CP Violation in Charm at LHCb

Prof. Carla Göbel

Departamento de Física Pontifícia Universidade Católica do Rio de Janeiro

IX Workshop GFPAE

July 13, 2011

CP Violation in Charm at LHCb

Carla Göbel

.. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *Q*P in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for

2011/2012

Outline

1. CP Violation

1.1. CP Violation - general 1.2. QP & the CKM matrix

2. QP in Charm

- 2.1. Why study CP violation in charm?
- 2.2. Approaches to search for OP in charm

3. The LHCb experiment and Charm

- 3.1. The LHCb experiment
- 3.2. Results for QP searches in charm at LHCb
- 3.3. Prospects for 2011/2012

4. Conclusions

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *Q*P in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for

2011/2012

4. Conclusions

2/53

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm? 2.2. Approaches to search for QP in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for

3.3. Prospects for 2011/2012

4. Conclusions

1. CP Violation

CP Violation in Charm at LHCb

Carla Göbel

1.1. CP Violation general

1.2. *OP* & the CKM matrix

2.1. Why study CP violation in charm? 2.2. Approaches to search for *QP* in charm

3. The LHCb

3.1. The LHCb experiment 3.2. Results for *QP* searches in charm at LHCh

3.3. Prospects for 2011/2012

4. Conclusions

1.1. CP Violation - general

Why CP Violation is so important?

CP violation is an essential aspect for understanding the Universe

★ Big Bang(14M years ago): matter and antimatter produced equally

***** Today: structures in the universe are made of matter

- no antimatter as primary cosmic rays
- no evidence for antigalaxies

* Matter-antimatter asymmetry: $n_{\rm barions}/n_{\gamma} \sim 10^{-9}$ * Sakharov Conditions (67)

- 1. baryon number violation
- 2. C and CP violation
- 3. departure from thermal equilibrium

★ In the Standard Model (SM), C/P comes from the flavor mixture matrices (quarks & leptons)
★ but it is not enough ... CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for 2011/2012

History: CP violation in the neutral Kaon system ...

 ${f lash} \ K^0 \ \& \ \overline{K^0} \ {
m are produced via the strong interaction} \ \pi^- p o K^0 \Lambda^0 \ \pi^- p o \overline{K}^0 K^0 p$

but they are unstable and decay through weak interaction

Two states are observed

$$\blacktriangleright \ K_L^0 \Rightarrow \tau(K_L^0) = 0.5 \times 10^{-7} s$$

$$\blacktriangleright \ K^0_S \Rightarrow \tau(K^0_S) = 0.9 \times 10^{-10} s$$

decaying as: $K^0_L
ightarrow \pi^+\pi^-\pi^0$ and $K^0_S
ightarrow \pi^+\pi^-$

 \clubsuit opposite parities: $P(\pi^+\pi^-\pi^0) = -1$ and $P(\pi^+\pi^-) = +1$

evidence for PARITY violation in weak decays

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *OP* & the CKM

matrix

2. *Q*P in Charm

2.1. Why study CP violation in charm? 2.2. Approaches to search for C/P in charm

3. The LHC

experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for 2011/2012

The neutral kaon system

Although violating P and C separately, it was believed that weak decays conserve CP

 \mathbf{A} K^0 and \overline{K}^0 are not CP eigenstates

$$CP|K^{0}
angle = -C|K^{0}
angle = -|\overline{K}^{0}
angle$$

 $CP|\overline{K}^{0}
angle = -C|\overline{K}^{0}
angle = -|K^{0}
angle$

while

$$\begin{split} |K_1^0\rangle &\equiv \frac{1}{\sqrt{2}} \left(|K^0\rangle - |\overline{K}^0\rangle \right) \quad \Rightarrow \quad CP|K_1^0\rangle = +|K_1^0\rangle \\ |K_1^0\rangle &\equiv \frac{1}{\sqrt{2}} \left(|K^0\rangle + |\overline{K}^0\rangle \right) \quad \Rightarrow \quad CP|K_2^0\rangle = -|K_2^0\rangle \end{split}$$

🜲 it was natural to associate

$$egin{array}{lll} K_1^0 \leftrightarrow K_S^0 & K_S^0
ightarrow \pi\pi & CP=+1 \ K_2^0 \leftrightarrow K_L^0 & K_L^0
ightarrow \pi\pi\pi & CP=-1 \end{array}$$

not quite exact ...

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general

1.2. $\ensuremath{\mathcal{OP}}$ & the CKM matrix

2. QP in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for 2011/2012

The neutral kaon system

 $\begin{array}{l} \clubsuit \text{ in 64, it was observed that } K_L \text{ also decays to } \pi\pi\\ & & & & & \\ & & & \\ & & & \\ \mathbb{BR}(K_L^0 \to \pi^-\pi^+) \sim 10^{-3} \\ \clubsuit K_L^0 \text{ and } K_S^0 \text{ are almost CP eigenstates} \\ & & & \\ & & & \\ & & K_S^0 = \frac{|K_1^0\rangle + \epsilon |K_2^0\rangle}{\sqrt{1 + |\epsilon|^2}} \quad K_L^0 = \frac{|K_2^0\rangle + \epsilon |K_1^0\rangle}{\sqrt{1 + |\epsilon|^2}} \\ & & & \\ & & & \\ \end{array}$

with $|\epsilon| \sim 3 imes 10^{-3}$

CP is violated by the weak interaction

Besides:

$$egin{aligned} & ext{BR}(K_L^0 o \pi^+ e^- ar{
u}_e) \propto |\langle ar{K}^0 | K_L^0
angle|^2 \propto |1-\epsilon|^2 \ & ext{BR}(K_L^0 o \pi^- e^+
u_e) \propto |\langle K^0 | K_L^0
angle|^2 \propto |1+\epsilon|^2 \end{aligned}$$

 $(K_L^0
ightarrow \pi^- e^+
u_e \ 0.7\%$ more likely than $K_L^0
ightarrow \pi^+ e^- ar{
u}_e)$

 \Rightarrow we can unumbiguously say that the *electron* is the one produced least often in the decays of K_L

an absolute distinction between matter and antimatter

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *OP* & the CKM

1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for 2011/2012

How to search for CP violation

• CP occurs when $\Gamma(M \to f) \neq \Gamma(\overline{M} \to \overline{f})$ Let two different processes leading to the same final state $\mathcal{A}(M \to f) = \mathcal{A}_1 + \mathcal{A}_2$

> $\Gamma(M \to f) \propto |\mathcal{A}_1|^2 + |\mathcal{A}_2|^2 + 2\Re(\mathcal{A}_1\mathcal{A}_2^*)$ $\Gamma(\bar{M} \to \bar{f}) \propto |\bar{\mathcal{A}}_1|^2 + |\bar{\mathcal{A}}_2|^2 + 2\Re(\bar{\mathcal{A}}_1\bar{\mathcal{A}}_2^*)$

but $|\mathcal{A}_k| = |\bar{\mathcal{A}}_k|$ (at least in the SM), thus CP occurs for $\Re(\mathcal{A}_1\mathcal{A}_2^*) \neq \Re(\bar{\mathcal{A}}_1\bar{\mathcal{A}}_2^*)$

particular cases:

- ► C/P induced through mixing weak phase appears in the mixing diagrams $P^0 \rightleftharpoons \overline{P}^0$
- interference between mixing and decay when $P^0 \to f$ interferes with $P^0 \to \overline{P}^0 \to f$
- direct CP by interfering decay amplitudes different weak phase between two decay paths

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for

2011/2012

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment 3.2. Results for *QP* searches in charm at LHCb 3.3. Prospects for

3.3. Prospects for 2011/2012

4. Conclusions

0/ 53

1.2. CP & the CKM matrix

CP Violation & the CKM Matrix

CP in the hadronic sector comes from the complex nature of the Cabibbo-Kobayashi-Maskawa Matrix

1973:

Kobayashi & Maskawa suggest the theoretical mechanism for *OP* by introducing a 3th quark family

M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

2001:

OP is observed in the b sector (BaBar e Belle)

B. Aubert et al. (BaBar Collab.), Phys. Rev. Lett. 87, 091801 (2001).
 K. Abe et al. (Belle Collab.), Phys. Rev. Lett. 87, 091802 (2001).

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for QP searches in charm at LHCb
3.3. Prospects for 2011/2012

CP Violation & the CKM Matrix

♣ The CKM mixing matrix:

$$\left(egin{array}{ccc} d' \ s' \ b' \end{array}
ight) = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \left(egin{array}{ccc} d \ s \ b \ \end{array}
ight)$$

orthogonal + unitary \Rightarrow 3 real parameters + 1 phase There is a hierarchy on the elements: transitions within family predominate

CP Violation in Charm at LHCb

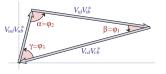
Carla Göbel

1. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm? 2.2. Approaches to search for QP in charm


3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for QP searches in charm at LHCb
3.3. Prospects for 2011/2012

CP Violation & the CKM Matrix

- ► A convenient parametrization (Wolfenstein) $V = \begin{pmatrix} 1 - \lambda^2/2 - \lambda^4/8 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 - \lambda^4/8(1 + 4A^2) & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 + A\lambda^4/2(1 - 2(\rho + i\eta)) & 1 + A^2\lambda^4/2 \end{pmatrix}$
 - unitarity+orthogonality: $\sum_{i} V_{ij} V_{ik}^* = \delta_{jk} \quad \sum_{j} V_{ij} V_{kj}^* = \delta_{jk}$
 - ▶ 6 triangles in a complex plane
 - ► experimental tests more sensitive for triangles with sides of the same order ⇒ transitions involving b quark

 \Rightarrow B meson processes provide sizeable QP signs

CP Violation in Charm at LHCb

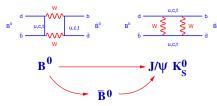
Carla Göbel

. CP Violation

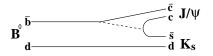
 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm? 2.2. Approaches to search for QP in charm


3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for 2011/2012



The Golden Plate Mode: $B_d \rightarrow J/\psi K_S$

• CP through $B^0 - \overline{B}^0$ mixing and decay:

🜲 main decay diagram:

 $\propto V_{cb}^* V_{cs}$

$$\mathcal{M} \propto rac{V_{tb}^* V_{td} V_{td} V_{tb}^*}{|V_{tb}^* V_{td}|^2} = e^{-2iar{\mu}}$$

• time dependent asymmetry measurement: $\sin 2\beta = 0.676 \pm 0.020$ (HFAG average)

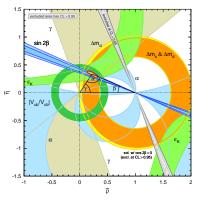
CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm


2.1. Why study CP violation in charm? 2.2. Approaches to search for QP in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for QP searches in charm at LHCb
3.3. Prospects for 2011/2012

The Success of the CKM mechanism: restrictions in the $\rho\eta$ plane

- no QP in charm observed yet (discussed next)
- so far in good agreement with the SM scenario
- ... but a common belief that SM is not the ultimate answer to QP

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for QP searches in charm at LHCb
3.3. Prospects for 2011/2012

- New Physics introduces new particles, dynamics and symmetries at Λ ~ TeV
- C/P from New Physics can appear at any moment now !?!

CP Violation in Charm at LHCb

Carla Göbel

1.1. CP Violation general 1.2. *OP* & the CKM matrix

2. QP in Charm

2.1. Why study CP violation in charm? 2.2. Approaches to search for *QP* in charm

3. The LHCb

3.1. The LHCb experiment 3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

4. Conclusions

2. QP in Charm

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. QP in Charm

2.1. Why study CP violation in charm?

2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for

3.3. Prospects for 2011/2012

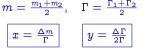
4. Conclusions

7/ 53

2.1. Why study CP violation in charm?

Why study CP violation in charm?

★ Mixing and CPV


- ▶ CP and mixing well established in K and B systems
- charm system is the only up-quark sector which can exhibit these phenomena

 $\rightarrow \pi^0$ is its own antiparticle and top does not hadronize....

▶ mixing in D⁰ - D
⁰ now verified with ~ 10σ (no single 5σ though)

mass eigenstates: $|D_1\rangle = p|D^0\rangle + q|\bar{D}^0\rangle$ $|D_2\rangle = p|D^0\rangle - q|\bar{D}^0\rangle$

► Indirect CP arising through D⁰ - D
⁰ mixing estimated to be O(10⁻⁴) in the SM but up to O(10⁻²) in NP

Y. Grossman, A. L. Kagan, and Y. Nir, Phys. Rev. D 75, 036008 (2007)

CP Violation in Charm at LHCb

Carla Göbel

. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

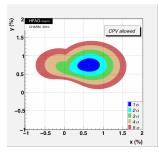
2.1. Why study CP violation in charm?

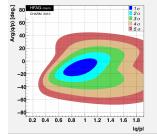
2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for QP searches in charm at LHCb
3.3. Prospects for 2011/2012

Why study CP violation in charm?


some mixing observables sensitive to CP


 $2y_{CP} = (|q/p| + |p/q|) y \cos \phi - (|q/p| - |p/q|) x \sin \phi \ 2A_{\Gamma} = (|q/p| - |p/q|) y \cos \phi - (|q/p| + |p/q|) x \sin \phi$

with $\arg(q/p) = \phi$

In the absence of C/P : $|q/p|=1,\,\phi=0,\ y_{CP}=y,\,A_{\Gamma}=0$

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

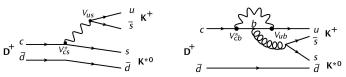
2.1. Why study CP violation in charm?

2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for

2011/2012



Why study CP violation in charm?

★ Direct C/P

in the SM, appears in single-Cabibbo suppressed channels:

penguin diagram has $\mathcal{I}m(\mathcal{A}) \propto \lambda^5$ in the SM \Rightarrow asymmetries $\mathcal{O}(10^{-4} - 10^{-3})$ NP can enhance to $\mathcal{O}(10^{-3} - 10^{-2})$

In summary:

charm represents a unique sector for searches of CP (both direct and through mixing) clear windows for NP due to the low SM predictions

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?

2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for QP searches in charm at LHCb
3.3. Prospects for 2011/2012

2.2. Approaches to search for OP in charm

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. QP in Charm

2.1. Why study CP violation in charm?

2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
2.2. Brognesta for

3.3. Prospects for 2011/2012

Approaches to search for CP in charm

There are two main lines to search for CP in charm decays:

& Time Dependent Measurements in $D^0 - \overline{D}^0$ system

• rely on studying the decay rate as a function of the propertime

• important to "tag" the flavor of the D produced usually done with the chain $D^{*+} \rightarrow D^0 \pi^+$ and $D^{*-} \rightarrow D^0 \pi^-$

• Some examples:

- decays to CP final states: h⁺h⁻ (h = K, π)
 * lifetime ratio of single-Cabibbo suppressed wrt Cabibbo-favored probes y_{CP}
 - \star lifetime asymmetry for D^0 and \overline{D}^0 provides A_{Γ}
- Interference between D⁰ → K⁺π⁻ ("wrong sign" WS) and D⁰ → D
 ⁰ → K⁺π⁻ ("right sign" - RS)

get the time dependent ratio of WS(t)/RS(t)

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?

2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

4. Conclusions

3.1. The LHCb experiment
3.2. Results for QP searches in charm at LHCb
3.3. Prospects for 2011/2012

Approaches to search for CP in charm

Time Integrated Measurements, both neutral and charged D's

- compare "populations" for particle and antiparticle, in different ways
- Some examples:
 - Single-Cabibbo (SC) 2-body decays D⁰ → K⁺K⁻ and D⁰ → π⁺π⁻ * search for CP asymmetry in the integrated rates A_{CP} = Γ(D→f)−Γ(D→f)/Γ(D→f) F(D→f)+Γ(D→f)
 - SC 3-body decays D⁺ → K⁺K⁻π⁺, D⁺ → π⁻π⁺π⁺ look for localized Q^P signs in the reaction phase space

 \Rightarrow discussing this last topic important for results shown later CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *QP* in Charm

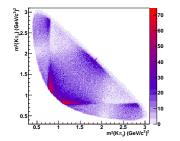
2.1. Why study CP violation in charm?

2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for QP searches in charm at LHCb
3.3. Prospects for 2011/2012

CP Violation through 3-body decays


in 3-body decays, resonances are produced very often together with the weak process

 $\begin{array}{c} \mathbf{h_3} & \text{ex.: } D^+ \to \phi \ \pi^+, \ \phi \to K^- K^+ \\ \mathbf{h_2} & D^+ \to K^* K^+, \ K^* \to K^- \pi^+ \\ \mathbf{h_1} & \text{Only the final state is observed:} \\ D \to^+ \ K^- K^+ \pi^+ \ ! \end{array}$

► to understand the dynamics of the decay (including resonant substructures) ⇒need to study the phase space of the reaction: "Dalitz Plot"

Invariants: $s_{12} \equiv m_{12}^2 = (p_1 + p_2)^2$ $s_{13} \equiv m_{13}^2 = (p_1 + p_3)^2$ $s_{23} \equiv m_{23}^2 = (p_2 + p_3)^2$

kinematical constraint: $m_D^2 = s_{12} + s_{13} + s_{23} - \Sigma m_i^2$ $\frac{d\Gamma}{ds_{12}ds_{13}} = \frac{1}{(2\pi)^3 32M^3} |\mathcal{A}|^2$

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *Q*P in Charm

2.1. Why study CP violation in charm?

2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for QP searches in charm at LHCb
3.3. Prospects for 2011/2012

CP violation through the Dalitz plot

For direct CP studies: mainly two approaches

Amplitude Analysis for particle and antiparticle

the total decay amplitude for a 3-body process written as a coherent sum of quasi two-body modes

 $\mathcal{A} = a_{nr} e^{i \delta_{nr}} + \sum_j a_j e^{i \delta_j} \mathcal{A}_j$

- A_j are model dependent (phenomenological amplitudes)
- the phases δ_j accomodate both weak and strong phases
- fit for particle and antiparticle separately, compare results

Compare the Dalitz plots in a model independent way

- divide the Dalitz surface in "bins" for particle and antiparticle
- compare the population

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *QP* in Charm

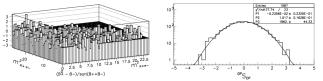
2.1. Why study CP violation in charm?

2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for 2011/2012

4. Conclusions


25/ 53

Comparing Dalitz Plot surfaces - Mirandizing

- I. Bediaga et. al PRD 80 096006 2009
 - divide the Dalitz plot in bins and calculate the significance of the difference in the population for particle and antiparticle

 $\mathcal{S}_{ ext{CP}}(i) = rac{N(i) - lpha ar{N}(i)}{\sqrt{N_{ ext{obs}}(i) + lpha^2 ar{N}_{ ext{obs}}(i)}}$

- $\alpha \bar{N}$ is the yield after correcting for (global) production and/or instrumental asymmetries between particle and antiparticle $\alpha = N_{tot}/\bar{N}_{tot}$
- if only statistical fluctuations are present, the distribution of S_{CP}(i) should be Gaussian

 if deviations from Gaussian appear - spread across the Dalitz plot or just in localized regions - this is direct evidence for C/P CP Violation in Charm at LHCb

Carla Göbel

I. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *QP* in Charm

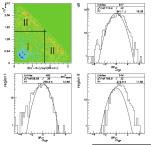
2.1. Why study CP violation in charm?

2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for

2011/2012



Comparing Dalitz Plot surfaces - Mirandizing

CP Violation in Charm at LHCb Carla Göbel

★ Example with $D^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

from PRD 80 096006 2009

- toy model generated with $f_0 \pi$, $\sigma \pi$, $\rho \pi$ and NR
- a 1% phase difference (3.6°) is introduced for $\rho^0 \pi^+$
- $\blacktriangleright ~\sim 1~M$ events generated for either D^+ and D^-
- departure from Gaussian globally and in both regions I and II

★ General Comments:

- sensitive to local asymmetries rather than global asymmetry (total width) ©
- no model dependence: S_{CP} is a direct measure of QP: even for small asymmetries or relatively small samples ©
- very good to search for early signs of QP ! ③
- no actual measurements of OP parameters ©

53

1.2. *QP* & the CKM matrix
 QP in Charm

2.1. Why study CP violation in charm?

1.1. CP Violation -

2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for 2011/2012

3. The LHCb experiment and Charm

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

CP Violation in Charm at LHCb

Carla Göbel

1.1. CP Violation general 1.2. *OP* & the CKM matrix

2.1. Why study CP violation in charm? 2.2. Approaches to search for *QP* in charm

3. The LHCb

3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

4. Conclusions

3.1. The LHCb experiment

The LHCb Experiment

CP Violation in Charm at LHCb

Carla Göbel

. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

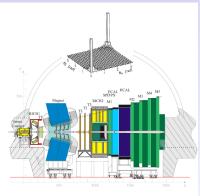
2. *Q*P in Charm

2.1. Why study CP violation in charm? 2.2. Approaches to search for QP in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb 3.3. Prospects for 2011/2012



The LHCb Experiment

LHCb design

- ► a forward spectrometer: good acceptance for $b\bar{b}$ $2 < \eta < 5$
- excellent vertexing and proper time resolution
 σ_τ = 50fs (compared to τ_D ~ 410fs, τ_B ~ 1500fs)

• very good tracking and momentum resolution $\sigma_p/p \sim 0.15 - 0.35\%$

- excellent particle ID (specially K/π discrimination)
 kaon ID eff ~ 95%, misid ~ 7%
- excellent features for charm physics too!!!

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

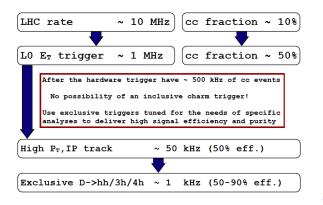
2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb 3.3. Prospects for


2011/2012

Charm Production & Trigger in LHCb

- Two types of charm production:
 - prompt created at the PV
 - secondary from B decay ($\mathcal{B} \sim 50\%$)
- $\sigma(c\bar{c}) \sim 20 \times \sigma(b\bar{b}) \Rightarrow$ much more prompt charm!

Trigger

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

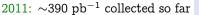
2. *QP* in Charm

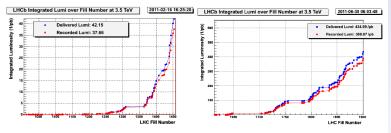
2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb


3.3. Prospects for 2011/2012



2010 – 2011 Data Taking

pp collisions at $\sqrt{s} = 7$ TeV since March 2010

2010 data taking: 37 pb^{-1}

• currently running at $3 \times 10^{32} cm^{-2} s^{-1}$

• $\sim 1 \text{ fb}^{-1}$ expected by the end of 2011

... results shown here correspond to 2010 data

CP Violation in Charm at LHCb

Carla Göbel

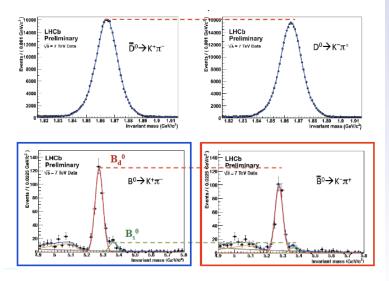
I. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. QP in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm


3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

last years's first signs of CP ... in B's

CP Violation in Charm at LHCb

Carla Göbel

. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

3.2. Results for CP searches in charm at LHCb

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. QP in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

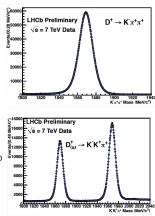
3. The LHCb

experiment and Charm

3.1. The LHCb experiment

3.2. Results for QP searches in charm at LHCb

3.3. Prospects for 2011/2012



Direct CP Violation in $D^+ \to K^- K^+ \pi^+$

\Rightarrow Search for CP signs by a direct comparison of D^+ and D^- Dalitz plots

- Use Mirandizing method to search for QP
- not sensitive to global asymmetries
- 2010 data sample:
 - 390K $D^+ \rightarrow K^- K^+ \pi^+$
 - 550K $D_s^+ \rightarrow K^- K^+ \pi^+$
 - 4M $D^+ \rightarrow K^- \pi^+ \pi^+$
- 2010 data set is ~ 20 × Cleo's (PRD D 78, 072003(2008))

CP Violation in Charm at LHCb

Carla Göbel

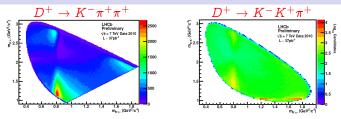
. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

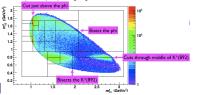
2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm


3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012



Direct CP Violation in $D^+ o K^- K^+ \pi^+$

several studies to shown the absence of local asymmetries

- sidebands
- control channels $D^+ \rightarrow K^- \pi^+ \pi^+$ and $D_s \rightarrow K^- K^+ \pi^+$
- toy studies on binning choice to improve sensitity

blind analysis until all controlled... and then unblind

CP Violation in Charm at LHCb

Carla Göbel

. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *Q*P in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment

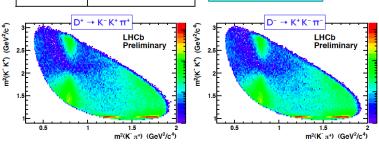
3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

Direct CP Violation in $D^+ o K^- K^+ \pi^+$

calculate χ^2 /dof from the significance of each Dalitz bin:

$$\chi^2/ ext{dof} = \sum_i rac{\{{\mathcal S}_{CP}(i)\}^2}{ ext{nbins}-1}$$


No evidence for CP violation

in the 2010 dataset of 38 pb^{-1}

Preliminary: 2010 data, 38 pb⁻¹

With baseline physics-driven binning:

MagUp	35.6/24 ⇒ 6.0%
MagDown	27.4/24 ⇒ 28.5%
Combined	32.0/24 ⇒ 12.7%

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

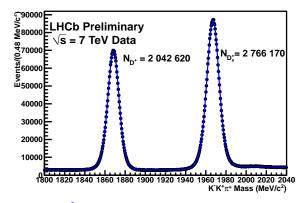
2. *Q*P in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb

experiment and Charm

3.1. The LHCb experiment


3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

Direct CP Violation in $D^+ o K^- K^+ \pi^+$

just a glance of what's coming for 2011 (220 pb^{-1})

... for 1 pb⁻¹ we will be testing the "window" between NF and SM and signs of C/P might well appear!

CP Violation in Charm at LHCb

Carla Göbel

.. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment

3.2. Results for QP searches in charm at LHCb

3.3. Prospects for 2011/2012

$D ightarrow h^+ h^-$ - Time Integrated

- D → h⁺h⁻ can manifest time-integrated asymmetries both from • indirect QP (final-state independent)
 • direct QP (final-state dependent)
- $\Rightarrow {
 m Look} {
 m for CP} {
 m asymmetries in } {D
 ightarrow K^- K^+ } {
 m and} {D
 ightarrow \pi^- \pi^+ }$

 $\Rightarrow D \rightarrow K^{-}\pi^{+}$ as control channel

- ► CP asymmetry is defined by $A_{CP} = \frac{\Gamma(D^0 \to f) \Gamma(\bar{D}^0 \to \bar{f})}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to \bar{f})}$
- ▶ what we measure, instead, is $A_{RAW} = \frac{N(D^0 \rightarrow f) - N(\bar{D}^0 \rightarrow \bar{f})}{N(D^0 \rightarrow f) + N(\bar{D}^0 \rightarrow \bar{f})}$
- A_{RAW} can have contributions from
 - production
 - detection (particle interaction and/or reconstruction)
 - ▶ and ... C/P

▶ study tagged and untagged modes tagged (*) : $D^{*+} \rightarrow D^0(h^+h^-)\pi_s^+$ and $D^{*-} \rightarrow \overline{D}^0(h^+h^-)\pi_s^-$

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *Q*P in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb

experiment and Charm

3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

$D ightarrow h^+ h^-$ - Time Integrated

▶ thus, *A*_{*RAW*} is expanded as

$$A_{RAW}(f) = A_{CP}(f) + A_D(f) + A_D$$

- construct observables for which unknown asymmetries cancel
- without external inputs:

 $A_{CP}(KK) - A_{CP}(\pi\pi) = A_{RAW}(KK)^* - A_{RAW}(\pi\pi)^*$

- indirect QP expected to cancel (since it is final-state independent)
- expect non-zero result if there is direct OP
- complementary NP search to A_{Γ}
- also possible to get info on production asymmetry

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb

experiment and Charm

3.1. The LHCb experiment

3.2. Results for QP searches in charm at LHCb

3.3. Prospects for 2011/2012

Getting $A_{CP}(KK) - A_{CP}(\pi\pi)$

GeV)

Events / (7e-5

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

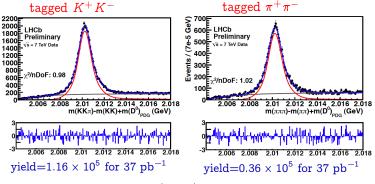
1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and

Charn


3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

4. Conclusions

 study also in bins of (p_T, η) and magnet polarities, early and late data

Getting $A_{CP}(KK) - A_{CP}(\pi\pi)$

LHCb-CONF-2011-023

\Rightarrow Results:

 systematic studies:
 D⁰ mass window (0.20%), multiple candidates (0.13%), modeling lineshapes (0.06%), binning in (p_T, η) (0.01%),

 systematics dominated by conservative estimates due to large statistical uncertainties; expects to decrease with statistics

 $relimin A_{CP}^{A}(KK) - A_{CP}(\pi\pi) = (-0.28 \pm 0.70_{stat} \pm 0.25_{syst})\%$

Comparisons:

Experiment	$A_{CP}(KK)$ - $A_{CP}(\pi\pi)$ in %	Reference
Belle	$-0.86 \pm 0.60_{stat} \pm 0.07_{syst}$	Phys.Lett.B670 (2008) 190
BaBar*	+0.24±0.62 _{stat}	Phys.Rev.Lett.100 (2008) 061803
CDF*	-0.46±0.33 _{stat}	CDF note 10296 (preliminary)

naive difference from individual measurements of $A_{CP}(KK)$ and $A_{CP}(\pi\pi)$ ignoring systematics; all input measurements are dominated by statistical uncertainty

CP Violation in Charm at LHCb

Carla Göbel

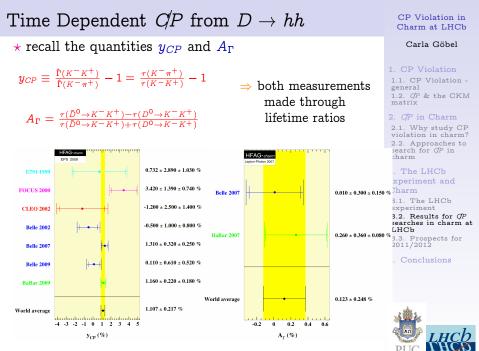
I. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *Q*P in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

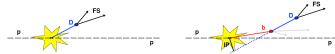
3. The LHCb


experiment and Charm

3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012



44/ 53

Time Dependent $C\!\!/P$ from $D \to hh$

... Some analysis details ...

- use decay chain $D^{*+} \to D^0(h^+h^-)\pi^+$ to tag the flavour of D^0 (and correspondingly for \bar{D}^0)
- ▶ for the Lifetime fit: mainly two concerns
 - \blacktriangleright charm can be produced promptly or from B decay

important to discriminate these two sources for production and time-dependent measurements \Rightarrow use the IP χ^2 of the D

▶ lifetime distribution biased due to trigger & offline selection acceptances
 use an algorithm to obtain the per-event
 acceptance ⇒ move the PV, rerun the trigger
 (possible due to software trigger)
 ⇒ "swimming method"

CP Violation in Charm at LHCb

Carla Göbel

. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *QP* in Charm

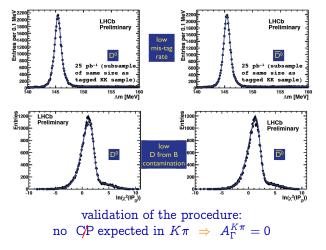
2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment an

Charm

3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb


3.3. Prospects for 2011/2012

Time Dependent $C\!\!/P$ from $D \to hh$

KK and $\pi\pi$ measurements for A_{Γ} and y_{CP} underway and still "blind"

 \Rightarrow here the results for control channel $D^0 o K^- \pi^+$

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *Q*P in Charm

2.1. Why study CP violation in charm? 2.2. Approaches to search for QP in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment

3.2. Results for QP searches in charm at LHCb

3.3. Prospects for 2011/2012

Time Dependent $C\!\!/P$ from D o hh

CP Violation in Charm at LHCb

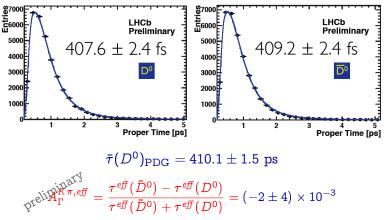
Carla Göbel

1. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *CP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm


3. The LHCb experiment and Charm

3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

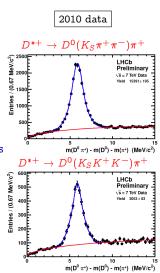
2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

4. Conclusions



3.3. Prospects for 2011/2012

CP violation in $D^0 o K_S h^+ h^-$

\Rightarrow Very rich environment

- CP eigenstates as intermediate states
- rich Dalitz plot structure
- both Cabibbo-favored and DCS final states
- promising D⁰ C/P and mixing studies
 - time dependent amplitude analysis
 - direct access to *Q*'P and mixing parameters (strong phases measured!)
- current results from BaBar and Belle with \sim 540K for $K_S \pi \pi$
- explicit trigger implemented for 2011

CP Violation in Charm at LHCb

Carla Göbel

. CP Violation

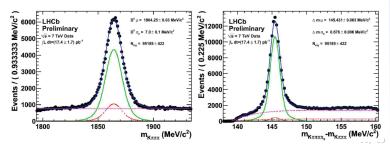
1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment3.2. Results for *QP*


searches in charm at LHCb

3.3. Prospects for 2011/2012

$D^0 ightarrow h^+ h^+ h^- h^-$

- ▶ one of the largest CP effect was observed through T-odd observable angle between planes $\pi^+\pi^-$ and e^+e^- in $K_L \to \pi^+\pi^-e^+e^-$
- ▶ similar mechanism can be at work in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$
- look for asymmetry in the distribution of the angle between K⁺K⁻ and π⁺π⁻ planes
 FOCUS (2005) pioneered this study; BaBar with 47K events measured A_T^{CP} = (0.10 ± 0.51 ± 0.44)%
- ▶ LHCb competitive by the end of 2011

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

 $D^{\pm}_{(s)} o K_S h^{\pm}$

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm?2.2. Approaches to search for *QP* in charm

3. The LHCb experiment and Charm

2100

3.1. The LHCb experiment

3.2. Results for *QP* searches in charm at LHCb

3.3. Prospects for 2011/2012

4. Conclusions

(²) ▶ CF and DCS decays: M(D) = 1868.53 +/- 0.12 MeV/c² c(D) = 6.89 +/- 0.12 MeV/c2 $D^+ \rightarrow K_{\rm S} \pi^+$. Num(D) = 6256 53 +/+ 162 110 2500 M(D) = 1967.74 +/- 0.12 MeV/c² $D_{S}^{+} \rightarrow K_{S}K^{+}$ 2000 o(D) = 8.00 +/- 0.12 MeV/c2 Num(D_) = 7692.37 +/+ 177.62 LHCb 1500 ► CS decays: Preliminary s = 7 TeV Data 1000 $D^+ \rightarrow K_S K^+$. $D_s \to K_s \pi^+$ 500 01800 1850 1900 1950 2000 2050 ▶ **CP** through m(K° K) [MeV/c2] 12000 M(D) = 1868 10 a/- 0.05 MeV/c2 $K^0 - \overline{K}^0$ in the SM: o(D) = 9.23 +/- 0.05 MeV/c2 Num(D) = 40724.09 +/- 366.39 10000 expect asymmetries M(D) = 1967.26 +/- 0.68 MeV/c2 c(D_) = 7.36 +/- 0.59 MeV/c2 8000 Num(D) = 1018.89 +/- 115.99 $\sim 0.3\%$ LHCb 6000 Preliminary s = 7 TeV Data

4000

2000

1800

1850

1900

1950

- values of O(1%) would sign for NP

2000 2050 m(K²₉=) [MeV/C²]

CP Violation in Charm at LHCb

Carla Göbel

1. CP Violation

1.1. CP Violation general 1.2. *QP* & the CKM matrix

2. *QP* in Charm

2.1. Why study CP violation in charm? 2.2. Approaches to search for QP in charm

3. The LHCb experiment and Charm

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for

3.3. Prospects for 2011/2012

4. Conclusions

2/ 53

Conclusions

Charm Decays: great potential to search for New Physics in an environment with low SM CP "background"

- LHCb has a broad program on charm physics
- mainly focused on mixing and CPV but also spectroscopy and rare decays (not covered here)
- ▶ First (preliminary) results presented here (2010 data):

★ no evidence for CP in $D^+ \rightarrow K^-K^+\pi^+$ pvalue of 12.7% in 25 Dalitz bins for 390K events

★ $A_{CP}(KK) - A_{CP}(\pi\pi) = (-0.28 \pm 0.70_{stat} \pm 0.25_{syst})\%$

- dedicated triggers for many modes aiming to search for $QP: D^0 \rightarrow h^+h^-, D^+ \rightarrow 3h, D^0 \rightarrow 4h, D^0 \rightarrow K_Shh, D^+ \rightarrow K_Sh, \text{ etc}$
- ▶ plenty of charm foreseen for 2011 for instance ~ 200K D⁰ → K⁻π⁺ per pb⁻¹ being recorded !

CP Violation in Charm at LHCb

Carla Göbel

. CP Violation

 1.1. CP Violation general
 1.2. *QP* & the CKM matrix

2. *Q*P in Charm

2.1. Why study CP violation in charm? 2.2. Approaches to search for QP in charm

3. The LHCb experiment and

3.1. The LHCb experiment
3.2. Results for *QP* searches in charm at LHCb
3.3. Prospects for 2011/2012

