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Building the Pasta Phase

The solid crust insulates thermally the neutron star cold surface from its

hot liquid interior and because of this fact, it is of vital importance in the

understanding of neutron star cooling and evolution.



Does the existence of the pasta phase on the crust influence neu-

trino opacities in stellar matter?

What is the pasta phase probably present in the crust of NS?

• It is the result of a frustrated system. At low densities a competition

between the strong and the electromagnetic interactions takes place

leading to a frustrated system.

• The individual interaction energies among the three types of pairing

cannot be minimised simultaneously: the system is frustrated (P.

Schiffer, Nature 420 (2002) 35).



• Normally the short and large distance scales related to the nuclear

and Coulomb interactions are well separated so that nucleons bind

into nuclei but at densities of the order of 1013 − 1014 g/cm3 these

length scales are comparable.

• A variety of complex structures exist: droplet (meatball, 3D), rod

(spaghetti, 2D), lazagna (slab, 1D), penne (tube, 2D), Swiss cheese

(bubble, 3D).

• The pasta phase is the ground state configuration if its free energy is

lower than the corresponding homogeneous phase.



Different models - npe matter

Variations of quantum hadrodynamics (non-linear Walecka model)

L =
∑

i=p,n

Li + Le+Lσ+Lω+Lρ+Lδ+Lγ, (1)

with fixed couplings (coupling constants):

L(ψ, gsφ, gvV
µ, gρ~b

µ, eAµ, κφ3, λφ4, ξ(VµV
µ)2) (2)

or with density dependent couplings (non-linear terms are not present):

L(ψ,Γsφ,ΓvV
µ,Γρ~b

µ, eAµ) (3)

Γi(ρ) = Γi(ρ0)hi(x), x = ρ/ρ0 (4)



These parameters are fitted to give especific nuclear matter properties

NL3: G. A. Lalazissis, J. König and P. Ring, Phys. Rev. C 55, 540 (1997)
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NLδ: B. Liu, V. Greco, V. Baran, M. Colonna and M. Di Toro, Phys. Rev. C 65,
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Two methods are used: TF and CP.

The Thomas-Fermi Approximation

The densities are obtained by minimising the functional:

Ω =

∫

VWZ

d3x ǫTF [ρp(~x), ρn(~x), ρe(~x)] −
∑

i=n,p,e

µi

∫

VWZ

d3rρi(~x) .

with adequate boundary conditions.

Numerical technique: All mesonic fields are expanded in a HO basis

for 1D, 2D or 3D and the differential equations become matrix equations

solved self-consitently.



Wigner-Seitz Cell Geometry

TF: Inside the WS cell npe matter is considered locally homogeneous and

described by a degenerate Fermi gas:

Ni =
∫

d3x ρi(~x) , i = p, n, e

ETF =
∫

d3x {ǫ(ρp(~x), ρn(~x), φ(~x), V0(~x), b0(~x), δ0(~x)) + ǫCOUL(ρp(~x), ρe(~x))}



• Body centered cubic crystal lattice (bcc) - spherical structures (3D)

- ρi(r, θ, φ) = ρi(r)

• Hexagonal lattice - cylindrical structures (2D) - ρi(ρ, θ, z) = ρi(ρ)

• Unidimensional lattice - slab structure - ρi(x, y, z) = ρi(z)

K. Oyamatsu, Nucl. Phys. A561 (1993) 431.

We fix ρB and calculate the energies related to the 3 Wigner-Seitz cell

geometries. The lower one is the preferential pasta structure. It is then

compared with the energy of a homogeneous system.



Coexisting Phases Method / MFA

Nuclear matter

ρ, Yp = ρp/ρ (global proton fraction) are fixed; the pasta structures are
built with different geometrical forms in a background nucleon gas.

Gibbs’ conditions :

P I(νIp , ν
I
n,M

∗
n
I,M∗

p
I) = P II(νIIp , ν

II
n ,M

∗
n
II ,M∗

p
II), (5)

µIi = µIIi , i = p, n (6)

m2
sφ

I
0 = Γsρ

I
s, m2

sφ
II
0 = Γsρ

II
s , (7)

m2
δ δ
I
3 = Γδρ

I
s3, m2

δ δ
II
3 = Γδρ

II
s3, (8)

fρIp + (1 − f)ρIIp = ρp = Ypρ, (9)

I,II = labels of the phases, f = volume fraction of phase I:

f =
ρ− ρII

ρI − ρII
(10)



P = P I + Pe (11)

E = fEI + (1 − f)EII + Ee + Esurf + ECoul, Esurf = 2ECoul (12)

ECoul =
2α

42/3
(e2πΦ)1/3

(

σD(ρIp − ρIIp )
)2/3

, (13)

α = f for droplets/rods, α = 1− f for bubbles/tubes; σ = surface energy

coefficient; D = dimension of the system.

Φ =











(

2−Df1−2/D

D−2 + f

)

1
D+2, D = 1,3;

f−1−ln(f)
D+2 , D = 2.

(14)

σ is AN IMPORTANT QUANTITY, which we parametrize.



Stellar matter

µp = µn − µe + µν, µe = µµ (15)

ρp = ρe + ρµ (16)

YL =
ρe + ρν + ρµ

ρB
(17)

The Gibbs’ conditions:

µIn = µIIn , µIe = µIIe , µIν = µIIν , (18)

f
(

ρIp − ρIe − ρIµ
)

+ (1 − f)
(

ρIIp − ρIIe − ρIIµ
)

= 0 (19)



0.00 0.04 0.08 0.12
0

20

40

60

80

E/
A

-M
 (M

eV
) a)

(fm-3)
0.00 0.04 0.08 0.12
0

20

40

60

80

E/
A

-M
 (M

eV
) b)

(fm-3)

0.00 0.04 0.08 0.12 0.16

0

40

80
 c)

(fm-3)

F/
A

-M
 (M

eV
)

0.00 0.04 0.08 0.12 0.16

0

40

80

(fm-3)
F/

A
-M

 (M
eV

)

 d)

npe matter (CP method) with NL3 and a) T=0, Yp = 0.5, b) T=0 Yp = 0.3; c) T=5
MeV, Yp = 0.5, d) T=5 MeV, Yp = 0.3. The different structures of the pasta are
represented by different colors and the dashed line stands for homogenous matter.
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Comparison of the phase diagrams, NL3, Yp = 0.3, CP method. From bottom to top
the colours represent droplets, rods, slabs and the homogeneous phase for T = 0 MeV,
and homogeneous phase, droplets, rods, slabs and the homogeneous phase for T = 5
MeV and T = 10 MeV.
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Phase diagrams, T=0, obtained both with CP and TF approximation for NL3 and TM1
with Yp = 0.3. From bottom to top the colours represent droplets, rods, slabs, tubes,
bubbles and the homogeneous phase, whenever present.
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Pasta phases: comparison between NL3 (dashed line) and TW (full line). The thick
lines - Thomas-Fermi (TF) calculation and the thin red lines - coexisting-phases (CP)
calculation.



Comments on the pasta phase

• While the final EOS obtained with the different methods do not vary much, the
internal structure varies considerably.

• The TF approximation was performed to test the much simpler CP calculation. It
was shown that the success of the CP calculation depends on the parametrisation
of the surface energy.

• The pasta phase shrinks with the increase of the temperature and the homogeneous
matter can be the preferential phase also at very low densities depending on the
temperature and the proton fraction.



Neutrino cross sections

To calculate neutrino opacities and mean free paths we consider neutral current scat-
tering reactions:

νe + n→ νe + n, (20)

νe + p → νe + p, (21)

and charged current absorption reactions:

νe + n→ e− + p. (22)

νe + p→ e+ + n. (23)

for which we need cross sections σn, σp and σa (huge expressions...)



The total neutrino mean free path in dense matter is given by

λν =
1

ρnσn + ρpσp + ρBσa
. (24)

Rosseland neutrino mean free paths are related with diffusion coefficients Dj by

λkν =
Dk

∫ ∞

0
dǫν ǫkνfν(1 − fν)

, (25)

where

Dk =

∫ ∞

0

dǫν ǫ
k
νλνfν(1 − fν). k = 2,3,4 (26)
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Diffusion coefficient D2 as function of baryon density for different temperature and
lepton fraction values for homogeneous matter and pasta phase.
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Diffusion coefficient D3 as function of baryon density for different temperature and
lepton fraction values for homogeneous matter and pasta phase.
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lepton fraction values for homogeneous matter and pasta phase.



Conclusions

• Just NL3 obtained with CP; other parametrizations may give slightly different results
for the diffusion coefficients.

• The differences in the diffusion coefficients due to the existence of the pasta phase
have consequences in neutrino opacities.

• Neutrino opacities are used as input to the solution of the transport equations in the
equilibrium diffusion approximation, which simulates the Kelvin-Helmholtz phase of
the protoneutron stars.

• The existence of the pasta phase in the crust of protoneutron stars will probably
influence their cooling mechanism.
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