evolution equation;
  - Describes the evolution of the gluon ladder;
  - The parton densities f<sub>i</sub>(x, Q<sup>2</sup>) are evolved in the momentum fraction x.
- Diffractive particle Physics: Interactions governed by the exchange of Pomerons;
- However, the nature of the Pomeron its unknown yet as well as a formal theory for the Pomeron interactions.



#### Particle Diffraction

- Diffractive processes are characterized by the exchange of Pomerons;
  - **Exclusive** processes: the initial state is **not** changed after the interaction.
- > The experimental signature of these processes are the rapidity gaps



### Outline

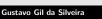
- Motivation
- Electroweak theory and the Higgs search
- Particle Diffraction
- Photoproduction mechanism of the Higgs boson
  - Production mechanisms review
  - γp subprocess
  - Phenomenology inside
  - Results for the Tevatron and the LHC
- Application to Ultraperipheral Collisions
  - Results for *pp* and *p*A collisions
- Diffractive factorization
  - Single Diffractive production
  - Double Pomeron Exchange
- The scenario for the exclusive Higgs production
- Conclusions

Gustavo Gil da Silveira

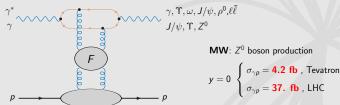
Phys. Rev. D78 (2008) 113005

Phys. Rev. D82 (2010) 073004

Phys. Rev. D83 (2011) 074005 Submitted to Phys. Rev. D


#### Deeply Virtual Compton Scattering (DVCS)

1997: Ji


- $\gamma^* p \rightarrow \gamma p$  by **Pomeron exchange** in *ep* collisions.
- 2001: Munier, Staśto and Mueller
  - Vector meson production  $\gamma^* p \rightarrow Vp$  with **GBW model**.
- 2008: Motyka and Watt 2009: Cisek, Schafer and Szczurek 2009: Kopeliovich, Schmidt and Siddikov 2011: Cisek, Lebiedowicz, Schäfer and Szczurek

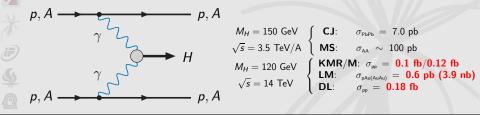
PRD 78 (2008) 014023 PRD 80 (2009) 074013 PRD 80 (2009) 054005 arXiv:1101.4874 [hep-ph]

- Vector particle production  $\gamma p \rightarrow Ep$  in Ultraperipheral Collisions.
- 2010: Kopeliovich, Schmidt and Siddikov
  - Dilepton production in Double Deeply Virtual Compton Scattering.



Dissertation defense — 12/jul/2011




NPB 603 (2001) 427

18/ 50

PRD 82 (2010) 014017

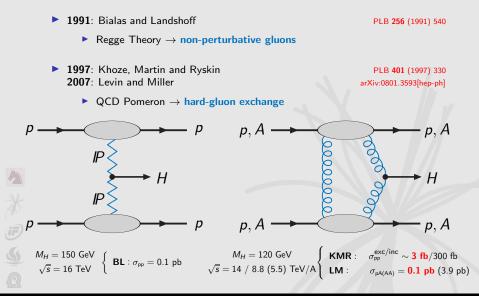
#### Electromagnetic Higgs boson production

- 1990: Cahn and Jackson Müller and Schramm
  - Peripheral heavy-ion collision  $\rightarrow \gamma \gamma$  annihilation
- 2002: Khoze, Martin and Ryskin
   2007: Miller
   2008: Levin and Miller
  - Contribution from Electroweak boson loops to the  $\gamma\gamma \rightarrow H$ .
- 2010: D'Enterria and Lansberg
  - Photon fluxes and Higgs effective Theory in  $\gamma\gamma$  processes.



Gustavo Gil da Silveira

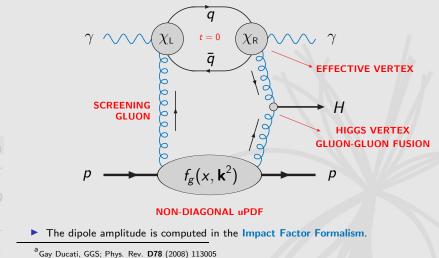
19/50


EPJC 23 (2002) 311 arXiv:0704.1985[hep-ph] arXiv:0801.3593[hep-ph]

PRD 42 (1990) 3690

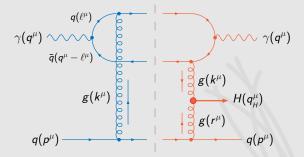
PRD 42 (1990) 3699

PRD 81 (2010) 014004


#### Diffractive Higgs production in pp and AA collisions



#### Photoproduction mechanism


Proposal: \(\gamma p\) process by DPE in \(pp\) collisions<sup>a</sup>

#### **COLOR DIPOLE**



#### Scattering amplitude

▶ Process at partonic level:  $\gamma q \rightarrow \gamma + H + q$ 



The scattering amplitude is obtained through the Cutkosky rules

$$\Im \mathcal{A} = \frac{1}{2} \int d(PS)_3 \mathcal{A}_L \mathcal{A}_R$$

where  $d(PS)_3$  is the differential volume element of the three-body phase space;

It is necessary to check for all possibilities for the diagrams of the color dipole.

Gustavo Gil da Silveira

<u>م</u>

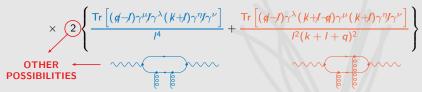
#### Effetive vertices

There are four possibilities for the formation of the color dipole



The calculation is performed through the Feynman rules for each coupling

$$\chi^{\mu\nu} = \imath g_{s} ee_{q} t^{A} \left\{ \gamma^{\mu} \left[ \frac{I_{1} - \not{q}}{(I_{1} - q)^{2}} \right] \gamma^{\nu} + \gamma^{\nu} \left[ \frac{I_{1} - \not{k}}{(I_{1} - k)^{2}} \right] \gamma^{\mu} \right\}$$
$$\chi^{\alpha\beta} = \imath g_{s} ee_{q} t^{B} \left\{ \gamma^{\beta} \left[ \frac{\not{k} - \not{I}_{2}}{(k - I_{2})^{2}} \right] \gamma^{\alpha} + \gamma^{\alpha} \left[ \frac{\not{q} - \not{I}_{2}}{(q - I_{2})^{2}} \right] \gamma^{\beta} \right\}$$


For the polarizations of the photons, the sum of each configuration implies

$$\varepsilon_{\mu}^{L}\varepsilon_{\nu}^{L*} = \frac{4Q^2}{s}\frac{p_{\mu}p_{\nu}}{s} \qquad \qquad \sum \varepsilon_{\mu}^{T}\varepsilon_{\nu}^{T*} = -g_{\mu\nu} + \frac{4Q^2}{s}\frac{p_{\mu}p_{\nu}}{s}$$

#### Applying the rules

Performing the scalar products in both sides of the cutting, one finds

$$\mathcal{A}_{L}\mathcal{A}_{R} = (4\pi)^{3} \alpha_{s}^{2} \alpha \left(\sum_{q} e_{q}^{2}\right) \left(\frac{\epsilon_{\mu}\epsilon_{\nu}^{*}}{k^{6}}\right) \frac{V_{\sigma\eta}^{ba}}{N_{c}} \left(t^{b}t^{a}\right) \frac{eikonal}{4p_{\lambda}p^{\sigma}}$$



For the production of a not so heavy Higgs boson (M<sub>H</sub> ≤ 200 GeV), one are able to approximate the ggH vertex like

$$V_{\mu\nu}^{ab} \approx \frac{2}{3} \frac{M_H^2 \alpha_s}{4\pi v} \left( g_{\mu\nu} - \frac{k_{2\mu} k_{1\nu}}{k_1 \cdot k_2} \right) \delta^{ab}$$
QUARK TOP

#### Amplitudes

• It is possible to integrate over  $\vec{l}$ , resulting in the polarized amplitudes

$$(\Im A)_{T} = \frac{M_{H}^{2} \alpha_{s}^{3} \alpha}{6\pi v} \sum_{q} e_{q}^{2} \left(\frac{2C_{F}}{N_{c}}\right) \int \frac{\mathrm{d}\vec{k}^{2}}{\vec{k}^{6}} \left[\frac{20s}{3} - 4Q^{2}s \int \frac{-1 + 2\alpha_{\ell} + 4\alpha_{\ell}^{2} - 8\alpha_{\ell}^{3} + 4\alpha_{\ell}^{4}}{\vec{k}^{2}(\tau - \tau^{2}) + Q^{2}\alpha_{\ell}(1 - \alpha_{\ell})} \,\mathrm{d}\alpha_{\ell} \,\mathrm{d}\tau\right]$$
$$(\Im A)_{L} = -\frac{M_{H}^{2} \alpha_{s}^{3} \alpha}{6\pi v} \sum_{q} e_{q}^{2} \left(\frac{2C_{F}}{N_{c}}\right) \int \frac{\mathrm{d}\vec{k}^{2}}{\vec{k}^{6}} \left[\frac{8s}{3} - 16Q^{2}s \int \frac{\alpha_{\ell}^{2} - 2\alpha_{\ell}^{3} + 4\alpha_{\ell}^{4}}{\vec{k}^{2}(\tau - \tau^{2}) + Q^{2}\alpha_{\ell}(1 - \alpha_{\ell})} \,\mathrm{d}\alpha_{\ell} \,\mathrm{d}\tau\right]$$

- PhD: Extension of the calculations to  $Q^2 \neq 0$ ;
- For the photoproduction case: real photons with  $Q^2 \simeq 0$ ;
  - Only the polarization in transverse mode is considered.
- The transverse-polarized scattering amplitude can be rewritten as

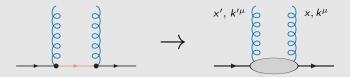
$$\Im \mathcal{A})_{\mathcal{T}} = -\frac{s}{3} \left( \frac{M_{H}^{2}}{\pi \nu} \right) \alpha_{s}^{3} \alpha \sum_{q} e_{q}^{2} \left( \frac{2C_{F}}{N_{c}} \right) \int \frac{\mathrm{d}\mathbf{k}^{2}}{\mathbf{k}^{6}} \left\{ \int_{0}^{1} \frac{[\tau^{2} + (1-\tau)^{2}][\alpha_{\ell}^{2} + (1-\alpha_{\ell})^{2}]\mathbf{k}^{2}}{\mathbf{k}^{2} \tau (1-\tau) + Q^{2} \alpha_{\ell} (1-\alpha_{\ell})} \, \mathrm{d}\alpha_{\ell} \, \mathrm{d}\tau \right\}$$

which is known from the Impact Factor Formalism.

#### Cross section for the $\gamma q$ process

The imaginary part of the scattering amplitude has the form

$$\frac{\Im \mathcal{A}}{s} = -\frac{1}{9\pi} \frac{M_H^2 \alpha_s}{N_c v} \int \frac{d\mathbf{k}^2}{\mathbf{k}^6} \left(\frac{\alpha_s C_F}{\pi}\right) \, \Phi_{\gamma\gamma}(\mathbf{k}^2, Q^2)$$


where  $\Phi_{\gamma\gamma}$  is the impact factor of the color dipole with the exchange of two gluons in the *t*-channel;

- **First remark**: dependence on  $k^{-6}$  due to the addition of the color dipole.
- This result allows one to obtain the event rate in central rapidity

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y_{H}\,\mathrm{d}\mathbf{p}^{2}\,\mathrm{d}t}\Big|_{y_{H},t=0} = \frac{8}{9}\left(\frac{\alpha_{s}\,M_{H}^{2}}{\pi^{3}N_{c}\,v}\right)^{2}\left[\int\frac{\mathrm{d}\mathbf{k}^{2}}{\mathbf{k}^{6}}\,\Phi_{\gamma\gamma}(\mathbf{k}^{2},Q^{2})\,\frac{\alpha_{s}\,\mathcal{C}_{F}}{\pi}\right]^{2}$$

- This is the result at partonic level (qq scattering):
  - It is necessary to introduce the contribution of the proton content;
  - Replacement of one quark by the proton partonic structure.

#### Phenomenology: proton partonic content



The two-gluon coupling to the proton is represented by an unintegrated density

$$\frac{\alpha_s C_F}{\pi} \longrightarrow f_g(x, \mathbf{k}^2) = \mathcal{K}\left(\frac{\partial [xg(x, \mathbf{k}^2)]}{\partial \ln \mathbf{k}^2}\right)$$



which represents the emission of two gluons off the proton;

The non-diagonality is approximated by a multiplicative factor like

 $\mathcal{K} \simeq (1.2) \exp(-\mathbf{B}\mathbf{p}^2/2)$ 

where  $B = 5.5 \text{ GeV}^{-2}$  is form factor of the *IPp* coupling;

The use of  $f_g$  demands that the gluon momentum fraction must be  $x \sim 0.01$ ;

#### Phenomenology: Parametrizations

- It is not possible to account for the proton content: non-perturbative regime;
- Using the available data, one can make a parametrization over x and Q<sup>2</sup>;
- The DGLAP evolution equations are used to evolve the distributions on Q<sup>2</sup>;
  - Each parametrization has an initial scale of evolution:

MRST ::  $\hat{Q}_0^2 = 1.25 \text{ GeV}^2$ .

 We extend the distributions to lower values of Q<sup>2</sup> using the parametrization

 $G(x,\hat{Q}^2)\sim\hat{Q}^{4+2(\gamma+2)\hat{Q}^2}$ 

The contributions are included to the cross section from the initial scale

 $\textbf{k}_0^2 \geq 0.3~\text{GeV}^2$ 



Dissertation defense — 12/jul/2011

#### Phenomenology: Gluon radiation at DLLA

- Real gluons can be emitted form the ggH vertex and have to be suppressed;
  - These terms will regulate the infrared region;
  - Account for the virtual diagrams that include terms like  $\ln \left( M_H^2 / \mathbf{k}^2 \right)$ .
- ► The probability for the emission of one gluon → Sudakov form factors

$$S_{\rm sud}({\bf k}^2, M_H^2) = \frac{N_c \alpha_s}{\pi} \int_{{\bf k}^2}^{M_H^2/4} \frac{d{\bf \hat{p}}^2}{{\bf \hat{p}}^2} \int_{{\bf \hat{p}}}^{M_H/2} \frac{d{\bf \hat{E}}}{{\bf \hat{E}}} = \frac{3\alpha_s}{4\pi} \ln^2 \left(\frac{M_H^2}{4{\bf k}^2}\right)^2$$

- If the neutralizing gluon fails, the real emissions are not suppressed;
- It is necessary to suppress the emission of multiples gluons, for which the probability of non-emission exponentiates;
  - A factor of  $e^{-S_{sud}}$  is included to the cross section;
  - The emissions below of k<sup>2</sup> are suppressed;
  - If  $k^2 \rightarrow 0$ , the probability of non-emission goes faster to zero than any power of k.

200000

Ê, p

Н

#### Phenomenology: Gluon radiation at LLA

- The single logarithm contributions were forgotten and have to be included;
- The probability of emission from gluons and quarks is rewritten as

$$T(\mathbf{k}^{2},\mu^{2}) = \int_{\mathbf{k}^{2}}^{\mu^{2}} \frac{\alpha_{s}(\hat{\mathbf{p}}^{2})}{2\pi} \frac{\mathrm{d}\hat{\mathbf{p}}^{2}}{\hat{\mathbf{p}}^{2}} \int^{1-\Delta} \mathrm{d}z \left[ z P_{gg}(z) + \sum_{q} P_{qg}(z) \right]$$

- The P<sub>ij</sub> functions are the DGLAP splitting functions;
- $\Delta$  parameter: the integration over the emission angle of the gluons;
- In this work, we had use  $\mu = M_H/2$ .
- The unintegrated gluon distribution function has the final form

$$\tilde{f}(x,\mathbf{k}^2,\mu^2) = \mathcal{K} \frac{\partial}{\partial \ln \mathbf{k}^2} \left[ \sqrt{T(\mathbf{k}^2,\mu^2)} \, G(x,\mathbf{k}^2) \right]$$

where the square-root is added to correct account for the single logarithm terms.


\* \* • •

#### Phenomenology: Rapidity gaps

- The rapidity gaps are the main signature for diffractive processes in accelerators;
- Soft interactions produce other particle that will contaminate the rapidity gap;
- Rapidity Gap Survival Probability: we use two models:
  - KKMR: 2-channel model with enhanced diagrams  $\langle S^2 \rangle = 2.6\%(1.5\%);$
  - GLM: 3-channel model with N=4 SYM and QCD  $\langle S^2 \rangle = 3 5\%$ .

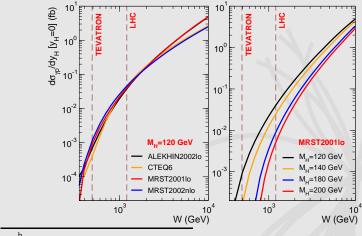
which account for the fraction of events with gaps;

Central dijet production at HERA: diffractive ratio of 10%.



#### Photoproduction mechanism

• The cross section is calculated for central rapidity  $(y_H = 0)$ 


$$\frac{\mathrm{d}\sigma}{\mathrm{d}y_{H}\mathrm{d}t}\bigg|_{y_{H},t=0} = \langle S^{2} \rangle \frac{K_{NLO}}{288\pi^{5}B} \alpha_{s}^{4} \left(\frac{M_{H}^{2}}{N_{c}\upsilon}\right)^{2} \left[\int_{k_{0}^{2}}^{\mu^{2}} \frac{\mathrm{d}\mathbf{k}^{2}}{\mathbf{k}^{6}} \,\tilde{f}_{g}(\mathbf{x},\mathbf{k}^{2},\mu^{2}) \,\Phi_{\gamma\gamma}^{T}(\mathbf{k}^{2},Q^{2})\right]^{2}$$

- ► Proton content:  $\alpha_s C_F / \pi \rightarrow \tilde{f}_g(x, \mathbf{k}^2, \mu^2) = \mathcal{K} \partial_{(\ln \mathbf{k}^2)} \left[ \sqrt{\mathcal{T}(\mathbf{k}^2, \mu^2)} \times g(x, \mathbf{k}^2) \right];$
- Sudakov form factor:  $T(\mathbf{k}^2, \mu^2) = \left[ \alpha_s(\mathbf{k}^2) / \alpha_s(\mu^2) \right] e^{-5}, S \sim \ln^2(\mu^2/\mathbf{k}^2);$
- Gap Survival Probability:  $\langle S^2 \rangle \rightarrow 3\%$  and 10% for LHC;
- Cutoff k<sub>0</sub><sup>2</sup> to regulate the infrared divergences: k<sub>0</sub><sup>2</sup> = 0.3 GeV<sup>2</sup>;
- NLO corrections:  $K_{NLO} = 1.5$  for the entire mass range;
- Electroweak vacuum expectation value: v = 246 GeV;
- Slope of the *IPp* coupling:  $B = 5.5 \text{ GeV}^{-2}$ .
- Scale to evolve the Sudakov form factors:  $\mu = M_H/2$ .



#### Results: predictions for the photoproduction mechanism<sup>b</sup>

- The predictions using a set of parametrizations for the proton PDF show distinct behaviors considering the CM energy of the subprocess;
- **Tevatron**: restriction for  $M_H < 140$  GeV.

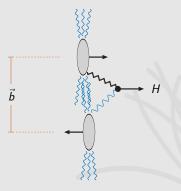


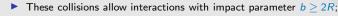
<sup>b</sup>Gay Ducati, GGS; arXiv:0910.2595 [hep-ph]

### Outline

- Motivation
- Electroweak theory and Higgs search
- Particle Diffraction
- Photoproduction mechanism of the Higgs boson
  - Production mechanisms review
  - γp subprocess
  - Phenomenology inside
  - Results for the Tevatron and the LHC
- Application to Ultraperipheral Collisions
  - Results for pp and pA collisions
- Diffractive factorization
  - Single Diffractive production
  - Double Pomeron Exchange
- The scenario for the exclusive Higgs production
- Conclusions

Gustavo Gil da Silveira


Phys. Rev. D78 (2008) 113005


Phys. Rev. D82 (2010) 073004

Phys. Rev. D83 (2011) 074005 Submitted to Phys. Rev. D

## Ultraperipheral Collisions

• The  $\gamma p$  interaction is a subprocess that occurs in Ultraperipheral Collisions





- The interactions are purely electromagnetic.
- The photons emitted from the EM field around the hadrons are real photons.

### Hadronic cross section

For *pp* collisions,  $\sigma_{\gamma p}$  is convoluted with the photon flux

$$\sigma_{tot} = 2 \int_{\omega_{min}}^{\omega_{max}} \mathrm{d}\omega \ \frac{\mathrm{d}n_i}{\mathrm{d}\omega} \ \sigma_{\gamma p}(\omega, M_H),$$

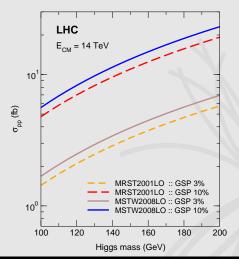
with  $\omega_{min} = M_H^2/2x\sqrt{s_{NN}}$  and  $\omega_{max} = \sqrt{Q^2\gamma_L^2\beta_L^2}$ , and the flux is given by

$$\frac{\mathrm{d}n_p}{\mathrm{d}\omega} = \frac{\alpha_{em}}{2\pi\omega} \left[ 1 + \left(1 - \frac{2\omega}{\sqrt{s}}\right)^2 \right] \left( \ln\mu_p - \frac{11}{6} + \frac{3}{\mu_p} - \frac{3}{2\mu_p^2} + \frac{1}{3\mu_p^2} \right)$$

for the emission off protons, with A  $\simeq 1 + (0.71 \ {\rm GeV}^{-2}) \sqrt{s}/2\omega^2$ , and

$$\frac{\mathrm{d}n_A}{\mathrm{d}\omega} = \frac{2Z^2 \,\alpha_{em}}{\pi\omega} \left[ \mu_A \mathcal{K}_0(\mu_A) \mathcal{K}_1(\mu_A) - \frac{\mu_A^2}{2} [\mathcal{K}_1^2(\mu_A) - \mathcal{K}_0^2(\mu_A)] \right]$$

for nuclei, with  $\mu = b_{min}\omega/\gamma_L$ , onde  $b_{min} = R_p + R_A$ ;

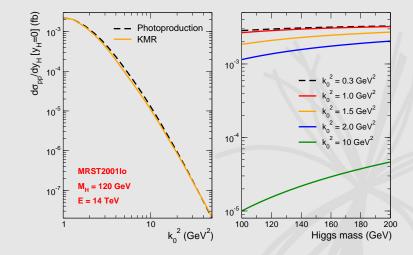

The photon virtuality have to be decomposed in the form

$$Q^2 = -\omega^2/(\gamma_L^2 eta_L^2) - q_\perp^2$$

where  $\gamma_L = (1 - \beta_L^2)^{-1/2} = \sqrt{s}/2m_i$  is the Lorentz factor of one beam.

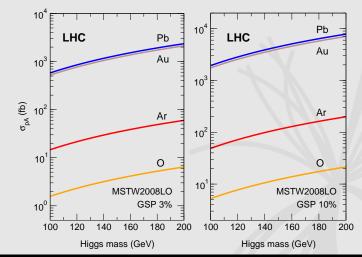
# Results: pp in UPC

- $\sigma_{pp}$ : one order higher than the results from  $\gamma\gamma$  processes (0.10-0.18 fb).
- An optimistic approach for the GSP provides a cross section of  $\sim$ 6 fb.






Gustavo Gil da Silveira


### Results: sensibility

- Nearly the same behavior than the results of the Durham group;
- The main contribution comes from the  $k_0^2 < 30 \text{ GeV}^2$ .



# Results: *p*A in UPC

- $\sigma_{\rm pAu} \sim$  800 fb: competitive with the  $\gamma\gamma$  process;
- $\sigma_{pPb}$ : 4x higher than the approach with an Effective Field Theory.





Gustavo Gil da Silveira

### Event rates<sup>c</sup>

- ► Taking the Branching ratio for BR(H → bb) ≈ 72 %, the event rate for the Higgs boson production can be predicted for LHC;
  - Little chance to observe  $b\bar{b}$  decay in LHC:  $\gamma\gamma$  and  $\tau^+\tau^-$  expected.

|     | (0.)          |                   | C(0, -1)                          |           |
|-----|---------------|-------------------|-----------------------------------|-----------|
|     | $\sigma$ (fb) | $BR 	imes \sigma$ | $\mathcal{L}$ (fb <sup>-1</sup> ) | events/yr |
| рр  | 1.77          | 1.27              | 1(30)                             | 1 (30)    |
| рр  | 5.92          | 4.26              | 1(30)                             | 6 (180)   |
| pPb | 617           | 444               | 0.035                             | 21        |
| pPb | 2056          | 1480              | 0.035                             | 72        |

- There was an one-month run in last November for heavy-ions collisions.
  - New data for AA collisions may be available in 2011.

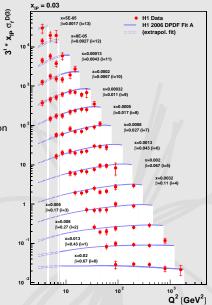
X

<sup>&</sup>lt;sup>C</sup>Gay Ducati, GGS; Physical Review D 82 (2010) 074003

# Outline

- Motivation
- Electroweak theory and Higgs search
- Particle Diffraction
- Photoproduction mechanism of the Higgs boson
  - Production mechanisms review
  - γp subprocess
  - Phenomenology inside
  - Results for the Tevatron and the LHC
- Application to Ultraperipheral Collisions
  - Results for pp and pA collisions
- Diffractive factorization
  - Single Diffractive production
  - Double Pomeron Exchange
- The scenario for the exclusive Higgs production
- Conclusions

Gustavo Gil da Silveira


Phys. Rev. D78 (2008) 113005

Phys. Rev. D82 (2010) 073004

Phys. Rev. D83 (2011) 074005 Submitted to Phys. Rev. D

## Pomeron partonic content

- An alternative is a phenomenological view of partons being the constituent of the Pomeron;
  - There would have a partonic distribution for quarks and glouns inside de Pomeron.
- To be correct, it was necessary the detection of an additional jet coming from the diffractive event;
- The SPS data confirmed this expectation;
- In the HERA collider, this ideia allows to study of the Diffractive DIS;
- There is a limitation in this approach, which works for the HERA kinematical regime, but not for the Tevatron one.



#### Gustavo Gil da Silveira

Dissertation defense — 12/jul/2011

### Diffractive factorization

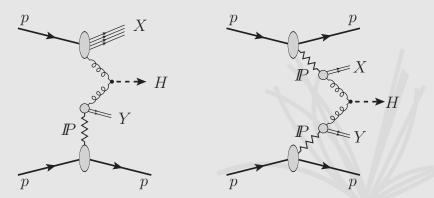
This alternative approach is called <u>Ingelman-Schlein model</u>, which considers the factorization of the total cross section

$$\sigma_{SD}(AB \to AH + B) = \mathcal{F}_{a/IP/A}(x_{IP}, \beta, \mu_F^2) \otimes \sigma(ab \to H) \otimes f_{b/B}(x, \mu_F^2)$$

 $\sigma_{CED}(AB \to A + H + B) = \mathcal{F}_{a/IP/A}(x_{IP}, \beta, \mu_F^2) \otimes \sigma(ab \to H) \otimes \mathcal{F}_{b/IP/B}(x_{IP}, \beta, \mu_F^2)$ 

being known as the diffractive factorization;

The Pomeron Structure Function is described by a two-step process


$$\mathcal{F}_{i/IP/A}(\mathsf{x}_{IP},\beta,\mu_F^2) = \mathcal{F}_{i/IP}\left(\frac{x}{\mathsf{x}_{IP}},\mu_F^2\right) f_{IP/A}(\mathsf{x}_{IP},t)$$

- Emission of a soft Pomeron from the colliding hadron, expressed by the Pomern flux f<sub>IP/A</sub>(x<sub>IP</sub>, t);
- 2. Probability of find a parton *a* in the Pomeron, which is given by the diffractive parton density  $F_{i/IP}(\beta, \mu_F^2)$ .
- The dPDF is provided by the analyses of the data from the H1 detector at HERA and the Pomeron flux is computed with Regge theory.

# Diffractive processes

#### Single Diffractive<sup>d</sup>

Central Exclusive Diffractive<sup>e</sup>



# Purpose: verify the uncertainties related to predictions of the CED Higgs boson production at the LHC

<sup>d</sup>Gay Ducati, Machado, GGS; Physical Review D **83** (2011) 074005

<sup>e</sup>Gay Ducati, GGS; arXiv:1104.3458 [hep-ph]

## NLO corrections

▶ The corrections to the  $gg \rightarrow H$  processes are represented by the processes

 $gg 
ightarrow H(g) \qquad qg 
ightarrow Hq \qquad qar q 
ightarrow Hg$ 

▶ The NLO inclusive cross section for  $pp \rightarrow pHp$  can be computed by

$$\sigma_{NLO} = \frac{\mathrm{d}\mathcal{L}^{ij}}{\mathrm{d}\tau_{H}} \sigma_{0} \tau_{H} \left[ 1 + \alpha_{s}(\mu_{R}^{2}) \frac{\mathcal{C}}{\pi} \right] + \Delta \sigma_{gg} + \Delta \sigma_{gq} + \Delta \sigma_{q\bar{q}}$$

being the functions definied in the heavy-quark mass limit  $\tau_Q = M_H^2/4M_t^2$ 

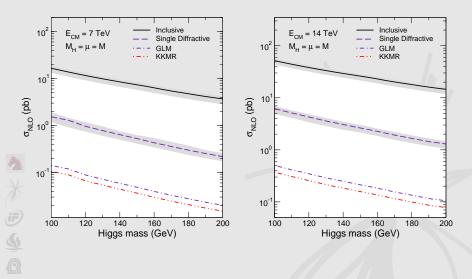
•  $d\mathcal{L}^{ij}/d\tau$  the parton-parton luminosity;

• 
$$\tau_H = M_H^2/s$$
 is the Drell-Yan variable;

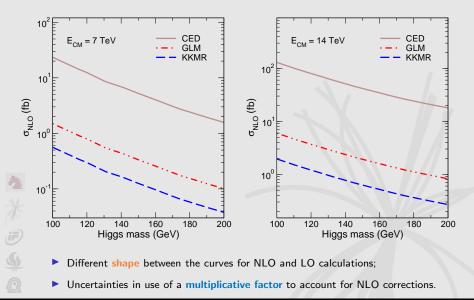
- $\sigma_0 = G_f \alpha_s(\mu_R^2) \left| \frac{3}{4} 2[\tau_Q + (\tau_Q 1) \arcsin^2 \sqrt{\tau_Q}] / \tau_Q^2 \right|^2 / 288\pi\sqrt{2}.$
- The singular virtual corrections are included in the factor C;
- The non-singular ones in the Δσ<sub>ij</sub> terms.

### Parton-parton luminosities

The modified parton-parton luminosity for the SD process reads


$$\begin{aligned} \frac{d\mathcal{L}_{SD}^{gi}}{d\tau} &= \int_{\tau}^{1} \frac{dx}{x} \int_{x}^{0.05} \frac{dx_{IP}}{x_{IP}} \mathcal{F}_{i/IP/p}\left(x_{IP}, \frac{x}{x_{IP}}, \mu_{F}^{2}\right) g(\tau/x, \mu_{F}^{2}) \\ &+ \int_{\tau}^{1} \frac{dx}{x} \int_{\tau/x}^{0.05} \frac{dx_{IP}}{x_{IP}} g(x, \mu_{F}^{2}) \mathcal{F}_{i/IP/p}\left(x_{IP}, \frac{\tau}{x_{IP}x}, \mu_{F}^{2}\right) \end{aligned}$$

In the case of CED production, the luminosity is given by


$$\begin{aligned} \frac{\mathrm{d}\mathcal{L}_{CED}^{ij}}{\mathrm{d}\tau} &= \int_{\tau}^{1} \frac{\mathrm{d}x}{x} \int_{x}^{0.05} \frac{\mathrm{d}x_{IP}^{1}}{x_{IP}^{1}} \mathcal{F}_{i/IP/p}\left(x_{IP}^{1}, \frac{x}{x_{IP}^{1}}, \mu_{F}^{2}\right) \\ &\times \int_{\tau/x}^{0.05} \frac{\mathrm{d}x_{IP}^{2}}{x_{IP}^{2}} \mathcal{F}_{j/IP/p}\left(x_{IP}^{2}, \frac{\tau}{x_{IP}^{2}}, \mu_{F}^{2}\right) \end{aligned}$$

- The factorization breaking occurs for hadron-hadron collisions;
  - Soft interactions between hadrons are not included;
  - ► The GSP is a way to introduce such effects and reduce the predictions.

# Results: SD production



# Results: CED production



Gustavo Gil da Silveira

# Rapidity Gap Survival Probability

The scenario of all predictions for the exclusive production is competitive<sup>f</sup>;

| Subprocess                 | GSP (%) | $\sigma_{pp}$ (fb) |
|----------------------------|---------|--------------------|
| IPIP                       | 2.6     | 3.00               |
| IPIP                       | 0.4     | 0.47               |
| <b>I</b> PIP <sub>IS</sub> | 4.0     | 3.20               |
| $\gamma\gamma$             | 100.    | 0.10-0.18          |
| $\gamma p$                 | 3.0     | 1.77               |
| $\gamma p$                 | 10.     | 5.92               |

- The GSP is not computed for the Higgs boson production in the photoproduction mechanism;
  - The models for the soft interactions depends on the amplitude of the process to estimate the GSP.
- Based on previous evidences from HERA:  $\langle S^2 \rangle = 10\%$ ;
- The diffractive factorization does not include the soft interactions by Pomeron exchange.

<sup>f</sup>Gay Ducati, GGS; Phys. Rev. **D82** 073004 (2010)

X

### Conclusions

- <u>Thesis</u>: original approach for a production mechanism and improvements to the exclusive production of the Higgs boson;
- We have computed the production cross section for the Higgs boson in UPC at the LHC:

 $\sigma_{
m pp} \sim 1-6 \; {
m fb} \qquad \sigma_{
m pA} \sim 0.8-2.0 \; {
m pb}$ 

- The pA collisions provide a cleaner final state to discover the Higgs boson at the LHC;
  - The luminosity and pile-up in such processes will be favorable for the Higgs boson detection in LHC;
  - A reasonably event rate predicted for future *p*A runs in LHC.
- Low sensitivity to the input parameter: infrared region under control;
- Taking the specific GSP for the photoproduction processes, the predictions may be higher than the ones from other approaches;
- The results obtained in the diffractive factorization agree with previous estimations.
  - It allows to include higher-order corrections, reducing uncertanties.